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Coordinating Garbage Collection
for Arrays of Solid-state Drives

Youngjae Kim, Junghee Lee, Sarp Oral, David A. Dillow, Feiyi Wang, and Galen M. Shipman

Abstract—Although solid-state drives (SSDs) offer significant performance improvements over hard disk drives (HDDs) for a number
of workloads, they can exhibit substantial variance in request latency and throughput as a result of garbage collection (GC). When GC
conflicts with an I/O stream, the stream can make no forward progress until the GC cycle completes. GC cycles are scheduled by logic
internal to the SSD based on several factors such as the pattern, frequency, and volume of write requests. When SSDs are used in
a RAID with currently available technology, the lack of coordination of the SSD-local GC cycles amplifies this performance variance.
We propose a global garbage collection (GGC) mechanism to improve response times and reduce performance variability for a RAID
of SSDs. We include a high-level design of SSD-aware RAID controller and GGC-capable SSD devices and algorithms to coordinate
the GGC cycles. We develop reactive and proactive GC coordination algorithms and evaluate their I/O performance and block erase
counts for various workloads. Our simulations show that GC coordination by a reactive scheme improves average response time and
reduces performance variability for a wide variety of enterprise workloads. For bursty, write-dominated workloads, response time was
improved by 69% and performance variability was reduced by 71%. We show that a proactive GC coordination algorithm can further
improve the I/O response times by up to 9% and the performance variability by up to 15%. We also observe that it could increase the
lifetimes of SSDs with some workloads (e.g. Financial) by reducing the number of block erase counts by up to 79% relative to a reactive
algorithm for write-dominant enterprise workloads.

Index Terms—Storage Systems, Solid-state Drives, Flash Memory, Garbage Collection, Redundant Array of Inexpensive Disks.
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1 INTRODUCTION

WIDELY deployed in systems ranging from
enterprise-scale down to embedded deployments,

hard disk drives (HDDs) remain the dominant media
in online and near-line storage systems. HDD
manufacturers have been successful in providing a
long series of improvements in storage density, which
have increased the total disk capacity while bringing
down the price per byte. Perpendicular recording [26]
has extended this trend, but further advances will
likely require new technologies, such as patterned
media [41]. The changes in technology will present
significant manufacturing challenges and may disrupt
the economies of scale that mass production has brought
to the industry.

Although storage density has seen numerous improve-
ments, I/O performance has been increasing at a much
slower pace. The improved density helps move more
data onto and off the disk in a single revolution, but the
largest gains have come from increasing the rotational
speed—a single enterprise-class HDD can now provide
up to 204 MB/s when operating at 15,000 revolutions per
minute [36]. Unfortunately, HDD designers now believe
it will be extremely difficult to further increase the rota-
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tional speed of the platters because of power consump-
tion and challenging thermal dissipation issues [10], [17].

In contrast, solid state disks (SSDs) are the up-and-
comer in the storage industry, with SSDs based on
NAND Flash memory leading the charge. SSDs offer
a number of benefits over conventional HDDs [6]: im-
proved I/O access times, less power consumption, bet-
ter resilience to operating in harsh environments with
external shocks and hotter temperatures, and lighter-
weight devices that help reduce the need for additional
floor reinforcement in data centers. These benefits have
led to several successful deployments in enterprise and
high-performance computing (HPC) storage systems [2],
[11], [24], [29], and the pace of adoption is likely to
increase. There is also ongoing research into designing
hybrid storage systems combining SSDs and HDDs to
balance the benefits and costs associated with each tech-
nology [29], [16], [8].

Packaging SSDs with form factors and electrical in-
terfaces common to HDDs permits a direct replacement
in current systems. Operating systems interact with the
SSDs as normal block devices, allowing system designers
the ability to plug in an SSD and gain the performance
benefits without a full redesign of the system. How-
ever, this interoperability comes with costs—not only is
current process technology more expensive in terms of
price per GB, but also NAND Flash presents different
semantics from magnetic media, requiring a software
translation layer between the block storage APIs and the
Flash itself. This layer of abstraction can restrict the high
bandwidth and low latency achievable by SSDs when
presented with particular I/O access patterns.

Digital Object Indentifier 10.1109/TC.2012.256 0018-9340/12/$31.00 ©  2012 IEEE

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

NAND Flash memory is unable to directly overwrite
a storage location in the same manner as magnetic
media. Once a location has been written, NAND requires
an erase operation before data in that location can be
changed [31]. Further complicating matters, read and
write operations can be performed at a finer granularity
than erase operations. Reads and writes work on pages,
typically 2 to 4 KB in size, whereas groups of 64 to 128
pages called blocks must be erased as a single unit. As
erase cycles are much more expensive than read/write
operations, SSDs incorporate software to allow out-of-
place update operations and to map sectors from the
storage API to their current location in the Flash. This
out-of-place update eventually requires a sweep of the
storage area to find stale data and consolidate active
pages in order to create blocks that can be erased. This
process, known as garbage collection (GC), can block
incoming requests that are mapped to Flash chips cur-
rently performing erase operations [20]. Note that SSDs
are composed of multiple flash chips. The frequency and
overhead of GC operations are significantly affected by
random writes and updates with small request sizes [3],
[22], [15]. These I/O patterns can also increase the
movement of active data and incur more block erase
operations [15], [9], which further slow down GC and
decrease the lifetime of the NAND device.

Redundant arrays of inexpensive (or independent)
disks (RAID) [34] were introduced to increase the per-
formance and reliability of disk drive systems. RAID
provides parallelism of I/O operations by combining
multiple inexpensive disks, thereby achieving higher
performance and robustness than a single drive. RAID
has become the de facto standard for building high-
performance and robust HDD-based storage systems.
Hypothesizing that RAID could provide similar benefits
for SSDs, we analyzed SSD-based configurations and
found that a RAID consisting of commercial-off-the-
shelf (COTS) SSDs was more cost-effective than a high-
performance peripheral component interconnect express
(PCIe) based SSD [18], [19]. However, our comprehen-
sive evaluation also found that SSD-based RAID configu-
rations exhibit serious bandwidth variability due to GCs
of individual SSDs [18]. Note that the aggregate perfor-
mance of a RAID is often dictated by the slowest drive
in it. Our investigation provided empirical evidence that
uncoordinated GC processes on individual SSDs are a
significant contributor to the performance variability of
the RAID [19]. We thus proposed Harmonia, a garbage
collector that operates at the RAID level and globally
coordinates local GC cycles for each SSD in the array. In
this paper, we make the following specific contributions:

• Although the effects of unsynchronized processes
on performance variability in large-scale HPC sys-
tems have been discussed [32], [35], [5], research
into the effects of uncoordinated GC processes on
the performance of a RAID is an open field. To our
knowledge, this is the first work addressing this

performance variability.
• We empirically observe that the performance of

an SSD can be highly degraded by GC processes.
We observe that this effect is amplified in RAID
configurations without coordinated GC cycles.

• We propose a global GC (GGC) mechanism to co-
ordinate GC cycles across a set of SSDs, thereby
reducing overall performance variability. This pro-
posal includes SSD-aware RAID controllers that
implement our synchronized GC algorithms, and
RAID-aware SSDs that provide information to the
RAID controllers and additional functionality to
allow participation in a global GC cycle.

• We propose both reactive and proactive GGC algo-
rithms. We describe two reactive algorithm imple-
mentations that differ in the conditions under which
each individual SSD in the array participates in the
GGC cycle. Our proactive algorithm initiates oppor-
tunistic GGC during idle periods of the incoming
I/O stream.

• We extend Microsoft Research (MSR)’s SSD simula-
tor to implement our proposed SSD GGC algorithms
for SSD RAID storage system. Using industry-
standard workloads, our experiments show that
GGC can reduce overall latency by up to 15% as
well as provide a significant reduction in the perfor-
mance variability when compared with the standard
uncoordinated GC of individual drives in the RAID.

The reminder of this paper is organized as follows. We
first present an overview of the material and technology
in Section 2 followed by motivation in Section 3. Sec-
tion 4 introduces our proposed improved RAID and SSD
controller designs, as well as the globally synchronized
garbage collection algorithms. In Section 5 and 6 present
simulation results of our proposed GC coordination al-
gorithms and their comparison on I/O performance and
block cleaning efficiency for various workloads. Then,
we conclude in Section 7.

2 BACKGROUND

Flash memory–based storage devices provide quite low
access times relative to magnetic media— on average,
a read operation requires 0.025 ms and a write requires
approximately 0.200 ms. However, these low latencies
come at a substantial cost in terms of access semantics.
Whereas magnetic media and volatile memories are able
to overwrite existing data with a write operation, Flash
systems require an erase operation before new data may
be written to a previously used location [31]. These erase
operations are expensive compared with read and write
operations—on average, each erase takes 1.5 ms to com-
plete, during which time the affected device is unable
to perform other tasks. Further complicating matters,
the granularity of the erase operation is a significant
multiple of the page size used for reads and writes.

Software called the Flash Translation Layer (FTL)
translates the logical address for each request to the
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physical device and address where the data actually re-
sides. The FTL emulates an HDD by performing out-of-
place updates, allowing the device to avoid incurring the
cost of an erase each time a page needs to be overwritten.
The mapping from logical to physical addresses is often
stored in a small amount of fast SRAM, and the mapping
granularity—the size of each contiguous chunk of data—
can vary for each device. Many different FTL algorithms
have been proposed and studied [23], [9], [21], as well
as versions that improve write buffering [15] and buffer
management [33]. Recently, demand-based FTL [9] was
proposed to overcome the limitations of page-based
FTLs by using the temporal locality of workloads to
reduce the number of mappings stored in the SRAM.

Although the out-of-place update provided by the FTL
avoids a highly expensive read-erase-modify-write cycle
when writing to a block containing existing data, the
number of free blocks available for updates decreases
over time as they are consumed. To replenish this pool,
the SSD will engage a process known as GC to find
blocks that contain a mix of valid and invalid, or stale,
data. The valid data from these blocks is consolidated
into a smaller number of blocks, and the newly available
blocks are erased to make them ready for future write
or update operations.

Current generations of SSDs use a wide variety of
algorithms and policies for GC. Examination and anal-
ysis of these algorithms is difficult however as most
are vendor-specific and highly proprietary. Feng Chen
et al. [3] empirically observed that GC activity is di-
rectly correlated with the frequency of write operations,
amount of data written, and free space on the SSD.
The increased queue delay during GC can significantly
impede both read and write performance [9]. Random
write workloads often have the most negative impact on
overall performance [22], [15], although the overhead of
GC activity is highly dependent upon the characteristics
of the workload presented. Based on these properties,
Ningfang Mi et al [15] worked to rearrange and coalesce
requests to present a more sequential workload. Others
have attempted to improve the design of FTLs to mini-
mize the overhead incurred by GC [21], [23], [9].

Despite this effort, GC-induced performance variabil-
ity remains a significant problem for SSDs. This variabil-
ity can be exacerbated by stalled requests targeting Flash
devices with ongoing GC; these requests must be placed
into a queue and scheduled for service once the GC has
completed. This high variability reduces the performance
robustness of the system, as the I/O bandwidth and
system response time cannot be guaranteed. Providing
a robust system that operates within specified bound-
aries is as important as achieving a high-performance
environment. Particularly with a bursty request stream
with many write I/Os, stalls due to GC can significantly
degrade the performance of an SSD, and this degrada-
tion can be amplified when multiple SSDs are used in a
single RAID configuration.

In the next section, we show that GC-induced per-

formance variability can occur in individual SSDs and
their RAID configurations for various workloads, and
per-drive bandwidth can decrease as the number of SSDs
in the RAID configuration increases.

3 PERFORMANCE DEGRADATION IN SSDS

In this section, we study the pathological behavior of
individual SSDs and SSD arrays and empirically observe
that individual SSD’s bandwidth can drop sharply due
to internal GC, and the effect of GC can be worse for
SSD arrays. We perform a series of experiments using
various configurations of SSDs and RAID controllers.

3.1 Experimental Setup

All experiments are performed on a single server with
24 GB of RAM and an Intel Xeon Quad Core 2.93GHz
CPU [13] running Linux with Lustre-patched 2.6.18-128
kernel. The noop I/O scheduler that implements FIFO
(first in, first out) queuing is used. The testbed has
seven 8x PCIe slots, and two are populated with LSI
MegaRAID SAS 9260-8i KIT PCIe RAID adapters [25],
each of which can support up to eight SATA drives.

Label SSD(M) SSD(S)
Vendor Super-Talent Intel
Type MLC SLC
Interface SATA-II SATA-II
Cap. (GB) 120 64
Erase (#) 10–100K 100K–1M

TABLE 1
Device characteristics.

We examine two types of SSDs, Super Talent 128
GB FTM28GX25H SSD [40] and Intel 64 GB SS-
DSA2SH064G101 SSD [14] SSD [40] as the representative
devices for multi-level cell (MLC) and single-level cell
(SLC) SSDs respectively. Their specification are detailed
in Table 1.

We use an in-house benchmark tool that uses the
libaio asynchronous I/O library on Linux [18]. The libaio
provides an interface that can submit one or more I/O
requests using a system call, iosubmit(), without waiting
for I/O completion. It also can perform reads and writes
on raw block devices. We use O-DIRECT and O-SYNC
flags in the file open() call to directly measure device
performance by bypassing the OS I/O buffer cache.

Workload W1 W2 W3
Request size 313 KB 1.25 MB 1.87 MB
Queue depth 64 64 64
I/O access pattern Random
R/W ratio Varied (20-80%)

TABLE 2
Workload Descriptions. Note that singe SSD experiments uses
W1 workloads, and multiple SSD experiments in RAID settings

use W2 (for four SSDs) and W3 (for six SSDs) workloads.

Table 2 presents three different synthetic workloads
that we use to compare performance and bandwidth
variability. A high queue depth (number of outstanding
requests in the I/O queue) is used to observe the impact

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

 0

 50

 100

 150

 200

 250

 0  10  20  30  40  50  60

M
B

/s

Time (Sec)

20% Write
40% Write
60% Write
80% Write

 160

 180

 200

 220

 240

 260

 0  5  10  15  20

(a) Time-series analysis for SSD(M)
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(b) Time-series analysis for SSD(S)
Fig. 1. Pathological behavior of individual SSDs.

Type Metric Write (%) in Workload
80 60 40 20

SSD(M) avg 176.4 184.8 207.4 249.9
stddev 6.37 7.88 6.73 1.42

Norm. CV 6.35 7.50 5.71 1

SSD(S) avg 223.5 239.3 257.1 285.1
stddev 7.96 8.38 5.86 0.28

Norm. CV 36.3 35.7 23.2 1

TABLE 3
Original values and variability anlaysis for Figure 1(a)(b). CV

values are normalized with respect to the values of the
corresponding drives for 20%.

of GC in the time domain. We vary the percentage of
writes in workloads between 20% and 80% in increasing
steps of 20% and their I/O access patterns are random.
I/O bandwidth is measured at one second intervals. we
use different request sizes for different array configura-
tions so that the I/O demand on every drive should be
the same irregardless of storage configuration.

Also we use a bigger request size than the full stripe
size (stripe size x Number of SSDs) so that it should
make imbalanced I/O loads on the arrays of SSDs. For
example, for W2 workload, the request size is 1.25MB
whereas, a full stripe request would requires multiple of
1MB (=256KB × 4) for the array of four SSDs. Similarily
we use a 1.87 MB request size for the array of six SSDs.
The value of 1.87 MB is obtained by setting a baseline
request of 1.25 MB for the four-SSD array and scaling
up the request size based on the increased number of
SSDs in the array. Similarly, the request size is scaled
down for evaluating one SSD. Note that for the array of
four SSDs, one of the four SSDs will receive two 256 KB
striped requests, whereas others will have one 256 KB
striped request.

3.2 Pathological Performance Behavior

Individual SSDs: We first discuss the performance
variability of individual SSDs in Figure 1. From the
figure, we observe that as we increase the number of
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(a) Time-series analysis for RAID(M)
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(b) Time-series analysis for RAID(S)
Fig. 2. Pathological behavior of RAID of SSDs.

Type Metric Write (%) in Workload
80 60 40 20

RAID(M) avg 601.2 689.6 751.2 945.7
stddev 72.32 110.5 113.94 11.14

Norm. CV 21.2 28.2 26.7 2.07

RAID(S) avg 851.5 961.2 1026.1 1095.2
stddev 34.98 46.37 40.38 11.39

Norm. CV 41.8 49.1 40.1 10.6

TABLE 4
Original values and variability anlaysis for Figure 2(a)(b). CV

values are normalized with respect to the values of the
corresponding drives for 20% in Table 3.

writes in the workloads from 20% to 80%, the SSD(M)’s
and SSD(S)’s I/O throughput decreases by 41% and 28%,
respectively. We also observe that increasing write per-
centage of workload can increase bandwidth fluctuation.
We use coefficient of variation (CV)1 values to compare
the significance of the bandwidth variability for different
workloads. Table 3 shows normalized CV values with
respect to the CV value of the 20% write workload. For
example, CV values for the workloads with more than
40% writes are around 6-7 times higher than the CV
value for the workload with 20% writes.

SSD Arrays: We extend our experiments to arrays
of SSDs. RAID configuration for the SSD array is shown
in Table 5. RAID(M) and RAID(S) designate the RAID
configurations of SSD(M) and SSD(S) respectively.

RIAD config. RAID 0 of 6 SSDs with 256KB stripe size
Cache Write Through cache, Read ahead diabled

TABLE 5
RAID Settings.

Figure 2 shows the results of our experiments for
RAID(M) and RAID(S) sets using the W3 workloads in
Table 2. In Figure 2(a), we see that for the 80% write-
dominant I/O workload, the RAID(M) I/O throughput

1. Coefficient of variation (Cv ) is a normalized measure of dispersion
of a probability distribution, that is, Cv=σ

μ
.
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Fig. 3. Throughput variability comparison for SSD RAIDs with increasing number of drives in the array for a workload of 60%
writes. Y-axis represents normalized frequency.

can drop below the peak performance (about 700 MBs/)
quite often. The I/O throughput drops below 600 MB/s
at the 3rd second and then drops further to below 450
MB/s in the next several seconds. Overall, RAID(S)
shows higher bandwidth than RAID(M) (referring to
Figure 2(a)(b)), with a similar variance for all workloads
we examine, because RAID(S) is composed of SLC SSDs
and RAID(M) is composed of MLC SSDs.

We also observe that an increased workload write per-
centage can result in increased bandwidth fluctuation.
Referring to CV values for the workloads with more than
40% writes in Table 4, we have similar observations as
we learn from Table 3: CV values are much higher for
the workloads with more than 40% writes than for the
workload with 20% writes.

In the following sections, we provide more experimen-
tal results on performance variability with regard to both
the number of SSDs in the array as well as the varying
RAID levels.

3.2.1 Performance Variability with the Number of SSDs

In this experiment, we measure I/O bandwidths of SSD
arrays by increasing the number of drives in the array
for a given workload. Figure 3 presents performance
variability for a single SSD and SSD arrays with RAID-
0 of four and six SSDs for 60% write workloads as
specified in Table 2.

We use normalized Z score to visually compare the
distribution trend. For this, we measure I/O bandwidths
every second while running the workloads, and collect
bandwidth data every second for each run of each
configuration. Then, each bandwidth data is normalized
with a Z score (X−μ

δ
) and each density function is drawn

with curve fitting.
In Figure 3 we can see that the lines for RAIDs of

four SSDs and six SSDs both show more spread then the
single SSDs. Note that the wider the curve is shaped,
the higher its performance variability is. Or, in other
words, the tighter the distribution (e.g., minimal spread
at the tails with a single spike at the center), the less
variability it exhibits in terms of throughput. Also we
observe that the average bandwidth of SSD array does
not scale linearly as we increase the number of SSDs in

the RAID-0 array. For example, for the experiments of
Figure 3, a single SSD shows 184.8MB/s whereas four
SSDs show 689.7MB/s and six SSDs shows 847.4MB/s.
In theory, and if it can be scaled linearly with the number
of SSDs, four SSDs and six SSDs are expected to offer
about 740MB/s and 1108MB/s. Our conjecture is that
imbalanced I/O workloads on the SSD array followed
by uncoordinated GC operations on individual SSDs are
increasing performance variability and contributing to
the large drop in bandwidth throughput.

Moreover, we observe that the performance variability
of RAID sets comprising MLC SSDs does not scale as
well as that of sets of SLC SSDs. As seen in Figure 3(b),
there is not a significant difference between four and six
SLC SSDs in the RAID set, unlike the MLC RAID sets
shown in Figure 3(a). We believe this variation to be a
result of the inherent higher variability in response times
of MLC SSDs.

Per-drive bandwidth: We calculate a per-drive band-
width for a RAID of N SSDs (N ≥ 1) by dividing the
average bandwidth observed by N under the assump-
tion that the I/O loads to storage are balanced across
the SSDs in a RAID. We observe that the bandwidth can
drop by up to 24% and 20%, respectively, for six RAIDs
of SSD(M)s and SSD(S) compared with the bandwidths
of their single SSDs.

3.2.2 Performance Variability for various RAID Levels

In this section, we investigate the correlation between
various RAID levels and performance variability. In
particular, we evaluate RAID-5 and 6 configurations of
SSDs against a RAID-0 SSD configuration.

For these experiments, we use 6 SSDs for all RAID
levels. We note that the number of data disks changes
as dictated by each specific RAID configuration.

Table 6 details our results in terms of average band-
width (MB/s) and standard deviation of the observed
throughput. As can be seen in Table 6, RAID-5 has a
lower standard deviation than RAID-0; similarly, RAID-
6 has a lower standard deviation than RAID-5. However,
standard deviation alone is not a meaningful metric for
assessing performance variability. An appropriate metric
for comparing bandwidth variability should take into
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Type RAID-0 RAID-5 RAID-6

RAID(M) 847.4 644.1 479.8
(60.50) (56.16) (45.53)

RAID(S) 1147.1 793.7 686.7
(72.02) (53.14) (49.44)

TABLE 6
Performance variability of various SSD RAID configuration in
terms of average bandwidth (MB/s) and standard deviation of

observed bandwidth (in parentheses).

account both mean and standard deviation values. We
calculate the CV values with the values presented in
Table 6 and plot them in Figure 4.

Figure 4 illustrates the normalized coefficient of vari-
ation in bandwidth for RAID-0, RAID-5, and RAID-6
configurations. Results in Figure 4 are normalized with
respect to the coefficient of variation for RAID-0 results.
The terms ‘x’ and ‘y’ (x, y) in the legend represent
the number of data drives and the number of parity
drives, respectively. As illustrated in Figure 4, RAID-5
and RAID-6 configurations demonstrate higher perfor-
mance variability relative to the RAID-0 configuration.
The RAID-6 configuration for both cases presents the
highest performance variability in our experiments.
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Fig. 4. Performance variability and RAID levels.

RAID-5 configuration has one parity drive and RAID-
6 has two parity drives. The extra parity drives in these
RAID configurations compared to the RAID-0 setup
provide extra reliability with additional associated parity
calculation overheads and additional write operations
(to the parity drives for the parity update blocks). Our
conjecture is that these extra parity calculations and
the associated parity update write operations (one extra
write operation for RAID-5 and two extra write opera-
tions for the RAID-6 configurations, respectively) could
increase the observed bandwidth variability.

As we have seen from benchmark results with real
SSD and RAID components, there are limitations for
current SSD and RAID controller technologies; GC pro-
cesses per individual SSD are local and they are not
coordinated. RAID controllers are not aware of any
ongoing GC processes at SSDs; therefore, there is no
coordination at the RAID controller level. This lack of
coordination causes individual GC processes per SSD
to execute independently, resulting in aggregate perfor-
mance degradation and response time variability at the
RAID level. In the next section, we present our design
for the SSD-based RAID storage system incorporating
the GC coordination mechanism, and our proposed GGC

algorithms. We also discuss our implementation for GGC
algorithms.

4 GC COORDINATION FOR SSD ARRAYS

In a RAID set of SSDs, the aggregate RAID performance
is limited by the slowest component of the array. Our
empirical results show that uncoordinated GC can be
the major culprit behind these temporary slowdowns on
individual SSDs. In this section, we present a solution to
this problem to mitigate the performance degradation of
SSD RAID sets.

4.1 Coordinated Garbage Collection

Figure 5 depicts conceptual timings of GC processes for a
given SSD array, with time on the horizontal dimension.
The time line is divided into windows (A through G) as
the array transitions from peak to degraded performance
as a result of local GC processes. Peak performance at
the RAID level is achieved when there is no active GC
process on any SSD. Degraded performance occurs when
an I/O operation spans even a single device with an
active GC process. Assuming full stripe operations, the
RAID in Figure 5(a) achieves its peak performance only
in time windows B, D, and F. The array is limited to
degraded performance in windows A and G because of
multiple devices performing GC, and in windows C and
E because of a single device with active GC.

Figure 5(b) shows the desired benefits of our pro-
posed mechanism to coordinate and synchronize the
local GC processes of each SSD. We call this proposed
mechanism Global Garbage Collection (GGC). In this
mechanism, GC processes are shifted in time to allow
longer windows of peak performance from the RAID.
By advancing the GC process in Figure 5(a) window
C to occur simultaneously with the other processes in
window A, we can eliminate one source of degraded
performance. Similarly, delaying the GC in window E
to window G allows more opportunity for the RAID
controller to issue operations that do not span devices
with active GC processes.

4.2 Architectural Design

We argue that the aggregate performance degradation
induced by uncoordinated GC processes can be resolved
by providing the following:

1) A RAID controller designed to enable global co-
ordination of garbage collection when used with
SSDs supporting that capability. This optimized
RAID controller will be referred to as an SSD
optimized RAID controller (O-RAID).

2) An SSD designed for participating in a globally co-
ordinated garbage collection process in a O-RAID.
This new SSD will be referred to as GGC optimized
SSD (O-SSD).

3) A set of algorithms to perform a globally coordi-
nated GC process on a given SSD array comprising
an O-RAID and multiple O-SSD devices.
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Fig. 5. Effect of GGC: (a) presents locally coordinated GC processes for an unoptimized RAID array; (b) presents globally
coordinated GC processes for a GGC optimized RAID array.

4) Extension of storage protocols such as SATA and
SCSI for controlling the additional capabilities of
O-SSD devices.

Furthermore, we observe the following conventions
and constraints in this architecture: the O-RAID operates
at the global level with global knowledge obtained from
all O-SSDs, whereas an O-SSD has only local knowledge
in the form of internal fragmentation level, number of
available free blocks, and other similar information used
to determine when to start its GC process.

While the GGC process can provide maximum effec-
tiveness only when all SSD devices in a given RAID set
support the GGC capability, reduced benefits may still
be obtained if only a subset of devices offers support.

4.3 Coordinated Garbage Collection Algorithms

Coordination is essential to achieving the performance
benefits of GGC. Among multiple ways of GGC imple-
mentation, we discuss two possible GGC algorithms and
our implementations of each algorithm in this section.

4.3.1 Reactive GGC Algorithms
In reactive GGC a specialized O-RAID reacts to notifica-
tion by the O-SSD that garbage collection is imminent,
attempting to coordinate other O-SSD’s garbage collec-
tion processes. Reactive GGC is fairly simple to imple-
ment, requiring minimal information from O-SSDs and
simple decision-making mechanisms based on thresh-
olds. In this GGC algorithm, an O-SSD notifies the O-
RAID when it has reached an internal threshold indicat-
ing that it will soon need to initiate a GC process. This
communication may also provide additional information
to the O-RAID, such as an estimate of how much data
can be written before a hard threshold is reached and an
uncoordinated GC process must be initiated.

Once the O-RAID has been notified, it will direct each
O-SSD to initiate a GC process. The O-RAID can option-
ally delay this initiation in order to allow more O-SSDs
to register their need of GC, or to potentially find a more
optimal point in the request stream for the GC cycle to
begin. If the O-RAID chooses to delay the GC cycle, it
can use the additional information from the notification
to avoid triggering uncoordinated GC. With this scheme,
the O-SSD will delay its GC cycle until it reaches a hard
threshold at which it must begin a GC cycle. The O-
SSD’s communication to the O-RAID of the need for
GC is advisory in nature, and a lack of response from

the O-RAID will not prevent the O-SSD from locally
performing needed GC. The reactive soft-limit algorithm
can be implemented in different ways. In this paper,
we present and evaluate two possible implementations,
which are Reactiveinclusive and Reactiveselective.
Reactiveinclusive: In reactive GGC algorithms, an SSD

in the array that reaches an internal GC threshold issues
a GGC request message to the O-RAID. Upon receipt
of this message, the O-RAID schedules a GGC event
by iterating over all connected devices and issue a
FORCE GC event to each. Upon receipt of the FORCE
GC event, a local GC process is triggered to clean the
stale/invalid elements until the number of free blocks
exceeds an internal threshold. In our Reactiveinclusive

implementation, all SSDs in the array have to participate
in GC coordination irrespective of their internal status
(eg., the number of free blocks). As every SSD is agnostic
of other SSDs’ internal status this implementation could
aggressively trigger GGCs on SSDS and could shorten
the lifespan of SSDs.
Reactiveselective: In order to improve the lifetime con-

cern of Reactiveinclusive, we developed Reactiveselective.
This implementation reduces the number of GC op-
erations on individual SSDs. Unlike Reactiveinclusive,
in Reactiveselective, not all of the SSDs in the
array have to participate in GGC events. Thus,
this algorithm improves SSD lifespans compared to
Reactiveinclusive. However, Reactiveselective requires
more complicated protocol design and implementation
than Reactiveinclusive.

The implementation of the Reactiveselective is com-
posed of two phases: (1) a phase for GC registration,
in which O-SSDs are registered to participate in the GC
coordination process, and (2) the second phase for GC
coordination by participating O-SSDs. For implement-
ing the Reactiveselective, soft (Tsoft) and hard (Thard)
thresholds are defined. Thard is the minimum number
of free blocks required to sustain the system operation.
Tsoft (where Tsoft > Thard) is the number of free blocks
that indicates GC is needed shortly but not urgently. A
new event of PARTICIPATE GGC needs to be defined in
addition to the FORCE GC event. PARTICIPATE GGC is
an event by which O-SSDs request their enrollment for
GC coordination to O-RAID. If any O-SSD reaches Tsoft,
it is registered in an O-RAID maintained list by issuing
an event of PARTICIPATE GGC to the O-RAID. The first
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O-SSD that reaches Thard becomes a GC coordinator
and notifies O-RAID for GC coordination. Then O-RAID
issues FORCE GC events to all registered O-SSDs.

4.3.2 Proactive GGC Algorithms

In proactive GGC, O-RAID actively monitors O-SSDs
and attempts to optimize scheduling of GC processing
to minimize the impact on I/O workloads. In particular,
O-SSD’s internal information and idle times in work-
loads can be used to develop proactive GGC. Below, we
discuss two possible ways of realizing a proactive GGC
mechanism, which we call proactive idle and proactive soft-
limit.

In the proactive idle scheme, the O-RAID identifies
points in the I/O stream that are expected to have
extended idle periods and initiates a GGC cycle during
those lulls in activity. Idle time is defined as the status
in which there is no SSD in the array that is servicing
requests or has pending requests. The challenge of this
approach is to identify idle times in workloads. Much
research has been done to develop techniques to detect
the idle times. In the following section we describe the
use of one of the popular idle time detection heuristics
in our idle time based algorithms.

Another implementable scheme is proactive soft-limit.
In this scheme, the O-RAID periodically collects GC
state information from each O-SSD. This information
collection can be initiated by the O-RAID via a pull
mechanism, or each O-SSD can periodically push the
information to the O-RAID. A combination of both reac-
tive and proactive GGC may also be used. The O-RAID
uses the collected information to determine when each
O-SSD has reached a state in which a GGC cycle would
be beneficial, and attempts to find an optimal point in
the I/O stream to initiate it. State information useful for
determining the need for a GC cycle includes, but is not
limited to (i) Internal fragmentation level (ratio of free
to used erase blocks), (ii) Number of free erase blocks
available, (iii) ECC correctable error rate on reads, etc.

In this paper, we have only implemented and eval-
uated the idle time based proactive scheme, which we
call Proactiveidle. However, it is important to note that
proactive soft-limit and proactive idle are not mutually
exclusive; both may be used concurrently.
Proactiveidle: I/O workloads are known to exhibit

periods of idleness between bursts of requests [27], pro-
viding opportunities for GC coordination. Much research
has gone into developing techniques to identify and
utilize these idle periods [27], [28], [4]. Specifically, Mi
et al. categorized workloads based on idle periods into
tail-based, body-based, and body-tail-based [27]. We use
idle times to trigger global coordination of GC events.

We extend the dual threshold scheme, Reactiveselective

to trigger GC coordinations during idle times. When
idle time is detected, a FORCE GC event is sent to all
the registered O-SSDs in the array for GC coordina-
tion. Receiving the FORCE GC event, an O-SSD starts
generating free blocks until the number of free blocks

reaches the total reserved free blocks (i.e. maximum
number of free blocks) or until there is an incoming
I/O request in the queue. To implement the idle time
detection algorithm, we use a heuristic on-line algorithm
presented in [4]. In this method the O-RAID checks the
status periodically. If an idle time is detected longer than
a pre-defined threshold, then it starts a coordinated GC
event by issuing FORCE GC commands to O-SSDs.

5 PERFORMANCE STUDY OF SSD RAID
5.1 GGC Simulator Design

To explore our proposed GGC design and GGC al-
gorithms, we extend the SSD simulator developed by
Microsoft Research [1] and evaluate our proposed GGC-
optimized RAID. In GGC algorithms, the initiator SSD
in the array is set as the GC global coordinator. Unless
individual SSDs receive an event of FORCE GC, they
operate as normal (without GGC coordination). Other-
wise they are forced to start the GGC process. Note that
in our reactive algorithm, the first SSD that reaches the
hard threshold is set as a GGC coordinator and a FORCE
GC event can be issued from it. The O-RAID receives
a GGC request message from the initiator SSD. Upon
receiving this message, O-RAID prepares to schedule a
GGC event. It iterates over all connected devices and for
each device issues a FORCED GC event. Upon receipt
of the FORCED GC event a local GC process will be
triggered to clean the stale/invalid elements until the
number of free blocks exceeds an internal threshold. We
implement both reactive and proactive GGC algorithms
(their implementations are described in Section 4). In
this section, we present the results for Reactiveinclusive

and in the following Section 6, we present the results of
comparing reactive and proactive GGC schemes.

5.2 Experimental Setup and Workloads

For the baseline RAID environment, we configure an
SSD RAID simulator to analyze a RAID-0 array. The SSD
simulator is configured to simulate eight SSDs in RAID-
0 using 4 KB stripe. In the baseline configuration, there
is no GC coordination among SSDs in the array. Each
SSD in the simulator is configured as the specifications
shown in Table 7.

SSD configuration
Total capacity 32 GB

Reserved free blocks 15 %
Minimum free blocks 5 %

Cleaning policy Greedy
Flash chip elements 64
Planes per package 4

Blocks per plane 512
Pages per block 64

Page size 4 KB

Flash Operational Latency
Page read 0.025 ms
Page write 0.200 ms
Block erase 1.5 ms

TABLE 7
SSD model parameters.

Simulation “Warm-up”: Prior to collecting performance
data from the simulator, we fill the entire space on each
SSD in the simulator with valid data by marking the flag
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Fig. 7. Results with changing write percentage of workloads.

that presents the status of the page on every OOB (out-
of-band) in the simulator as 1s. This ensures that GC is
required on the SSD devices as new write requests arrive
during the experimental run.

We use a wide spectrum of workloads from industry
and research sources to evaluate the performance of our
GGC schemes. We use a mixture of HPC-like workloads
and realistic enterprise-scale workloads. This broad spec-
trum is chosen to obtain a more realistic view of the
benefits of coordinated garbage collection. As described
in Table 8, these workloads include both read and write-
dominated traces.

For HPC-like workloads, we choose read and write
and bursty workloads whose characteristics are de-
scribed in Table 8. HPC(W) is a write-dominated (80%)
workload that represents I/O patterns in HPC systems
as they periodically write checkpoint states and large re-
sult files during their calculations [37], [7], [30]. HPC(R)
is a read-dominated (80%) workload that represents
heavy read patterns of HPC environments [43]. For
enterprise-scale realistic workloads, five commercial I/O
traces are used. We use write-dominant I/O traces from
an online transaction processing application known as
Financial trace [39] and TPC-C [42] made available by
the Storage Performance Council (running at a financial
institution) and from Cello99 [38], a disk access trace
collected from a time-sharing server exhibiting signif-
icant writes (running the HP-UX operating system at
Hewlett-Packard Laboratories). We also examine two
read-dominant workloads. TPC-H [44] is a disk I/O trace
collected from an online analytical processing applica-
tion examining large volumes of data to execute com-
plex database queries. Also, we consider e-mail server
workloads referred to as Openmail [12]. TPC-C [42] is
also used.

Workloads Req. Size (KB) Read (%) Arrival (IOP/s)
HPC(W) 510.53 20.12 476.50
HPC(R) 510.53 80.08 476.50

Financial 7.09 18.92 47.19
TPC-C 7.06 20.50 388.32
Cello 7.06 19.63 74.24

TPC-H 31.62 91.80 172.73
Openmail 9.49 63.30 846.62

TABLE 8
Descriptions of HPC-like and Enterprise Workloads.

Although the device service time captures the over-

head of GC and the device’s internal bus contention, it
does not include queuing delays for requests pending in
the I/O driver queues. Additionally, using an average
service time loses information about the variance of
the individual response times. In this study, we use (1)
the response time measured at the block device queue
(I/O service time) and (2) the variance of the measured
response times. The I/O service time captures the sum
of the device service time and the additional time spent
waiting for the device to begin servicing the request.

5.3 Results

Figure 6 shows the average response time of the GGC-
enhanced RAID compared with the baseline SSD RAID
without GC coordination for HPC-like workloads. We
note a 60% reduction in response time for the HPC(R)
read-dominated load and a 71% reduction for the
HPC(W) write-dominated load. Also, we observe that
GGC improves the variance of response times of the
storage system for both HPC(W) and HPC(R) workloads.

In order to exploit a wide range of workloads, we
vary the request arrival rates of the HPC workloads. Fig-
ure 7(a) shows that the baseline configuration has high
response times when the workload is write-intensive
(80% writes). In addition, there is a very large gradi-
ent in the response time and variability as the arrive
rate increases. This behavior does not provide a robust
system response. In contrast, our GGC scheme exhibits
lower average response times than the baseline and
a more gradual increase in variability. This confirms
that GGC can help deliver robust and stable system
performance. For read-dominated workloads such as
those in Figure 7(b), GGC continues to deliver improved
performance and system robustness.

While experiments presented in previous paragraphs
are performed with eight SSDs in the RAID set, we
also investigate how the number of devices in the array
affects the performance.

Figure 8 compares the average response time under
the HPC(W) workload as the number of SSDs configured
in the RAID set is varied. As expected, both configura-
tions improve their performance as the number of SSDs
increases. However, GGC maintains a performance edge
over the baseline throughout the experiment. At two
SSDs, the baseline response time is 2.7 times longer than
GGC, and the margin grows to 3.2 times as we expand
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Fig. 8. Results with varing the number of drives in the array.

the RAID set to 18 SSDs. Interestingly the baseline re-
quires eight SSDs to provide a response time equivalent
to that delivered by two devices using GGC. Even with
18 devices, the baseline performs 184% worse than GGC
using only 4 devices.

We further analyze GGC for enterprise-scale work-
loads. Figure 9 presents the results for enterprise-scale
workloads. We can observe GGC not only improves
average response times by 10% but also enhances the
robustness and predictability of the RAID set of SSDs.
However the improvement by GC coordination for the
enterprise-scale workloads is smaller compared with
HPC-like workloads. It is mainly because (i) HPC work-
loads have much higher I/O demands than Enterprise
workloads (refer to Table 8), and (ii) large requests in
the HPC workloads are more frequently conflict with GC
invocation of drives, increasing the I/O response times.
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It could be thought that large requests are more evenly
striped over the drives than small requests and every
drive could trigger GC at the same time, however, this
is only true for an ideal situation where all drives start
empty and do writes with full stripes on entire drives
in the array over and over. However, in real production
systems, the ideal situation is not likely to occur because
of meta data operations that are mostly small writes,
and I/O operations not being fully striped across the
drives in the RAID set. Our experiments are configured
to closely mimic this behavior. Before running an ex-
periment, SSDs are filled with random small block size
data. This way, every drive has a different internal status
before our benchmark runs. This ensures that we have
a closer representation of a real life scenario and every
flash drive in the RAID set could trigger GC at different

times, even if we perfectly stripe the requests over the
drives in the array.

We conduct a detailed analysis of the impact of GGC
on device response times and GC invocations of indi-
vidual SSDs in the RAID set. Figure 10 illustrates a set
of consecutive requests serviced by two of the eight SSD
devices in our simulated RAID.

The response time for each request is captured during
a 300 ms interval in the HPC(W) workload by both the
baseline and our GGC scheme. As clearly indicated by
Figure 10, the baseline incurs more frequent overhead
from GC, which results in larger latencies than GGC.
The overall RAID response latency is a function of
the convolution of the response time of each SSD in
the array and is determined by the slowest device. In
Figure 10(b), we clearly see fewer spikes than in the
baseline without GGC. The total number of GC pro-
cesses invoked is the same between the two approaches,
however, many GC operations are synchronized in GGC
compared with the baseline where GC operations are not
synchronized. Also of note is that each SSD is composed
of multiple packages. When GC is not coordinated inside
SSDs, each package can trigger GC independently. By
further forcing GC coordination across the packages, we
could achieve significantly less aggregate GC overhead
in GGC-enabled SSD RAID sets.

6 PERFORMANCE STUDY OF VARIOUS GGC
ALGORITHMS AT SSD RAID
In this section, we compare various GGC algorithms
(Reactiveselective, Proactiveidle, and Reactiveinclusive) for
their performance and block erase efficiency against the
baseline with no GC coordination.

Besides the workloads in Tables 8, three more syn-
thetic workloads are used to cover wider range of
workload characteristics. The details are described in
Table 9. HPC(W,Skew) is a workload in which 50% of
I/O requests go to a particular SSD and others are evenly
requested over the SSDs in the array. HPC(W, Burst, M)
and HPC(W, Burst, H) are bursty workloads with I/O
inter-arrival rates higher than those of HPC(W) by 10
and 100 times, respectively.

Workloads Request Read Arrival Access
(KB) (%) (IOP/s) Pattern

HPC(W) 510.53 20.12 476.50 Evenly
HPC(W,Skew) 510.53 20.12 476.50 Skewed

HPC(W,Burst,M) 510.53 20.12 4,765.00 Evenly
HPC(W,Burst,H) 510.53 20.12 47,650.00 Evenly

TABLE 9
Exploring a wider range of workload characteristics.

Figure 11(a) shows the normalized response time for
various GGC schemes with respect to the baseline. The
baseline is a RAID of SSDs without GC coordination. To
find the lower bound of the response time, we measure
the response time of an ideal configuration in which the
overhead of GC is eliminated (denoted as Ideal in the
following plots).
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Fig. 10. Microscopic analysis of non-GGC vs. GGC. The first two rows show system response times of overall RAID for read and
write requests. Rows 3–5 show device service times for read and write and GC duration for SSD-0. Rows 6–8, similar to rows 3–5,
show device service times and GC duration for SSD-1. We present just the time series analysis plots of two SSDs out of eight
SSDs used for RAID-0 in our evaluation.

For the real workloads, we see the improvement with
the three methods is very similar except for the financial
workload; in the financial workload, it can be observed
that the response time is reduced by Reactiveselective

compared with Reactiveinclusive and reduced even more
by Proactiveidle, which implies that the financial work-
load is both skewed and bursty. Also we can ob-
serve Proactiveidle improves the lifetime compared with
Reactiveinclusive by reducing the number of erase op-
erations. As a result, Proactiveidle improves the per-
formance by 9% and reduces the number of erase by
79%, respectively for the financial workload. Overall,
Proactiveidle improves the response time by 5.74% to
14.93% (9.59% on average) compared with the baseline.
Compared with the ideal, the overhead is as small as
0.0006% to 0.1566% (0.0597% on average). This means
that the proposed coordinated GC eliminates most of the
GC impact on the response times.

For the workload HPC(W,Skew), we observe that the
number of erase operations of Reactiveinclusive is about
three to four times that of Reactiveselective. That is
because in Reactiveinclusive, whenever the coordinator
needs GC, all SSDs must run their GCs at the same
time regardless of their status. Reactiveinclusive may
incur unnecessary GC for other SSDs. In contrast, in
Reactiveselective, only participants that have met an in-
ternal threshold are forced to run GC simultaneously.
Thus Reactiveselective can reduce the number of erase
operations compared with Reactiveinclusive. However,
again note that their response times are not found to
be significantly different in Figure 11(a).

In the bursty workloads, we can see an improvement
in response time by exploiting idle times for GGC with
Proactiveidle. The more bursty the workload is, the
greater the improvement. Proactiveidle improves the
response time compared with Reactiveselective by 0.77%,
5.83%, and 9.47% for HPC(W), HPC(W,Bursty,M), and
HPC(W,Bursty,H), respectively. However, the proactive
scheme could incur a few additional erase operations.
When the workload is bursty, there can be more chances
to prepare free blocks in advance during the idle time.
Therefore, the number of erase operations can be in-
creased compared with the others.

Figure 12 shows the cumulative distribution of re-
sponse times for the financial and bursty workloads
(HPC(W,Burst,H)). We see that Proactiveidle is able to
reach almost the upper limit of performance improve-
ment that can be achieved. We can see that the lines for
Proactiveidle and Ideal are almost overlapped.

Figure 13 shows the detailed analysis for the
HPC(W,Burst,H) workload. It compares Reactiveselective

and Proactiveidle. The first row shows the system re-
sponse time of the overall RAID. The second row indi-
cates whether GC is running. In Reactiveselective, GC can
be triggered only by incoming requests (never triggered
in the idle times of workloads). GC thus affects the
foreground operations. The high peak synchronized with
GC reflects this situation. In contrast, GC is executed
during idle time in Proactiveidle. As shown in Fig-
ures 11(a,b), GC running during idle time does not affect
the foreground operations.

Table 10 summarizes our observations from the evalu-
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Fig. 11. Comparing various GGC algorithms with synthetic
and real workloads. All values are normalized with respect to
a baseline (no GC coordination).

ation of various GGC algorithms. For evenly distributed
workloads, Reactiveinclusive scheme exhibits comparable
performance and lifetime to others. Since it is easy
to implement, which means shorter development cy-
cles and costs, Reactiveinclusive might be the best op-
tion for evenly distributed workloads. However, if the
workloads are not likely to be evenly distributed, then
Reactiveselective might be a better choice since it im-
proves the SSD lifetime. If the system requires high
performance and the lifetime is not of the utmost im-
portance, Proactiveidle could be selected.

7 CONCLUSIONS

In evaluating the existing NAND Flash memory-based
SSD technology to employ SSDs for our large-scale HPC
storage systems in RAID configurations, we empirically
observed significant performance degradations and vari-
ations in terms of aggregate I/O throughput and I/O
response times. Based on our findings, we believe that
when current NAND Flash memory-based SSDs and
RAID controllers are used in RAID-set configurations,
lack of coordination of the local GC processes amplifies
these performance degradations and variations. Further-
more, our work reveals that these performance degrada-
tions and variations are more pronounced and directly
correlated with the number of SSDs configured in a
RAID. We observed that these performance degradations
and variations can be worse in RAID configurations than
in individual SSDs, as GCs are scheduled independently
by each SSD in an array. From our point of view, al-
though employing SSDs in large-scale HPC storage sys-
tems has potential benefits, performance degradations
and variation as a result of GC negates some of these
benefits.
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Fig. 12. Comparing the response times of various GGC algo-
rithms using cumulative distribution function for bursty synthetic
workload and financial workload.

Our paper presents a solution to the performance
degradation and variability problem due to GC in
NAND Flash memory-based SSDs configured in a RAID.
Our proposed architecture, called Harmonia, aims to or-
chestrate a globally coordinated GC process among SSDs
in a RAID for improved performance characteristics in
terms of aggregate I/O throughput and I/O response
times. Our solution includes designs of SSD-aware RAID
controllers and RAID-aware SSDs. Connected to an SSD-
aware RAID controller, RAID-aware SSDs can partic-
ipate in the GGC process. We also propose synchro-
nized GGC algorithms in which the RAID-aware SSD
controllers can communicate with the SSD-aware RAID
controller to coordinate GC tasks. To implement the
GGC mechanism, we designed and implemented reactive
and proactive GGC coordination algorithms. For reac-
tive GGC schemes, we propose Reactiveinclusive and
Reactiveselective mechanisms. Reactiveinclusive forces all
SSDs in the RAID array to participate in the GGC task
regardless of the internal status of individual SSDs.
Reactiveselective provides a refinement to this approach
allowing SSDs in the array to participate in GC co-
ordination based individual need. A proactive scheme
(Proactiveidle) invokes GC coordination during idle
times, exploiting idle times in common in many I/O
workloads.

Our experiments with realistic workloads reveal that
the reactive GGC algorithm (Reactiveinclusive) can im-
prove overall response time by up to 15% (for financial
workload) and significantly reduce the variability of
performance, compared with a non-synchronized GC
mechanism. Reactiveselective could reduce the number
of block erases compared with the Reactiveinclusive. Re-
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Workload Response time Number of erase operations
Characteristics Reactiveincl. Reactivesel. Proactiveidle Reactiveincl. Reactivesel. Proactiveidle

Evenly distributed Fair Fair Fair Fair Fair Fair
Skewed Fair Fair Fair Poor Good Good
Bursty Poor Poor Good Good Good Poor

TABLE 10
Summary of comparing GGC coordination methods. “Poor” means longer response time or more erase operations. Reactiveincl.

and Reactivesel. denote Reactiveinclusive and Reactiveselective respectively.
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Fig. 13. Microscopic analysis of Reactive selective and Proac-
tive idle GGC algorithms.

sponse time and performance variability were improved
for all workloads in our study. In particular, for bursty
workloads dominated by large writes (HPC(W) work-
load), we observed a 69% improvement in response time
and a 71% reduction in performance variability com-
pared with uncoordinated GC. We also showed that our
proactive GGC algorithm (Proactiveidle) can further im-
prove the I/O performance by up to 9% while increasing
the lifetimes of SSDs by reducing the number of block
erase counts by up to 79% compared with a reactive
algorithm (in particular for the Financial workload).
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