FlashSGm: A Simulator for NAND Flash-based
Solid-State Drives

Youngjae Kii Brendan Taurds Aayush Gupth and Bhuvan Urgaonkér

Department of Computer Science and Engineering
The Pennsylvania State University
University Park, PA 16802
f{youkim, axg354, bhuvar@cse.psu.edi{taurag @psu.edu

Technical Report CSE-09-008
May 4, 2009

Abstract

NAND Flash memory-based Solid-State Disks (SSDs) are begppopular as the storage media in do-
mains ranging from mobile laptops to enterprise-scalagm®systems due to a number of benefits (e.g., lighter
weights, faster access times, lower power consumptiorhehnigesistance to vibrations) they offer over the
conventionally popular Hard Disk Drives (HDDs). While a nuenlof well-regarded simulation environments
exist for HDDs, the same is not yet true for SSDs. This is dusS®s having been in the storage market for
relatively less time as well as the lack of information (haade configuration and software methods) about
state-of-the-art SSDs that is publicly available. We déscthe design and implementation BffashSm, a
simulator aimed at filling this void in performance evaloatbf emerging storage systems that employ SSDs.
FlashSim is an event-driven simulator that follows the otgd-oriented programming paradigm for modu-
larity. We have validated the performance of FlashSim agaimumber of commercial SSDs for behavioral
similarity. We have also used FlashSim to compare the pedoce of SSD devices employing different Flash
Translation Layer (FTL) schemes, and analyzed the enengsuroption of different FTL schemes in the SSD.
FlashSim has been written to be inter-operable with the-vegihrded DiskSim simulator, thus enabling the
simulation of a variety of “hybrid” storage systems empiayicombinations of SSDs and HDDs. Given the
currentinterest in such hybrid systems as opposed to sgstétimSSDs replacing HDDs (due to higher price),
we believe this to be an especially useful feature of FlashSie have made FlashSim freely available for
download with the hope that it would be of use to researchg®eng the design of SSD-based systems.

1 Introduction

Recently, NAND Flash memory has become the main storage media for embesldeelsd such as PDAs and
music players. NAND Flash memory is now also being used in systems rangimgdptop and desktop com-
puters to enterprise-scale storage servers. NAND Flash memory affiersiber of benefits over the conventional
hard disk drives (HDDs). These benefits include lower power consampgighter weight, higher resilience to
external shock, the ability to sustain hotter operating regimes, and fastsgsatimes (with some exceptions that
arise due to random writes). Unlike HDDs, NAND flash memory based Saditk ®isks (SSDs) have no me-

chanical moving parts, such as a spindle and voice-coil motors. Desste ltkeaefits, a storage system designer

needs to carefully consider the use of SSDs because they also haveaiaine weaknesses. The main weak-
nesses of SSDs include a higher price ($/GB) than HDDs, writes beintirdeS slower than reads, slowdown

in device throughput during periods of garbage collection that arerestey small, random writes [15], and

limited lifetime (10K-1M erase cycles per block) [4].

In order to overcome the limitations described above, a variety of complememparoaches have been
proposed. For example, Multi-level Cell (MLC) technology gives higtensity and cost per GB than Single-
level Cell (SLC) [21]. The downside of MLC is that read and write times dafQviare slower. Consequently,
there are current attempts to employ combinations of SLC and MLC Flash chg&s. Numerous techniques
for efficient address translation, garbage collection, and wear-lgvelitne Flash Translation Layer (FTL) (more
details in Section 2) have been explored to improve the performance of ihe&&es and/or providing longer

lifetimes.

1.1 Motivation

The design and implementation of cost efficient, reliable SSDs requiresaatind accurate evaluation test-beds
for evaluating new algorithms for specific software components (suchoss that constitute the FTL) within
different hardware configurations of the SSD before implementing themeimd¢tual firmware. The fact that
significant aspects of the techniques employed within SSDs are unknowa polbic due to technology property
issues further adds to the urgency of having such a test-bed for $®Brch. With this motivation, we have

designed and developed a simulation infrastructure. Here are the salitumefs and contributions of our work.

1.2 Research Contributions

e The components of an SSD are can be classified as those belonging todiivaresand the software categories.
The hardware component consists of a processing unit, memory, lobiSleest chips. The software component
(which executes on the processing unit) consists of a FTL. The priceed88D depends on the hardware
configuration in the SSD and the software running on the hardware, énat iha lack of test infrastructure to
examine cost-effective hardware configurations and software algarithresearch environments outside those
affiliated with manufacturers of SSDs. In this work, we provide an expetiah¢est-bed to fill this void.

e The few efforts that have attempted to provide the simulation/emulation infrasteld4, 3] lack desirable fea-
tures, especially an object-oriented design. It is typically difficult to ustdexd and enhance these simulators.
Compared to other existing/evolving SSD simulators, FlashSim is entirely objedteded. Our approach
allows the developers to easily understand, use, and extend our simblatbiermore, our simulator has been
integrated with the well-regarded and popular DiskSim simulator [7] and vtatid®r behavioral similarity

with real SSD devices.

Data Unit Size Access Time
Flash Type | Page (Bytes) Block Page Page Block
Data\ OOB (Bytes) READ (us) | WRITE (us) | ERASE (ms)
Small Block | 512 16 | (16K+512) 41.75 226.75 2
Large Block | 2048 | 64 | (128K+4K) 130.9 405.9 2

Table 1:NAND Flash organization and access time comparison for BBiatk vs. Large-Block schemes [22].

e Energy consumption in SSDs is surprisingly higher than initially expectedggremnsumption is approxi-
mately the same as mobile HDDs [19]. Thus, it is important to understand thescalihe energy consump-
tion. We have analyzed the energy consumption in SSDs with our simulatomisydeoing a simple energy

model including various FTL schemes with real traces (Financial andHPC-

1.3 Road-map

The rest of this paper is organized as follows: In Section 2, we prékernbasics of NAND Flash memory
technology. We present the design of FlashSim and its implementation detailstionS8. We present the
experimental results in Section 4. We discuss related work in Section 5. Fiwallgummarize our work and

discuss future direction in Section 6.

2 Background

2.1 Basicsof NAND Flash Memory Technology

The most popular flash type for storage media is NAND flash memory due terhiigimsity and lower cost than
NOR flash. NAND flash provides three different operations: readtewand erase. Each operation requres
different operation time and granularity: Erase operations are perfbahéhe granularity of dlock that is
composed of multiplpages. A page is the granularity at which reads and writes are performed diti@uto its
data area, a page contains a small spare Out-of-Band area (OOB)isvhggu for storing a variety of information
including: (i) Error Correction Code (ECC) information used to check dataectness, (ii) the logical page
number corresponding to the data stored in the data area, and (iii) pageestattiepage on flash can be in one of
three different states: (alid, (ii) invalid, and (iii) free/erased. When no data has been written to a page, itis in
the free/erased state. A write can be done only to a free page and shitagfate to valid. An erase operation on
an entire block of pages is required to revert the pages back to therfreedestate. Out-of-place updates result
in certain written pages that are no longer valid. They are called invalidspalgble 1 shows comparisons for
different flash types in terms of access time and data unit size [22].

As shown in Table 1, erase operations are significantly slower than/ve#ds. Additionally, write latency

can be higher than read latency by up to a factor of 4-5. The lifetime of fteshory is limited by the number

of erase operations on its cells. Each memory cell typically has a lifetime ofiMIrase operations [6]. Thus,
wear-leveling techniques [9, 11, 18] are used to delay the wear-out of the firstiflask. The granularity at which
wear-leveling is carried out impacts the variance in the lifetime of individualkd@nd also the performance of

flash. The finer the granularity, the smaller the variance in lifetime.

2.2 TheFlash Trandation Layer

The FTL is mainly composed of three software components (address tramstgarbage collector, and wear-
leveler), but the FTL is generally thought of as the address translatien |aye address translation layer that
translates logical addresses from the file system into physical adgi@ss$iash devices helps in emulating flash
as a normal block device; the layer performs out-of-place updates whtaln help to hide the erase operation
in the flash memory. The mapping table is stored in a small, fast on-board S&D R#e garbage collector is in
charge of collecting invalid pages to create free space in the flash menmacg. tBe lifetime of flash memory is
limited by the number of erase operations on its cells (each memory cell typically lifatime of 10K-1M erase
operations [6]), the wear-leveler elongates the lifetime of flash by maintaihangame level of wear for every

block in the flash memory.

2.3 State-of-The-Art FTL Scheme

FTLs can be implemented at different granularities of how large an agldpese a single entry in the mapping
table captures. Page-based FTLs map the logical page number of tlestregat to the device from the upper
layers, such as file system, to any physical page on flash. Such tramskegioires a large mapping table to
be stored in RAM. At the other extreme, a block-level FTL scheme only latessthe logical block number
into a physical block number; the logical page number offset within the bleciains fixed, thus reducing the
mapping table. To address the shortcomings of the above two extreme magipémges, researchers have come
up with a variety of alternatives. Although many schemes have been mopss12, 16, 10, 17], they share
one fundamental design principle. Each schemehighaid between page-level and block-level schemes. The
schemes logically partition their blocks into two grouf3ata Blocks andLog/Update Blocks. Data blocks form
the majority and are mapped using a block-level mapping technique, whbeelagy blocks are mapped using a

page-level mapping technique.

3 SSD Simulator Design

We have designed and implemented a SSD simulator that is based on the katigeam in Figure 1. The first

version of our SSD simulator focused on software components (for test&TL schemes, garbage collection,

Controller FTL
RAM | Bus L—{ | Wear ||Garbage
Channel | o | Channel Leveler Collector

I

[

L
S e | | R = 'i
| Package | | Package I
: Die Die : : Die Die i
| Plane Plane Plane Plane : : :
: | Register | | Register | | Register | | Register | | | :
| | |
] Block Block Block Block [:
| [race]| | || [Poc]| | | | |

T T T T |

| : : : : | | i
| H : R H | |
!] || [peee] I l
V| =]} =] [| I=]}|---
! : : [:
| : : : : [i
| Pl |
1 Block Block Block Block | | i
| [paoe]|| || [Pese]|| | | |
! - - - - |
| : : : : - |
]
! [:							
! 1							

=

Figure 1. Hardware diagram for the SSD Simulator. Ellipses in between twlieasame components indicate
where more of the same components may be added. Only the full compoeaktdown of the left-most package
is shown.

and wear-leveling); we considered a simplified hardware model that sirdwdasenglePlane with a simplified
channel implementation.

Since this version of our simulator was limited by a simplified hardware model andasy to extend due
to a highly coupled implementation with DiskSim, we re-designed and re-implemergesintiulator with an
object-oriented approach. Our new simulator is entirely event-drivenvaitieén in a familiar language, C++; we

achieve modularity, low coupling, and high cohesion. Our hardward-tiéagram is shown in Figure 1.

3.1 Object-Oriented Component Design

The simulator was written as a single-threaded program in C++ for simplicityr ¢dtld provide a compre-
hensible object-oriented scheme where each class instance represéaredvare or software component. The
UML diagram in Figure 2 and 3 contains all C++ classes used by the SSD simiktshSim is integrated with

Disksim’s C code.

3.2 Component Design

3.21 Hardware Components

The classes in the SSD simulator for hardware components are as follows:

e SSD: The SSD class serves to provide an interface to Disksim and providela slags to instantiate in order
to create the SSD simulator module. The SSD class creates event objectptthevi@isksimioreq_event
structures and returns the event time to disksim.

e Package: The package class represents a group of flash dies that sharelzabueglc The package class allo-
cates its dies in its constructor and connects the dies to a bus channel.ckaggalso facilitates addressing.

e Die: A die is a single flash memory chip that is organized into a set of planes. [Besoanected to bus
channels, but individual planes contained in the die buffer bus tnamsfe future development, the highest
level at which merge operations may take place will be at the die level. Thespanding event object is
updated with the merge delay time.

e Plane: Planes are comprised of blocks and provide a single page-sized rdgistgifer page data for bus
transfers. The register is also used as a buffer for merge operat&ide planes. The corresponding event
object is updated with merge delays for merge operations and consigeterelelays.

e Block: A block is comprised of pages and is the smallest component that can beluadiy erased. When a
block is erased, all pages in it are erased and can then be written to afaircorresponding event object is
updated with the erase delay time. A block can only be erased a finite number sfii@oause of reliability
constraints [4].

e Page: Each page maintains its state and updates event objects with the read analayitead the given flash
technology. Page states include free/empty after erasure, valid aftecesstul write, and invalid after being
copied to a new location in a merge operation.

e Controller: The controller class receives event objects from the SSD and consilEsthregarding how to
handle each event. The controller sends the virtual data for events té\tddr buffering before sending the
event object to the bus.

e RAM: The RAM class calculates how long it takes to read or write data to itself. Thd Buéffers virtual
event data for the controller to send across the bus.

e Bus: The bus class has a number of channels that are each shared by mstimeadpackage. The bus examines
addresses in events and passes the event object on to the properlchan

e Channel: Channels must schedule usage for events and update the event time ¥dukshannel keeps a
scheduling table that keeps track of channel usage, and new evesthaduled at the next available free time

slot after dependencies have been met. The scheduling table size igsyusio queue length.

3.2.2 Software Components

The classes in the SSD simulator for software components are as follows:

Page <--------=-=-=----- Block <------4 Plane

-state: int -size: uint -size: uint

-parent: Block & -data: Page * -data: Block *

-read_delay: double -parent: Plane & -parent: Die &

-write delay: double -state: int -least_worn: uint

+Page(parent:const Blo -last_erase_time: double -erases_remaining: ulong
wr?gedgé?gydggzk%epégEEkﬁa?TEElﬁéll\Y) -erases_remaining: ulong -last_erase_time: double

+~Page() -erase delay: double -reg_read_delay: double

+_read(event:Event &): int ”ﬂ“k(gf;:"umt Btockagﬁzg -req write delay: double

+Plane(parent:

+_write(event:Event &): int erases_remaining: ulong BLOCK_ERASES) plane_size: uin LANE STZE,
+get_parent(): const Block & +~Block() reg read_dela ©=PLANE_REG_READ_DELAY,
+get_state(): int +read(event:Event &): int reg_write delay double PLANE_REG_WRITE DELAV)
+set_state(state:int): void +write(event:Event &): int +~Plane()

+read(event:Event &): int

+write(event:Event &): int

+erase(event:Event &): int

+_merge(event:Event &): int

+get_parent(): const Die &
+get_last_erase_time(address:const Address &): double
+get_erases_remaining(address:const Address &): ulong
+get_least_worn(address:Address &): void

+_erase(event:Event &): int
+get_parent(): const Plane &

Bus == Fm=-=-=-=-=-- +get_state(page:int): int
+get_state(address:const Address &): int
+get_last_erase_time(): double
+get_erases_remaining(): ulong
+get_size(): uint

+set state(page

-channels: Channel *
-num_channels: uint
+Bu5(numTchannels uint,

nt

ES te:int): void +get_size(): uint
max_ connectlons ulnf BUS MAX CONNECT) +set_state(address:const Address &, +get_state(address:const Address &): int
+~Bus () state:int): +set_state(address:const Address &): void
+connect (channel:uint): void -update wear_stats(): void -update_wear_stats(address:const Address &): void

+disconnect(channel:uint): void

+lock(channel:uint,start_time:double, A
duration:dou .
event:Event &): void 1

+get_channel (channel:uint): Channel & B = Channel -—-=-4 Die

-ctrl_delay: double
1 -data_delay: double
1 -channels: uint

Ssd -num_connected: uint
friends: Controller -max_connections: uint
-table_size: uint
-table: double **
-table_entries: uint
-selected entry: uint

-size: uint

-data: Plane *

-channel: Channel &
-parent: Package &
-least_worn: uint
-erases_remaining: ulong
-last erase time: double

+Die(parent: Package &
channel:Channel
die_size:uint=l DIE _SIZE)

-size: uint
-data: Package *
-contol: Controller *

-ram: Ram * +Channel(ctrl_delay:double=BUS_CTRL_DELAY, < - —
-bus: Bus * data_delay:double=BUS DATA DELAY, +~Die()
table_size:uint=BUS_TAI +read(event:Event &): int

1
1
1
1
1
1
S 1 BLE SIZE,
-erases_remaining: ulong max_connections : uint=BUS_MAX_CONNECTIONS) ° - A
-least_worn: uint 1 +~Channel () +write(event:Event &): }nt
-last erase time: double 1 +10cK15tart time:double, +erase(event:Event &): }nt
+SSD(ssd_size:uint) 1 duration:double, +merge(event:Event &): int
1
1
1
1
1
1
1
1
1
1

1
+~55D() event:Event &): void +get_parent(): const Package &
+event_arrive(event:ioreq_event *, +connect(): Bus * +get_last_erase_time(): double

stream:FILE™*): void +disconnect(): Bus * +get_erases_remaining(): ulong
-read(event:Event &): int -unlock(start_time:double): void +get_least_worn(address:Address &): void
-write(event:Event &): int A +get_state(address:const Address &): int
|

-erase(event:Event &): int

-merge(event:Event &): int
-get_erases_remaining(address:const Address &): ulong
-update_wear_stats(address:const Address &): void
-get_least_worn(Address:Address &): void

+set_state(address:const Address &): void
1 -update_wear_stats(address:const Address &): void

-get_last_erase_time(address:const Address &): double - - - > Package
-get_data(): Package & 1
-get_state(address:const Address &): int 1 -size: uint
-set state(address const Address &, [RE Coptroller -data: Die *
e:int): void friends: Ftl _parent: SSD &
: _ssd: Ssd & -least_worn: uint
Sftl: FTL & -last_erase_time: double
V -erases remaining: ulong -erases remaining: ulong
Ram +Controller(parent:Ssd &) +Package(parent :Ssd &et &,
+~Controller() package_size:uint=PACKAGE_SIZE)
-read_delay: double +event_arrive(event:Event &): int +~Package()
-write delay: double -issue(event_list:Event &): int +read(event:Event &): int
+Sram(read delay double -get_erases_remaining(): ulong +write(event:Event &): int
&_delay:double) -get_least_worn(address:Address &): void +erase(event:Event &): int
+~Sram1) -get_last_erase_time(address:const Address &): double +merge(event:Event &): int
+read(event:Event &): int -get_state(address:const Address &): int +get_parent(): const SSD &
+write(event:Event &): int -set_state(address:const Address &): void +get:last7erase7time(): double

T +get_erases_remaining(): ulong

| +get_least_worn(address:Address &): void
L +get_state(address:const Address &): int
v +set_state(address:const Address &): void

Ftl -update_wear_stats(address:const Address &): void

friends: Garbage_collector; |
Wear_leveler

R Garbage_collector

-controller: Controller * 1

-garbage: Garbage_collector * 1 Sftl: Ftl &

-wear: Wear_leveler * 1 +Garbage_collector(ftl:Ftl &)

-free_list: Address * 1 +~Garbage_collector()
1
1
1

-valid_list: Address * +collect(event:Event &): int
-invalid_list: Address *

-map: long *
FFtl(control:Controller &) --- -3 Wear _leveler
+~Ftl()

+read(event:Event &): int

+write(event:Event &): int
+get_erases_remaining(address:const Address &): ulong
+get_least_worn(address:Address &): const Package *
-erase(event:Event &): int

-merge(event:Event &): int

-garbage_collect(): void

-get_state(address:const Address &): int

-set state(address const Address &,
te:int): vo

-ftl: Ftl &

+Wear_leveler(ftl:Ftl &)
+~Wear_leveler()

+insert(address:const Address &): void

Figure 2: Arrows indicate dependencies of all types, including agtjeegaMost dependencies arise from one
class having references to another class, though many refereeciegiatized by allocating a new instance of
the aggregate class in the constructor.

Event

-start_time: double

-time_taken: double ioreq event
-type: int struct ioreq_ev
-address: Address
-address_merge: Address +time: double
Address _size: uint +type: int
— -bus_wait_time: double #next: struct ioreq_ev *
+package: uint -ioreq: ioreq_event * +prev: struct ioreq_ev *
+die. ulnF " _next: Event * +bcount: int
+plane: ulnm +Event (address:const Address &, +blkno: int
+block: uint ioreq:ioreq_event *) +flags: u_int
+page: uint +~Event () +busno: u_int
+valid: char +commit_to_ioreq(): void +slotno: E int
+Address () +get_address(): const Address & +devno: int
+Address (address:const Address &) +get_merge_address(): const Address & +opid: int
+Address (address:const Address *) << ------ +get_event_type(): int r---"-" _>+buf- void *
+Address(pagk?ge 1?§ne int, +get_bus_wait_time(): double +cause: int
block:in gage 1nt +get_ioreq(): const ioreq_event * +tempintl: int
valid:cha +get_ioreq_time(): double +tempint2: int
+~Address () +get_start_time(): double +tempptrl: void *
+is_valid(ssd_size:uint=SSD_SIZE i : .
package_size:uint=| PACKAGE _SIZE, +get_time_taken(): gOUble Ftempptr2: void *
die_size:uint=DIE_S! +get_next(): Event +mems_sled: void *
E{ggﬁ giig 5;2% gEﬁyE s%E) int +set_address(address:const Address &): int +mems_reginfo: void *
vorint(strean:FILE ©): void +set_merge_address (address: const Address &): int +start_time: double
+set_bus(bus:Bus *): void +batchno: int
+operator=(rhs:const Address &): Address & +set_ioreq(ioreq:const ioreq_event *): void .
_ q q: q_¢ : +batch_complete: int
+set_next(next:Event &): void +batch_size: int
+incr_bus_wait_time(time_incr:double): double +batch_next: struct ioreq_ev *

+incr_time_taken(time_incr:double): double +batch prev: struct ioreg ev *
+commit_to_ioreq(): void

+print(stream:FILE &): void

+operator=(rhs:const ioreq_event &): ioreq_event &

Figure 3: Arrows indicate dependencies of all types, including agtjeggaMost dependencies arise from one
class having references to another class, though many refereeciegiatized by allocating a new instance of
the aggregate class in the constructor.

e Event: First, the event class keeps track of its corresponding Diskieq_event structure. Second, the event
class holds methods and attributes to do all the record-keeping for the i8Bter's state, including SSD
addresses. Simulator objects pass event class objects and updatentrebets statistics.

e Address: Addresses are comprised of a separate field for each hardwaesadelel from the package down
to the page. We provide an address class insteadtofiet to help make a clear interface to assign and validate
addresses.

e FTL: The FTL provides address translation from logical addresses to pihgsidresses. It determines how to
process events that involve many pages by producing a list of singkegwsnts to be processed in-order by
the controller. The FTL is responsible for taking advantage of hardpanadlelism for performance. The FTL
also has a wear leveler and garbage collector to facilitate its tasks.

e Wear Leveler: The wear leveler class helps spread the block erasures over all litottks SSD. The wear
leveler is responsible for keeping as many blocks functional for as Ispgssible because blocks of pages can
only be erased for reuse a finite number of times.

e Garbage Collector: The garbage collector is activated when a write request cannot beeshtisftause the
selected block is not writable or there is not enough free space in thdeskbldock. The garbage collector
seeks to merge partially-used blocks and free up blocks by erasing thgmatléer algorithm for GC can also

be simulated.

R1 [cul] Rd_Jcirl] Data |

R2 [ctd] Rd] Wait [Ctrl | Data |

, Event
Rs i ' Start
(a) Read Interleaving

R1 [Ctrl]| Data | Wr]

R2 [ctr] Data | Wr

(b) Write Interleaving

Figure 4: Interleaving for read/write requests

3.3 BusChanne Interleaving

Figure 4 shows the interleaving of processing events for one bus ehafs per Figure 1, each bus channel
connects to several flash dies that are grouped in a package. Eachdnnel functions independently and in
parallel; operations on different channels are not dependent brnogaer.

The read interleaving for one bus channel is shown in Figure 4-(a9t, Ele control time signifies when the
bus channel is locked for control signals that request a flash die pagrelata from a specific page. Next, the
flash die processes the request for the data to be read. The bugldsdree to handle other requests at this time.

Finally, the bus channel is locked for control signals that request thie die to send data from a specific page
and sending the data. The interesting part of this figure is the bus chidleine period between the end of the
control time for request twoKy) and the beginning of the second control time period for request Bpe A
control time period for request three cannot fit; request thiRe fust be delayed until after request two finishes.

The write for one bus channel is shown in Figure4-(b). First, the basrodl must be locked for control
signals to inform the proper flash die that it will receive data. Secondyubaemains locked to send the data.
Finally, the flash die writes the data; the bus channel is free to handle eiipeests at this time. Since write

requests only require one contiguous time block of bus channel time, waitesehappen in FIFO.

3.4 Event Flow

The SSD simulator is instantiated as a SSD object designed to docegpevent structures from Disksim. Its
functionality is described in detail in Algorithm 1. The SSD controller uses ffle $oftware module to create
a list of events for a multi-page request. The controller issues eachiauvbetlist to the data hardware through
corresponding bus channels. The bus channels handle the schexhdiingerleaving of events for the controller;
this simplifies our controller implementation.

In Algorithm 2, events continue through the package and are handldithgtar the die level; merge events

can be handled inside flash dies or planes. Erase events are hanitledlosks, and read and write events are

handled inside pages. The SSD and package components are included#l $tack after consulting the bus
channel because these components also keep track of wear statistesstaftistics stored in the SSD, package,
die, plane, and block are updated every time an erase event occuepta &enple interface with lower algorithmic

complexity for the FTL.

Input: Disksim’s I/O Request Structuréof-eq_cvent)
Output: Device Service Time
foreach ioreq_event do

begin SSD processoreq_event
wrap inevent object;

begin controller, F'T L processvent
consultwearleveler andgarbagecollector;
create page-sized list ebent objects;
foreach e in event_list do

begin SSD, bus, channel process:
lock for next available transfer time;

€time < €time + channel_delay;
end

Package();
end
if eype = erase then
updateSSD wear stats;
end
begin inform bus, channel: e finished
channel update scheduling table for event dependencies;
end

end
end

Algorithm 1: SSD simulator functionality

10

Input: Event object§)
Output: NULL
begin package, die process
[+ Merge event e in die */
if Ctype = mergeandeaddr.plane 7é €addr_merge.plane then
foreach valid page v in e,qqr procr € dO

foreach ernpty page tin €addr_merge.block Y do
t — v,

Vstate <— tnvalid,;
tstate — valzd,

end
€time “— €time + die_merge_delay;
end
end
/+* Merge event e in plane */

else plane process
planeregister < €data;
if erype = merge then
foreach valid page v in eq,qqr procr © dO

foreach emptypage tin €addr_merge.block Y do
t— v,

Vstate < tnvalid,;
tstate — UalZd;
end
€time < Ctime + die_merge_delay;
end
end
I * eiype =read Or write Or erase */
else
begin block process:
if erype = erase then
for each page in block x do
DPagesiate < eMpPty;
end
€time “— Etime + €rase_delay,
update wear stats;
end
I * eiype =read or write «/
else page process:
if e1ype = read then
€time < €time + read_delay;
end
elseif e;ype = write then
€time < Ctime + Write_delay;
end
end
end
if erype = erase then
updateplane, die, package wear stats;
end
end

Algorithm 2: Package (event object) - SSD hardware functionality inside a pacKaggefunction is being
called in Algorithm 1.

11

4 Experimental Results

We validated our simulator by comparing it to real SSDs for behavioral simijaviéycompared the performance
of different FTL schemes for realistic workload traces. We used the siegblifersion of the simulator that
simulates a singl®lane with with a simplified channel implementation for various software implementations,
such as the FTL, garbage collector, and wear-leveler. More thorewabation that also considers interleaving

with parallelism effects is left for future work.

4.1 Evaluation Setup

The specifications available for commercial SSDs are insufficient for limgddem accurately. For example, the
memory cache size for FTL mappings and the exact FTL scheme usedtatiegiosed. Hence, it is difficult to
simulate these commercial devices. We made assumptions for flash deviessréisati in Table 2 and configured

our simulator accordingly. Table 3 presents the salient features of autoads.

] Default simulation parameters

Flash Type Large Block
Page (Data) 2KB
Page (OOB) 64B
Block (128KB+4KB) -
Real SSD Device
Interface SATA Real SSD1 ‘ Real SSD 2
GC Yes
Wear-leveling| Implicit/Explicit MSP-7000 FSD32GB25M
FTL Type | Page/FAST/DFTL MTron Super Talent
: 2.51n 2.51in
Access Time 4-way SLC SLC
Page Read 130.9 us Read: 120 MB/s 60 MB/s
Page Write 405.9 us Write: 90 MB/s | 45 MB/s
Block Erase 1.5ms
Energy Consumption
Page Read 4.72u
Page Write 38.04uJ
Block Erase 527.68uJ

Table 2: Simulation parameters and real SSD device observed specification

Avg. Req. Size| Read| Seq.| Avg. Req. Inter-| Simulated Time
Workloads (KB) @) | (%) | arrival Time (ms) (sec)
Financial [20] 4.38 9.0 | 20 133.50 43,712
TPC-H [23] 12.82 95.0 | 18.0 155.56 37,058

Table 3: Enterprise-scale workload characteristics.

12

Write Read

» »
S 20.00 Real SSD1 ---2--- 1S 5.00 Real SSD1 ---2---
o 18. A Real SSD2 ¢~ b Real SSD2 -
g 8.00 FlashSim1 -& °E’ FlashSim1 -&
= 16.00 FlashSim2 - = 4.00 FlashSim2 -
= [
2 14.00 B 2
5 h 5
g 12.00 . 8 3.00
3 10.00 N . a 2
T o e o
€ 800 e £ 2.00
5 S DX 5
(% 6.00 e a (% A
o 400 [R— e D 100 L
> e o)} D S e e X
© 200 ®© B I R - | |
[. [.
Z 000 = Z 0.00 2
0.0 0.2 04 06 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Seaquentiality (in Block Accesses) Seaquentiality (in Block Accesses)
(a) Write Behavior (b) Read Behavior
20% Sequentiality, 80% Writes 80% Sequentiality, 20% Writes
1.00 - e i) 1.00 e - e~ S~ : : :
PN
2 0.80 2 0.80
3 3
[¥]]
o) o]
© 0.60 © 0.60
o a
(0] (0]
= =
= 0.40 w 040
=} =}
€ €
> >
© 020 Real SSD1 ---2--- O 0.20 Real SSD{ -2
Real SSD2 —¢— Real SSD2 —¢—
FlashSim1 @ FlashSim1 -
0.00 & FlashSim2 ------- 0.00 & FlashSim2 ----3----
0 1 2 4 8 16 32 64 96 128 128+ 0 1 2 4 8 16 32 64 96 128 128+
Svstem Response Time (ms), Loa-scale Svstem Response Time (ms). Log-scale
(c) Random Write Dominant (d) Sequential Read Dominant

Figure 5: Validation of our SSD Simulator. Note that in the legends, Real SBB4dl SSD2, FlashSim1, and
FlashSim2 denote Mtron’s SSD, SuperTalent’s SSD, a SSD using a pagd-bTL, and a SSD using DFTL.

4.2 Validation of SSD Simulator

Using the parameters from Table 2, we validated our flash device simulaimsagommercial SSDs (MTron’s
SSD [1] and Super-Talent’s SSD [2]) foehavioral similarity. For this purpose, we sent raw 1/O requests to real
SSDs and similar traces to our flash device simulator to measure devicenpaanf. As shown in Figure 5, our
simulator was able to capture the performance trends exhibited by the i2gl B&h increasing sequentiality of
writes (Figure 5-(a)), the performance of real SSDs improved, anflasih simulator with various FTLs was able
to provide similar characteristics. When examining reads (Figure 5-@8) SSDs showed much less variation;
the same was observed with our simulator. With a high degree of randommvestes(80% random in Figure 5-

(c)), real SSDs demonstrated long-tailed response time distribution (dusgér 2C overhead); our simulator

13

rrrrrrrrrrrrrrrr

1.00

094 |, 094

0.92 0.92

Cumulative Probability
Cumulative Probability

0.90 .
0.20 2 4 8 16 32 64 96 128128+

0.90
0.20 2 4 8 16 32 64 96 128128+

Page-based FTL —&— Page-based FTL —&—
0 1 2 4 8 16 32 64 96 128 128+ 0 1 2 4 8 16 32 64 96 128 128+
Response Time (ms) Response Time (ms)

(a) Financial Trace (b) TPC-H

Figure 6: Cumulative Distribution Function of the average system respionedor different FTL schemes.

exhibited a similar trend.

4.3 Evaluation

We conducted a comparison of performance and energy consumptiordimgcto different FTL schemes, in-
cluding a page-based FTL, FAST [16], and DFTL [8]. We assumed thmanewas just sufficient to hold the
address translations for FAST. Since the actual memory size is not dddipsievice manufacturers, our estimate
represents the minimum memory required for the functioning of a typical hyAdrid We allocated extra space

(approximately 3% of the total active region [10]) for use as log-bafisrthe hybrid FTL (FAST).

4.3.1 Performance Analysis

The Cumulative Distribution Function of the average system response tindiffment workloads is shown in
Figure 6. DFTL is able to closely match the performance of the page-badedoF the Financial trace. In
comparison with the page-based FTL, DFTL reduces the total number a¥ blases as well as the extra page
read/write operations by about 3 times. This results in improved device s¢ivies and shorter queuing delays;
this improvement in turn improves the overall I/O system response time by @B&titas compared to FAST.
For read-oriented workloads, DFTL incurs a larger additional addresslation overhead, and its performance
deviates from the page-based FTL. When considering TPC-H (in Fifim¢, however, FAST exhibits bong

tail primarily because of the expensive full merges and the consequentalégitcies seen by requests in the /0O
driver queue. Hence, even though FAST services about 95% oétheests faster, it suffers from long latencies

in the remaining requests, resulting in a higher average system responseaimia-TL.

14

80 : : : 40 :
Bl Page read M Il Page read
Il Page write Il Page write
S0l Il Address Translation (Read) i 3 30l Il Address Translation (Read)
S I Address Translation (Write) _ S I Address Translation (Write)
= []GC Block erase = []GC Block erase
E [IGC Page read E [IGC Page read
@ 40/ /[]GC Page write @ 20/ /[]GC Page write
3 3
> >
()] o
S 20/ I I I 1 S 10/
c c
’ ’ Jl IIIIH H Il
0 , ’_‘ — , ﬂ 0 | ﬂ | , H

Page-based DFTL FAST Page-based DFTL FAST

(a) Financial Trace (b) TPC-H

Figure 7: Energy consumption by different FTL schemes.

4.3.2 Analysisof Energy Consumption

Power consumption of the flash memory in the SSD may not be significant veingpaced to other components
(CPU and Memory), but as shown in Table 2, erase operations consgnificant power. Unlike individual
read and write operations, erase operations have a greater impactawetak SSD’s energy consumption, and
the number of erase operations for a given workload varies accotdifige current FTL scheme. Figure 7
shows the energy consumption by operations for different FTL schamnike Financial and TPC-H traces. The
Financial trace is mostly random-write-dominant, while TPC-H is read-dom{saetTable 3). Thus, the energy
consumption for the Financial trace is much higher than that for TPC-H dtleetpower consumed by GCs.
DFTL requires additional page read and write operations due to mappitegdabyy misses in the memory,
causing additional energy consumption in both traces. As expected, FA&Tconsumes significantly more
energy than other FTL schemes due to more erase and write operatiorg@Qx.

In addition to power consumption by flash operations, the processonrpmnsumption can be considerably
high during GC. GC involves victim block searching overhead, which ainfmaing the block with the least
number of valid pages in order to reduce page copying overhead eF8girows the tradeoff between normalized
average response time and the number of FTL search operations d@ifuy the Financial trace. Higher search
operations decreases the response time while consuming more energgeb@ralocks with fewer valid pages
require fewer copy operations, and (ii) the search operations incheérgyeconsumption by processor and system
bus usage. Thus, the energy consumption during GC can be redutedbinging fewer search operations with
a greater number of copy operations. Fewer search operations willlgligbrease response time because an
incomplete search may select blocks with more valid pages that must be copied.

On-board RAM is another considerable factor in the power consumptioreiS8D. Since the page-based

15

i
©
=)
©

=
o
T
L
o
®

.
o
3

Search count

\

L5 .]
", Response time 4105

v
v
. 10
v
v
kY
v

I I B I
w S 3] o
T T =

=
N
S
2
Normalized Search Count

Normalized Average Response Time
[N
.
’

1.0 1 1 1 1 I 0.
0.0 0.17 0.33 0.5 0.67 0.83 1.0

Ratio of search operations to complete linear search

Figure 8: Tradeoff between performance and search operatiogyecensumption. This experiment has been
conducted with DFTL for the Financial trace. We varied the number othegperations. Note that 0.0 on the
X-axis means that the victim block is selected randomly without any seardHl,.Gmmeans the victim block with
the least number of invalid pages is selected after a complete linear search.

FTL requires more memory as compared to the block-based FTL, the idle powsumption of the additional
memory will be larger. FAST maintains block-level mapping for data regiospage-level mapping for log
regions; the on-board RAM'’s energy consumption is as close to that dfldlek-level FTL. DFTL requires the

same memory as the block-level FTL; the idle power consumption is the same asttiemblock-level FTL.

5 Related Work

Other research has been conducted to develop a simulator for NANDbiésstd SSDs [3, 14]. Microsoft Re-
search’s simulator [3] is one of the first available SSD simulators; how#verhighly coupled with DiskSim.
The strengths of their simulator include the implementation of parallelism effedssamultiple channels and
interleaving across different components within a single plane, but ordge-pased FTL scheme is available. J.
Lee et. al have developed a simple flash based SSD simulator [14]. This&imsla stand-alone simulator that
is limited by a single FTL scheme implementation, and they do not simulate 1/0 quediois e

Compared to the above simulators, our simulator has ability to simulate multiple FTmeshéncluding
page-based, block-based, FAST [16], and DFTL [8]. Our simulaiotégrated with DiskSim to simulate queuing
effects, and our simulator module can be instantiated multiple times within Disksim.ifi@le-$hreaded, event-
driven, object-oriented approach is comprehensible and modular to atdwtéire extensions. Furthermore, we

have validated FlashSim against real SSD devices for behavioral similarity

16

6 Summary and Future Work

We have developed a flexible and robust simulator for SSDs that featnrebject-oriented design. We have
validated our simulator with real SSD devices by demonstrating behavioral siyndad compared performance
results for various FTL schemes. We also have analyzed the impacti@is&TL schemes on performance and
power consumption in the SSD.

This project is a work in progress. Since the simulator has only been validate a simple behavioral
model for a single plane and simplified channel implementation, we will continue with thorough validation
methods that include bus channel interleaving effects. Caching and hé&lsling effects will be added and
examined. Since our simulator module can have multiple instances in Disksim, vearaaate disk arrays that
contain a combination of both SSDs and HDDs. In addition to performance siamylaur simulator is able to
incorporate power models and other extensions. We plan to combine omnaleerformance simulator of disk
drives [13] with our future work involving hybrid disk arrays that canta combination of both SSDs and HDDs.

Source-code is available for download frémt p: / / csl . cse. psu. edu/ hybri dst ore.

Acknowledgments
We would like to thank Euiseong Seo for his detailed comments which helped usvee quality of this work.

References

[1] 2.5" MTron SATA Solid State Drive - MSP 7000t t p: / / ww. nt ron. net/ Engl i sh/ Product/ ec_nsp7000. asp.

[2] 2.5" Super-Talent SATA Solid State Drive.htt p://ww. supertal ent. coni product s/ ssd- conmer ci al . php?
t ype=SATA.

[3] AGRAWAL, N., PRABHAKARAN, V., WOBBER, T., DAvIS, J. D., MANASSE, M. S., AND PANIGRAHY, R. Design tradeoffs for
ssd performance. IRroceedings of the USENIX Annual Technical Conference (June 2008), pp. 57-70.

[4] CHANG, Y.-H., HsIEH, J.-W.,AND KuO, T.-W. Endurance enhancement of flash-memory storage systemefficient static
wear leveling design. IProceedings of the 44th Annual Conference on Design Automation (New York, NY, USA, 2007), ACM,
pp. 212-217.

[5] CHUNG, T., PaRK, D., PRK, S., LEE, D., LEE, S.,AND SONG, H. System Software for Flash Memory: A Survey RAroceedings
of the International Conference on Embedded and Ubiquitous Computing (August 2006), pp. 394—-404.

[6] E. GAL AND S. TOLEDO. Algorithms and Data Structures for Flash Memori&&M Computing Survey 37, 2 (June 2005), 138-163.

[7] GANGER, G., WORTHINGTON, B., AND PATT, Y. The DiskSm Smulation Environment Version 3.0 Reference Manual.

[8] GuPTA, A., KiM, Y., AND URGAONKAR, B. DFTL: A Flash Translation Layer Employing Demand-based Sele@@iaching of
Page-level Address Mappings.Pnoceedings of the International Conference on Architectural Support for Programming Languages
and Operating System (ASPLOS) (March 2009), pp. 229-240.

[9] JuNG, D., CHAE, Y., Jo, H., Kim, J.,AND LEE, J. A Group-based Wear-Leveling Algorithm for Large-Capacity Fidsimory
Storage Systems. IRroceedings of the International Conference on Compilers, Architecture, and Synthesis for Embedded Systems
(CASES) (September 2007), pp. 160-164.

17

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

(23]

KANG, J., b, H., Kim, J.,AND LEE, J. A Superblock-based Flash Translation Layer for NAND Flash Mgmim Proceedings
of the International Conference on Embedded Software (EMSOFT) (October 2006), pp. 161-170.

KAWAGUCHI, A., NISHIOKA, S.,AND MOTODA, H. A Flash-Memory based File System. PBnoceedings of the Winter 1995
USENIX Technical Conference (1995), pp. 155-164.

Kim, J., KM, J., NoH, S., MIN, S.,AND CHO, Y. A Space-Efficient Flash Translation Layer for Compactflash Syst¢éEEE
Transactions on Consumer Electronics 48, 2 (May 2002), 366—375.

Kim, Y., GURUMURTHI, S.,AND SIVASUBRAMANIAM , A. Understanding the Performance-Temperature Interactions inlf0sk
of Server Workloads. IRroceedings of the International Symposium on High-Performance Computer Architecture (HPCA) (Febuary
2006).

LEE, J., Bvun, E., RRK, H., CHoOI, J., LEE, D., AND NOH, S. H. CPS-SIM: Configurable and accurate clock precision solid
state drive simulator. IRroceedings of the Annual ACM Symposium on Applied Computing (SAC) (March 2009), pp. 318-325.

LEE, S., AND MOON, B. Design of Flash-based DBMS: An In-Page Logging Approach Prisceedings of the International
Conference on Management of Data (S GMOD) (August 2007), pp. 55—-66.

LEE, S., RRK, D., CHUNG, T., LEE, D., PARK, S.,AND SONG, H. A Log Buffer based Flash Translation Layer Using Fully
Associative Sector TranslatiohEEE Transactions on Embedded Computing Systems 6, 3 (2007), 18.

LEE, S., $HIN, D., KiM, Y., AND Kim, J. LAST: Locality-Aware Sector Translation for NAND Flash Memorgg®d Storage
Systems. IrProceedings of the International Workshop on Storage and /O Mirtualization, Performance, Energy, Evaluation and
Dependability (SPEED2008) (Feburary 2008).

LOFGREN K. M. J., NORMAN, R. D., THELIN, G. B.,AND GUPTA, A. Wear Leveling Techniques for Flash EEPROM United
States Patent, No 6,850,443 (2005).

NARAYANAN, D., THERESKA, E., DONNELLY, A., ELNIKETY, S.,AND ROWSTRON A. Migrating enterprise storage to ssds:
Analysis of tradeoffs. IProceedings of the ACM European Conference on Computer Systems (Eurosys) (March 2009), pp. 145—
158.

OLTP Trace from UMass Trace Repositoht.t p: //traces. cs. unass. edu/ i ndex. php/ St or age/ St or age.

PARK, S., RRK, J., EONG, J., KM, J., AND KIM, S. A Mixed Flash Translation Layer Structure for SLC-MLC Combined
Flash Memory System. IRroceedings of the 1th International Workshop on Storage and /O Virtualization, Performance, Energy,
Evaluation and Dependability (SPEED2008) (2008).

Technical Report (TN-29-07): Small-Block vs. Large-BlocRND Flash Devices.ht t p: / / www. i cr on. com pr oduct s/
nand/ t echnot es.

ZHANG, J., SVASUBRAMANIAM , A., FRANKE, H., GAUTAM, N., ZHANG, Y., AND NAGAR, S. Synthesizing Representative
1/0 Workloads for TPC-H. IrProceedings of the International Symposium on High Performance Computer Architecture (HPCA)
(2004).

18

