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Major Changes:
e Processor: Single core -> Dual Core
e Processor: 2.4 ->2.6 GHz

o Memory: DDR-400 - DDR2-667 HperTransport ™ tachnalogy BUS JiTng{IH‘?.l gcan Path interlmf
e SeaStar 1.2 -> 2.1 fixes injection bandwidth
What didn’t change:

e Memory Capacity held at 2GB/core
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Overview of the HPCC Benchmark

e Global Performance
~ HPL
— PTRANS
— MPI FFT
— MPI RandomAccess

e Local Performance (2 modes: SP and EP)
— DGEMM
— STREAM
~ FFT
— RandomAccess

e Network Latency and Bandwidth
— PingPong (min — avg — max)
— Natural Ring
— Random Ring
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Overview of the HPCC Benchmark

FFT HPL / DGEMM
‘:,E Beff
% (Latency & Bandwidth)
RandomAccess PTRANS / STREAM
spatial locality
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Benchmark OS/PE modules

° pgl/625

o xt-boot/1.5.31

e xt-catamount/1.5.31
e Xxt-crms/1.5.31

e xt-libc/1.5.31

e Xxt-libsci/1.5.31

o Xxt-lustre-ss/1.5.31
o Xxt-mpt/1.5.31

o xt-0s/1.5.31

o xt-pbs/5.3.5

o xt-pe/1.5.31

o Xxt-service/1.5.31
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Base-opts/1.5.31
DefApps
MiscApps
MySQL/4.0.27
PrgEnv-pgi/1.5.31
acml/3.6
iobuf/1.0.4
moab/5.0.0
modules/3.1.6
mts/0.1
totalview/7.3.0

UT-BATTELLE




XT3 vs XT4 Latency Summary

Latency generally increases as core

count increases — more hops
VN latencies spread higher

NIC contention between cores

Network Latency
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XT3 vs XT4 Latency Summary

e Latency generally increases as core

count increases — more hops 18

XT4

e VN latencies spread higher
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XT3 vs XT4 Latency Summary

Latency generally increases as core
count increases — more hops

VN latencies spread higher
— NIC contention between cores

XT4

14

—+—sn-Random

- sn-Natural

12

—+—sn-PingPong(max)

—o—sn-PingPong(avg)

—sn-PingPong(min)

Network Latency (microseconds)
=

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

8 — * ——vn-Random
6 *—I?i ==} - vn-:atudral
4 —+—vn-PingPong(max)
2 —e—vn-PingPong(avg)
0 ‘ ‘ ‘ ‘ ‘ —vn-PingPong(min)
0 200 400 600 800 1000 1200

20 Cores

B 18 —

e XT3

Bl _ MPICH PTL MATCH_OFF

;‘é:s — : et environment variable (1.5.39+)

> —+—PingPong(max .

figeme——_— 1 | —rirouind) has been shown to improve

s | s —PingPong(min . .

: . ~+~Random (W) latency 10-44% by disabling

2 -=— Natural (VN) . . .

g 2 - PingPong(max)(VN) registration of receive requests

0 ‘ ‘ ‘ ‘ ‘ - PingPong(avg)(VN) .
0 200 400 600 800 1000 1200 |— PingPong(min)(VN) Wlth pOf'ta|S
Cores

UT-BATTELLE




XT3 Bandwidth Summary

e XT4 improved injection BW
— PingPong 25

e Per core Ring BW:

XT4

g
)

— SN improved
— VN better per socket
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e Link contention again
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Latency & Bandwidth Comparison

Latencies as percentage of MaxPP

25

e Charts are normalized to MaxPP

— Latencies are on par but BGL
bandwidth is much lower 2

e Think:
— NaturalRing ~ nearest neighbor
e Latency: =
— Hope: o
e NatRing~MinPP<AvgPP
- Get:
¢ NatRing>MaxPP
(NN is far away)

o B a n d Wi d t h L] 7 BG/L-128K BG/L-64K BG/L-32K XT3 XT4-SN XT4-VN
- H ope : Bandwidths as a percentage of MaxPP
e NatRing~MaxPP>AvgPP
- Get:

¢ NatRing<MinPP ' u M
(NN link is heavily shared) 1

e Typical of many Top500 systems |
e But, compare to BG/L results... B e
e Job Layout previously identified o
[ J

Likely exacerbated by improvement | | n
in injection BW & NIC contention

0.2 1
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SP/EP DGEMM Summary

e Combined spatial and
temporal locality

o Effect of slightly faster
processor in XT4 visible
(2.6GHz vs 2.4GHz)

e Best case result

e Performance relies heavily on
BLAS library
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DGEMM - SP (Gflops)

XT3

XT3-VN XT4-SN XT4-VN

DGEMM -EP (Gflops)

XT3
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11

UT-BATTELLE




HPL Summary

e Spatial-Temporal locality

Multi-core friendly
“Perfect” result

e Best case
— Your code will probably

never run this fast ©

e Normalizing results

Pros
e Just % of peak for HPL

e Another scalability
perspective

¢ Removes “wallet-size”
Cons
e Ignores “wallet-size”

Can normalize against
several parameters. Mostly
equivalent to a constant
factor

Choose FP peak (familiar)
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SP/EP FFT Summary

e Temporal locality emphasized

e XT3 data should be discounted
because of unidentified
difference in software stack
and options

e SN ~10% faster than VN

e Still a strong overall win for
multi-core
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MPI FFT Summary

e Temporal locality
emphasized

— Not as good as HPL
— But still performs well

e Global communication
— Network impact
e Higher latency
e Lower per-core
bandwidth
e Multi-core
advantageous

e “SMP” Rank Reordering
gives a nearly 20%
improvement.
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SP/EP STREAM Summary

Emphasizes spatial locality

Faster DDR2 memory provides
a distinct advantage over XT3

Shared memory controller —
dual (dueling?) cores see half
bandwidth

EP-Scale (best performer)
shows one core can saturate

Memory Bandwidth - SP (GB/s)

o - N
I I I

£ (3] o ~ © ©
I

w
I

Add

B XT3

B XT3-VN
0O XT4-SN
I XT4-VN

memory interface

Tip: best performance was
achieved with less aggressive
prefetch (9 on SN vs 8 on VN)

— Prefetch bottleneck at memory
controller?

StarSTREAM improved up to
30% by adjusting several MPI
environment
variables...Huh???

Memory Bandwidth - EP (GB/s)
© A N w & O O N o ©

E XT3

B XT3-VN
0O XT4-SN
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Add

Copy
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PTRANS Summary
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H F 160
e Spatial locality - /// e
e Second core is a wash 5 120 e X
S 100 : + XT3N (cockets
e Impacted by network 2 7 . TSN ATy
contention 3 /4 _— o XTAN (sorets)

e Layout Impact
— CUG 2006 PSC paper

o
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— XT4 has higher injection BW
so increased: 0.06
e Link contention _oos 4\
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We have several theories. e
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SP/EP RandomAccess Summary

0.025

e Low locality

— If the cache hit rate isn’t zero, | _o=
the test case isn’t big enough ¢
@ '
e Note impact of DDR2 memory §°
e Comparing SP vs EP
— Memory system is the 0000

bottleneck XT3V XT4SN XT4VN
— Engaging second core 0025

provides no benefit .
— Good multi-core code should |
not look like this ; 0.
— But most code does © I
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MPI RandomAccess Summary

0.30

e Low locality
e Note scaling

e Adding second core
reduces overall
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A Few Multi-core Tips

e Slightly reducing the prefetch distance improved dual
core performance for the spatial-locality kernel

e Setting MPICH_RANK_REORDER_METHOD=1 (SMP
mode) gave mixed results...just try it.

o Additionally setting MPICH_PTL_MATCH_OFF=1 helped
several benchmarks
— Improved Latency and Bandwidth*
— Helped large messages in Ptrans

e Importance of locality

— Kernels exhibiting high temporal locality will do well on multi-
core processors

e Adding spatial locality will further improve performance

— Kernels exhibiting low temporal locality will do poorly on multi-
core processors

o Adding spatial locality will have little impact
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Multi-core Summary

1 ¢

Well suited for multi-core processors

temporal locality

Poorly suited for multi-core processors

spatial locality

—_—
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