
ORNL/TM-2009/100

Skel User Manual

ADIOS 1.6.0
December 2013

1



DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S.

Department of Energy (DOE) Information Bridge:

Web site:http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the

public from the following source:

National Technical Information Service

5285 Port Royal Road

Spring�eld, VA 22161

Telephone:703-605-6000 (1-800-553-6847)

TDD:703-487-4639

Fax:703-605-6900

E-mail:info@ntis.fedworld.gov

Web site:http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology

Data Exchange (ETDE) representatives, and International Nuclear Information

System (INIS) representatives from the following source:

O�ce of Scienti�c and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone:865-576-8401

Fax:865-576-5728

E-mail:reports@adonis.osti.gov

Web site:http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the

United States Government. Neither the United States government nor any

agency thereof, nor any of their employees, makes any warranty, express or

implied, or assumes any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process

disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any speci�c commercial product, process, or service by

trade name, trademark, manufacturer, or otherwise, does not necessarily

constitute or imply its endorsement, recommendation, or favoring by the

United States Government or any agency thereof. The views and opinions of

authors expressed herein do not necessarily state or re�ect those of the United

States Government or any agency thereof.

2



ORNL/TM-2009/100

SKEL USER MANUAL

Prepared for the
O�ce of Science

U.S. Department of Energy

Authors

J. Logan, N. Podhorszki, S. Klasky

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831-6070
managed by

UT-BATTELLE, LLC
for the

U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

3



Contents

1 Introduction 7

2 Using Skel 8
2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Overview of Manual Benchmark Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Detailed Example of Manual Benchmark Creation . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Recreating a Run Using Skel Replay (Experimental) . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Using Skel for a remote replay (Experimental) . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Skel Command Reference 10
3.1 Available Subcommands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Skel Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 The Parameters File 12
4.1 Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Yaml File Format 14

6 Skel Settings File 15
6.1 Available Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Low-Level Timing Mechanism 16
7.1 Using the Low-Level Timing Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.2 Extracting Timing Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

8 Hints for Porting Skel 17
8.1 Make�les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8.2 Submission Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8.3 Cheetah templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4



List of Figures

2.1 Skel Work�ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5



Acknowledgments

This project is sponsored by ORNL, Georgia Tech, The Scienti�c Data Management Center (SDM) at
Lawrence Berkeley National Laboratory, and the U.S. Department of Defense.

6



Chapter 1

Introduction

Skel is a tool used for the generation of I/O skeletal applications. Skel takes a high-level description of the
I/O performed by an application, and generates a full benchmark that performs the described I/O. Compared
to a scienti�c application, the generated benchmark is easy to build and run, and generally runs faster since
it only performs I/O. Despite the simplicity of the generated code, it duplicates the I/O pattern of the target
application, thus simplifying the process of understanding the I/O performance of an application.

Skel provides a simple mechanism for testing the performance of I/O operations that are relevant to appli-
cations of interest. This is of critical importance when evaluating new systems or new system con�gurations.
It is equally useful for evaluating new I/O methods, or examining the e�ects of dirent parameters to existing
I/O methods. Since the benchmarks produced by skel focus on the exact I/O patterns of applications, per-
formance measurements obtained from those benchmarks will correlate highly with the performance of the
actual applications.

This manual provides a detailed explanation of Skel, including the relevant �le formats, documentation
of skel commands, common usage of skel, and hints for porting skel to new platforms. Skel is young and
still in development, so we expect there will be things that do not work perfectly, as well as things that have
changed from the previous release. Please help us improve by letting us know when you encounter troubles.
You can reach the skel developers by sending email to lot@ornl.gov.

7



Chapter 2

Using Skel

2.1 Requirements

Skel is bundled with ADIOS, and thus requires a system capable of building ADIOS on. In addition there
are a couple of extra python packages that may be required to use all of the features of skel.

Skel has been tested to work with Python 2.7. Other versions of python may or may not work.
You will need Cheetah, which is free and open source software. Instructions for installing Cheetah may

be found here: www.cheetahtemplate.org/docs/users_guide_html/users_guide.html This version of Skel has
been tested with version 2.4.4 of Cheetah.

You will also need the PyYAML package. Instructions for downloading and installing PyYAML may
be found here: http://pyyaml.org/wiki/PyYAML. This version of Skel has been tested with version 3.10 of
PyYaml.

On Linux systems, you may be able to �nd these packages in your package manager's library, which may
simplify the installation process.

2.2 Overview of Manual Benchmark Creation

Figure 2.1 shows the typical work�ow of using skel to create a skeletal I/O benchmark. The example uses the
GTS application, and thus the work�ow begins with gts.xml, the XML descriptor from GTS. The skel xml

command is used to create a second xml �le, gts_skel.xml which will serve as the ADIOS xml descriptor for
the skeletal application. Next, skel params is used to generate a parameters �le. The generated parameters
�le is then edited by the user to guide the subsequent generation of the skeletal application.

At this point, the commands skel source, skel make�le, and skel submit may be used to generate the source
�les, Make�le, and submission scripts that comprise the skeletal application. With all of the components of
the skeletal application created, it is now time to build the application, using make, and �nally deploy the
application to a directory from which it may be launched, using make deploy, which copies the gts_skel.xml
�le, executable �les, and submission script. The user now has a ready to run I/O benchmark without having
written any source code at all.

2.3 Detailed Example of Manual Benchmark Creation

In this section we will describe the steps used to create an I/O Kernel based on the GTS application. The
ADIOS con�g �le for GTS can be found in the examples directory.

The steps are
skel xml gts

skel params gts

Edit the parameters �le, particularly the values of scalars that control array sizes, and the desired tests
to run.

skel makefile gts

skel source gts

8



Figure 2.1: Skel Work�ow

skel submit gts (optional)
make

make deploy (optional)

2.4 Recreating a Run Using Skel Replay (Experimental)

We have added a feature in this release that allows a benchmark to be created automatically based on an
existing bp �le. This replay feature eliminates the tedious nature of creating and tweaking a parameter �le,
instead taking that information directly from the bp �le, settings �le, or command line, in order to allow
direct replay while simplifying the steps that a user must take.

To show the usage of the replay feature, assume we have a bp �le, out.bp, that was produced by an
application called myapp. Generating a benchmark based on out.bp is simple:

skel replay myapp -b out.bp

This single command generates an adios XML �le, source code, a make�le, and a submission script, and
�nally executes the make�le, providing a ready to run benchmark.

2.5 Using Skel for a remote replay (Experimental)

In the case where you have a large bp �le representing an I/O pattern you want to run on a di�erent machine,
it may be desirable to extract the metadata information from the bp �le, rather than transferring the entire
�le to the remote machine. To accomplish this, simply use the skeldump command as follows:

skeldump out.bp > out.yaml

Skeldump creates a yaml �le containing all of the information required to build the benchmark on the
remote machine. After moving only the yaml �le to the remote machine, the benchmark creation can be
accomplished with:

skel replay myapp -y out.yaml

9



Chapter 3

Skel Command Reference

Most skel commands are of the form: skel subcommand project

3.1 Available Subcommands

skel install
Usage:

skel install

skel make�le
Generates a Make�le �t for building and deploying the skeletal application.

Requires <project>_skel.xml and <project>_params.xml

Usage:

skel makefile <project>

skel params
Generates a parameters �le that can be customized by the user. Note that this command creates a
�le called <project> params.xml.default so as to avoid overwriting a customized parameters �le. This
means that the user should copy this �le to <project> params.xml and edit before proceeding with
code generation.

Requires <project>_skel.xml

Usage:

skel params <project>

skel replay
Generates a C or Fortran code that performs the I/O operations described by the given bp �le or yaml
�le.

Usage:

skel replay <project> -y <yaml_file>

skel replay <project> -b <bp_file>

skel source
Generates a C or Fortran code that performs the I/O operations described by the XML descriptor and
the parameters �le.

Requires <project>_skel.xml and <project>_params.xml

Usage:

skel source <project>

10



skel submit
Generates a submission script for the skeletal application

Requires <project>_skel.xml and <project>_params.xml

Usage:

skel submit <project>

skel xml
Generates the <project>_skel.xml �le.

Requires <project>.xml

Usage:

skel xml <project>

3.2 Skel Utilities

skeldump (experimental)
Extracts necessary metadata from a bp �le to create a skeletal application. Metadata is produced in
yaml format, and is sent to standard out.

Usage:

skeldump <bpfile> > <yamlfile>

11



Chapter 4

The Parameters File

Generation of a skeletal application requires some more information that is found in the ADIOS con�guration
�le. To specify this additional information, the user must supply a Skel parameters �le. The parameters �le
is an XML �le which contains the elements described in the following section. Although it not overly dicult
to construct your own parameters �les, users may �nd it more convenient to use the skel params command to
automatically generate a parameters �le with default values, then simply edit the �le to provide the desired
con�guration.

4.1 Elements

<skel-con�g>
Each parameters �le must contain exactly one <skel-con�g> element as the only element at the root
level of the document. The <skel-con�g> element should contain one <adios-group> element and one
<batch> element, as described below.

Supported Attributes:

application The name of the application described by the document. This should correspond to the
project used for the skel calls, and the name of the original XML �le given to skel xml .

<adios-group>
The <adios-group> element is a child of the root <skel-con�g> element. It corresponds to the adios-
group that will be written by the I/O skeletal application being generated. The <adios-group> element
contains a collection of <scalar> and <array> elements corresponding to the variables described for
the group in the ADIOS con�g �le.

Supported Attributes:

name The name of the ADIOS group that this element describes

<scalar>
Represents a scalar variable that is described in the ADIOS descrip- tor. Often integer valued scalars
will be used to determine the dimensions of arrays, thus providing appropriate values is essential for
creating mean- ingful benchmarks.

Supported Attributes:

name The name of the scalar variable

type (Optional) The type of this variable in the generated code. Supplied for convenience by skel
params .

value A value, of the proper type, that will be assigned to this scalar variable in the generated code.

<array>
Represents an array variable that is described in the ADIOS descrip- tor.

Supported Attributes:

12



name The name of the array variable

type (Optional) The type of this variable in the generated code. Supplied for convenience by skel

params.

dimensions (Optional) A list of the scalar values that will be used to determine the dimensions of
this array

�ll-method Determines how the array memory will be initialized in the generated code

<batch>
Describes a set of tests to be performed by the generated I/O kernel. The <batch> element contains
one or more <test> elements.

Supported Attributes:

name The name of the batch. Used to name the submission script and other elements of the batch
job.

cores The number of MPI tasks that will be used for the skeletal application

walltime Amount of runtime requested by the generated submission script

<test>
Describes a single test to be performed.

Supported Attributes:

type The type of test to be performed. Currently only write is supported.

group The ADIOS group to be written

method The ADIOS write method to use for writing (i.e. POSIX). A full listing of available methods
can be found in the ADIOS manual.

iterations The number of times to repeat this test

rm determines whether and when to remove the written output �les. One of {pre, post, both, none}

13



Chapter 5

Yaml File Format

Skel supports various methods for specifying the high-level I/O description to be used for creating skeletal
applications. One of these is the yaml �le, described below. YAML is a data serialization language that is
similar to JSON. YAML supports data abstractions including sequences and mappings, and allows these to
be nested. General information about YAML is available at http://www.yaml.org/

The yaml format described here is the one that is produced by the skeldump utility, and which is accepted
by the skel replay command, both described elsewhere in this manual.

At the top level of the yaml �le, there are a series of mappings as follows:

lang speci�es the target language, currently C and fortran are supported.

procs indicates the number of MPI tasks involved in the I/O operations.

group is the name of the ADIOS group in which to write the variables.

variables is a sequence of mappings representing the variables to be written

Each variable is represented by a nested mapping that consists of:

name The name of the variable

type The unit type of the variable, should correspond to a valid type in the target language

dims Either scalar, or a comma separated list of array dimensions

value (For scalars) a string representing the value to be assigned to this variable in the skeletal application
code.

14



Chapter 6

Skel Settings File

Skel provides a collection of con�gurable options which are exposed in the Skel settings �le. The settings �le
is located in the user's home directory at /.skel/settings. The settings �le consists of single line entries of the
form <name>=<value>. Blank lines and lines starting with # are ignored. Entries in the settings �les are
case sensitive, and lower case is typically used for all names and yes/no values.

6.1 Available Settings

deploy_dir This is the directory into which the compiled applications will be copied to be executed. This
directory should be visible to the compute nodes.

submit_target This determines which submission script template will be used by skel_submit. Templates
for titan and sith are included in this release.

sleep_before_open (yes/no) Determines whether a short sleep statement is inserted in the generated
code before the adios open call. Default is no.

barrier_before_open (yes/no) Determines whether an MPI_Barrier call is inserted into the generated
code before adios_open. Default is yes.

barrier_before_access (yes/no) Determines whether an MPI_Barrier call is inserted into the generated
code before the sequence of adios_write calls. Default is no.

barrier_before_close (yes/no) Determines whether an MPI_Barrier call is inserted into the generated
code before adios_close. Default is no.

barrier_after_close (yes/no) Determines whether an MPI_Barrier call is inserted into the generated
code after adios_close. Default is no.

barrier_after_steps (yes/no) Determines whether a single MPI_Barrier call is inserted into the gener-
ated code after the �nal adios_close. Default is no.

use_adios_timing (yes/no) Determines whether a call is inserted to output detailed timing informa-
tion collected by ADIOS. For this to work, your adios distribution must have been con�gured using
�enable-skel-timing. Default is no.

15



Chapter 7

Low-Level Timing Mechanism

By default, applications generated by skel will produce a summary timing re- port, sending it to standard
out. On most platforms, this will be captured in the output �le produced by the job script. The summary
report contains tex- tual information about the overall time taken by the various I/O operations. If more
detail is desired, ADIOS has a mechanism for gathering low-level timing information for various events that
occur within the ADIOS I/O calls.

7.1 Using the Low-Level Timing Mechanism

To use the low-level timing mechanism, you must use an ADIOS library that has been built with this low-
level timing mechanism enabled. Simply build ADIOS as described in the ADIOS manual, inserting �enable-
skel-timing in the con�gure command. We do not recommend enabling the low-level timing mechanism
while running production codes. Once you have enabled low-level timing in ADIOS, you only need to
enable generation of low-level timing calls in your Skel settings �le. This is done by including the line:
use_adios_timing=yes in your Skel settings �le. This will cause the skel source command to include an
additional call near the end of the generated skeletal application to output the detailed timing information
that has been collected. The detailed timing information is written to a separate �le using XML. This will
work best if used to write a single iteration of a single group. The low-level timing mechanism provides
detailed timing information for only some of the available write methods. As of this release, the supported
methods are POSIX , MPI LUSTRE , and MPI AMR .

7.2 Extracting Timing Information

The XML �le that is produced by ADIOS contains a large amount of measure- ment data, but it is somewhat
unwieldy to work with directly. So, we have included an additional utility, skel extract.py , which allows data
from the XML �le to be exported as a CSV �le that is simple to load using tools such as R or Matlab.

16



Chapter 8

Hints for Porting Skel

Skel has been developed and tested on only a small handful of platforms. While we expect most functionality
will be portable to a wider range of machines, there are likely to be some issues arising when running skel
on your system. There are a few hints in the following sections that may help you to get started. If further
assistance is needed to get skel working, please contact lot@ornl.gov.

8.1 Make�les

Assuming that they work properly, Make�les generated by skel are quite conve- nient, as the skel user need
not think about how to compile the code, but can simply type make. All of the details are taken care of by
skel. We have tested skel on only a few systems at this point, and thus it is quite possible that the Make�le
generated by skel may fail on some systems. Users familiar with make with a need to adjust some aspect of
the generated make�les should investigate /.skel/templates/Make�le.default.tpl. This template �le is used
by Skel to generate Make�les, and can be adjusted to the needs of the user. The template syntax is simple,
with $$VAR_NAME$$ used to indicate template substitutions to be made by skel make�le. Again, if you run
into trouble with this, please contact us as described above.

8.2 Submission Scripts

Similar to the Make�le generation, skel uses templates to generate submission scripts for the generated appli-
cations. The submission templates are also located in /.skel/templates/, and are named submit <target>.tpl,
where <target> corresponds to the submit target de�ned in the user's settings �le. To create a new submit
target , simply copy one of the existing template �les, and rename it with the desired submit target name.
Then, adjust the submission syntax so that the generated �les work properly with the submission mechanism
on your system. Once again, if you run into trouble with this, please contact us as described above.

8.3 Cheetah templates

We are in the process of modifying the code generation system to use Cheetah. Cheetah provides a powerful
and �exible template language that simpli�es code generation for more complicated scenarios, and will make
creating new generators less tedious. Currently only the skel replay subcommand uses Cheetah, but future
releases should shift completely to Cheetah. Cheetah templates are included in the same directory with the
skel templates, but use the .tmpl extension. For information about the syntax supported by Cheetah, see the
Cheetah website: http://www.cheetahtemplate.org/

17


	Introduction
	Using Skel
	Requirements
	Overview of Manual Benchmark Creation
	Detailed Example of Manual Benchmark Creation
	Recreating a Run Using Skel Replay (Experimental)
	Using Skel for a remote replay (Experimental)

	Skel Command Reference
	Available Subcommands
	Skel Utilities

	The Parameters File
	Elements

	Yaml File Format
	Skel Settings File
	Available Settings

	Low-Level Timing Mechanism
	Using the Low-Level Timing Mechanism
	Extracting Timing Information

	Hints for Porting Skel
	Makefiles
	Submission Scripts
	Cheetah templates


