
Active Flash: Performance-Energy Tradeoffs for Out-of-Core

Processing on Non-Volatile Memory Devices

Simona Boboila∗, Youngjae Kim†, Sudharshan Vazhkudai†, Galen M. Shipman†, and Peter Desnoyers∗

∗Northeastern University, †Oak Ridge National Laboratory

{simona,pjd}@ccs.neu.edu, {kimy1,vazhkudaiss, gshipman}@ornl.gov

I. INTRODUCTION

In this abstract, we study the performance and energy tradeoffs

involved in migrating data analysis into the flash device, a process

we refer to as Active Flash. The Active Flash paradigm is similar

to “active disks”, which has received considerable attention. Active

Flash allows us to move processing closer to data, thereby minimizing

data movement costs and reducing power consumption. It enables

true out-of-core computation. The conventional definition of out-of-

core solvers refers to an approach to process data that is too large

to fit in the main memory and, consequently, requires access to disk.

However, in Active Flash, processing outside the host CPU frees the

core and achieves “out-of-core” analysis.

Moving analysis to data has long been desirable, not just at this

level, but at all levels of the system hierarchy. However, this requires

a detailed study on the tradeoffs involved in achieving analysis

tunraround under an acceptable energy envelope. Before that, we

need to evaluate if there is enough computing power on the flash

device to warrant such an exploration. Flash processors require decent

computing power to run the internal logic pertaining to the Flash

Translation Layer (FTL), which is responsible for operations such as

address translation, garbage collection (GC) and wear-leveling.

Modern SSDs are composed of multiple packages and flash chips

within the package. The packages are connected with multiple I/O

channels to offer high I/O bandwidth in parallel I/O services. SSD

computing power is also expected to be high enough to exploit

such inherent internal parallelism within the drive to increase the

bandwidth and handle fast I/O requests. More recently, SSD devices

are equipped with powerful processing units and even embedded

with multicore CPUs (e.g. ARM Cortex-A9 embedded processor is

advertised to reach 2GHz frequency and deliver 5000 DMIPS; OCZ

RevoDrive X2 SSD has 4 SandForce controllers, each with 780MHz

max frequency Tensilica core). Studies are beginning to emerge that

take advantage of the available computing cycles on the processors

on SSDs to run auxiliary tasks other than actual I/O requests. Kim

et al. [2] investigate database scan operations in the context of

processing on the SSDs, and propose dedicated hardware logic to

speed up scans. Also, cluster architectures have been explored [1],

which consist of low-power embedded CPUs coupled with small local

flash to achieve fast, parallel access to data.

Processor utilization on SSD is highly dependent on workloads

and, therefore, they can be idle during periods with no I/O accesses.

We propose to use the available processing capability on the SSD to

run tasks that can be offloaded from the host. This paper makes the

following contributions:

• We investigate Active Flash and its potential to save the total energy

cost, including total power consumption on the host and the flash

device.

• We have developed simple analytical models to analyze the

performance-energy tradeoffs for Active Flash, by treating the

SSDs as a black-box. This is particularly valuable due to the

proprietary nature of the SSD internal hardware.

• We have enhanced a well-known MSR’s SSD simulator to imple-

ment “on-the-fly” data block compression using Active Flash. Our

simulation results show that up to 90% of the total energy can

be saved, with little performance degradation, when the embedded

processor on the SSD is used to share the task load of the host

CPU.

II. TRADEOFFS ANALYSIS

We analyze the tradeoffs of using the SSD controller to do part of

the computation which would otherwise be carried out on the host

CPU. The two scenarios compared are:

• Baseline: the entire computation is done on the host CPU.

• Model: a part of the computation is done on the SSD controller;

the rest, if any, is run on the host CPU.

Most of the data path segments are common for Baseline and

Model: in both cases, the data needs to pass through the SSD

controller. Data transfer between controller and host CPU is very fast

with current SATA and PCIe interfaces (e.g. SATA 3.0 at 750MB/s

bandwidth; PCIe up to 16GB/s bandwidth), and does not affect

performance significantly. Therefore we investigate tradeoffs due to

computation, not data transfer, the latter being ignored to keep the

model simple.

Energy and time consumption are mainly affected by the power
and speed differences between the SSD controller and host CPU. We
estimate energy savings versus slow down, based on the following
parameters:

x = Host CPU utilization for Baseline (long run average).

This represents the percentage of time when the CPU is being
utilized, and can range from 0% to 100%.

s =
Speed host cpu

Speed ssd controller
; p =

∆Power ssd controller

∆Power host cpu

Suppose the controller can do s times less work than the host CPU,

because it is s times slower. For example, a 2x slower controller at

100% utilization does the same work in the same amount of time as

the host CPU at 50% utilization. Mapping from [0%-100%] to [0..1],

we have that for x = 1/s, the SSD controller can accommodate

the entire computation at 100% controller utilization. We extend the

results and note that the entire computation can be moved to the

controller if the baseline CPU utilization is ≤ 1/s. If the baseline

CPU utilization is > 1/s, the controller will be fully utilized and

able to accommodate only a part of the computation. The percentage

of work done is c% = (100% × Speed ssd controller)/(x% ×

Speed host cpu), where 100% is the ssd controller utilization, and

the x% is the host cpu utilization. To summarize, the fraction of the

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

E
n

er
g

y
 S

av
in

g
s

(%
)

S
lo

w
 d

o
w

n

Host CPU Utilization - Baseline(%)

energy savings (x-axis)
slow down (y-axis)

Fig. 1: Energy savings vs slow down in the long run. The SSD

controller is used in conjunction with the Host CPU to carry out part of

the computation. The x-axis shows host CPU utilization in the baseline,

before part of the computation was moved to the controller.

computation that can be moved to the SSD controller as a function

of x is:

c(x) =

{

1, for x ∈ [0, 1/s)

1/(sx), for x ∈ [1/s, 1]

To compute the energy savings we compute the variation in energy

consumtion as: ∆Energy = T ime×∆Power

Also, time is inverse proportional to speed, which gives:

∆E = 1−
∆Energy ssd

∆Energy host

= 1−
Speed host cpu×∆Power ssd controller

Speed ssd controller ×∆Power host cpu

= (1− sp)

Finally, since only a fraction c(x) of the computation is moved to

the controller, the energy savings are: ∆E(x) = (1 − sp) · c(x)
Considering the computation on the SSD controller and the host

CPU to occur in parallel, the time needed by the controller to finish
its part determines the slow down:

S(x) =
T ime ssd model

T ime baseline
= s · c(x)

Figure 1 gives a concrete estimation of energy savings compared to

job slow down. We consider the 800MHz ARM Cortex-A8 embedded

processor advertised at a speed of 1600 DMIPS or more, and a host

CPU featuring a 2.4GHz Intel Core 2 Duo processor benchmarked

at 7922 DMIPS. We estimated p based on the idle and load power

consumption values cited in datasheets and benchmarks. For ≥ 60%
average long-run host utilization, Model gives about 20−30% energy

savings with a negligible slow down (converges to 1). For systems

which are less computationally intensive, a high fraction of the

computation can be accommodated on the controller at a slow down

cost, resulting in energy savings of up to 90%.

III. PRACTICAL CASE STUDY: COMPRESSION

We analyze the tradeoffs of in-storage processing for a widely

used application, compression to show that in-storage processing is

feasible in terms of energy and performancy efficiency. We extended

MSR’s SSD simulator to simulate a 64GB SSD, and the processors

parameters from Section II. The foreground application issues 6GB

of 4K random writes, which are written to the SSD and the SSD has

been simulated to offer 123MB/s random write throughput without

compression.

Figure 2 shows energy savings when compression is running in

the background, during idle periods, on the SSD controller. Since

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

E
n

er
g

y
 S

av
in

g
s

(%
)

Write throughput (MB/s)

Sustained throughput

without compression

Foreground throughput

decrease due to full

background compression I/O

c = 12%

c = 30%

c = 61%

c = 100%

Fig. 2: Compression running in the background on the SSD

controller. While the foreground application writes at the specified

throughput (x-axis), the SSD controller is able to compress c% of the

writes during idle times and save energy (y-axis).

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

C
o

m
p

re
ss

io
n

 t
h

ro
u

g
h

p
u

t
(M

B
/s

)

E
n

er
g

y
 s

av
in

g
s

(%
)

Percentage of data compressed on SSD controller (%)

throughput (x-axis)
energy savings (y-axis)

Fig. 3: Compression running in parallel on both host CPU and SSD

controller. The data to be compressed is read either from DRAM (it

has not been written to flash yet) or from the SSD, after the application

finished writing (compression runs in foreground).

compression is itself I/O intensive, the foreground application needs

to run at a lower throughput to accommodate the additional I/O due to

background compression (i.e. foreground throughput is ≤ 24 MB/s

for 100% background compression, due to additional I/O only, no

computation on controller).

Figure 3 studies throughput and energy savings in two scenarios

where the I/O traffic is much reduced. Compression is running in

parallel on both host CPU and SSD controller: 1) while the data is

still in DRAM, or 2) in foreground, after the application finished

writing. In both cases, the computation time is the bottleneck, and

determines the compression throughput, which peaks when 20% of

the data is compressed on the controller, and the rest on the host

CPU.

IV. CONCLUSION AND FUTURE WORK

We studied the potential capability of in-storage processing on

SSDs and showed that Active Flash can reduce total energy cost

with little performance degradation. Several future research direction

has been identified: (i) developing task distribution algorithms on host

CPU and in-storage processor, (ii) developing efficient job scheduling

mechanisms of actual I/O requests, internal tasks (GC, wear-leveling),

and auxiliary taks in the active flash.

REFERENCES

[1] ANDERSEN, D. G., FRANKLIN, J., KAMINSKY, M., PHANISHAYEE, A.,
TAN, L., AND VASUDEVAN, V. FAWN: A Fast Array of Wimpy Nodes.
In SOSP (2009).

[2] KIM, S., OH, H., PARK, C., CHO, S., AND LEE, S.-W. Fast, Energy
Efficient Scan inside Flash Memory SSDs. In ADMS (2011).

