
Layout-Aware I/O Scheduling for Terabits Data Movement

Youngjae Kim, Scott Atchley, Geoffroy R. Vallee, and Galen M. Shipman

Oak Ridge National Laboratory

Oak Ridge, TN 37831, USA

{kimy1, atchleyes, valleegr, gshipman}@ornl.gov

Abstract—Many science facilities, such as the Department of
Energy’s Leadership Computing Facilities and experimental
facilities including the Spallation Neutron Source, Stanford
Linear Accelerator Center, and Advanced Photon Source,
produce massive amounts of experimental and simulation data.
These data are often shared among the facilities and with
collaborating institutions. Moving large datasets over the wide-
area network (WAN) is a major problem inhibiting collabora-
tion. Next-generation, terabit-networks will help alleviate the
problem, however, the parallel storage systems on the end-
system hosts at these institutions can become a bottleneck for
terabit data movement. The parallel storage system (PFS) is
shared by simulation systems, experimental systems, analysis
and visualization clusters, in addition to wide-area data movers.
These competing uses often induce temporary, but significant,
I/O load imbalances on the storage system, which impact
the performance of all the users. The problem is a serious
concern because some resources are more expensive (e.g. super
computers) or have time-critical deadlines (e.g. experimental
data from a light source), but parallel file systems handle
all requests fairly even if some storage servers are under
heavy load. This paper investigates the problem of competing
workloads accessing the parallel file system and how the
performance of wide-area data movement can be improved
in these environments. First, we study the I/O load imbalance
problems using actual I/O performance data collected from the
Spider storage system at the Oak Ridge Leadership Computing
Facility. Second, we present I/O optimization solutions with
layout-awareness on end-system hosts for bulk data movement.
With our evaluation, we show that our I/O optimization
techniques can avoid the I/O congested disk groups, improving
storage I/O times on parallel storage systems for terabit data
movement.

Keywords-Storage Systems, I/O Scheduling, Networking

I. INTRODUCTION

Many science facilities produce a vast amount of experi-

mental and simulation data. Several leadership computing

facilities such as the Oak Ridge Leadership Computing

Facility (OLCF), the Argonne Leadership Computing Fa-

cility (ALCF), and the National Energy Research Scientific

Computing (NERSC) generate hundreds of petabytes per

year of simulation data and are projected to generate in

excess of 1 exabyte per year by 2018. Moreover, other

scientific user facilities and data centers such as the SNS,

a major neutron facility, or the Atmospheric Radiation

Measurement (ARM) program generate tremendous amounts

of experimental and/or observational data.

These data sets do not exist in isolation. Scientists and

their collaborators may have access to additional resources

at multiple facilities and/or universities. Scientists may use

these additional resources for further analysis and visualiza-

tion or they may use experimental results to validate on-

going simulations. Moving the data between geographically

dispersed organizations is necessary to further their research.

Some examples of large collaborations include: one OLCF

petascale simulation needs nuclear interaction datasets pro-

cessed at NERSC; the ALCF runs a climate simulation and

validates the simulation results with climate observation data

sets at ORNL data centers.

In addition to the growing size of data sets, network

operators are increasing the capabilities of the network.

DOE’s Energy Sciences Network (ESnet), for example, has

upgraded its network to 100 Gb/s between many DOE

facilities. Future deployments will most likely support 400

Gb/s followed by 1 Tb/s throughput. Even with these net-

works, data sharing will remain difficult and will require

advanced end-to-end optimization techniques to coordinate

network and storage technologies to utilize the technology

advances to the fullest extent. Even as network and storage

technologies continue to advance, the storage-to-network I/O

constraint will likely continue to be a major challenge in our

terabit data transfer architecture.

Parallel file systems have been a widely adapted solution

for scientific applications to support both high performance

I/O and large data sets. Typically, these large scale storage

systems use tens to hundreds of storage servers, each with

tens to hundreds of disks, to improve scalability of perfor-

mance and capacity. These file systems stores individual files

over subsets of disks to improve single file performance.

The Oak Ridge Leadership Computing Facility’s Spider

file system serves as a center-wide storage resource for

all compute systems including one of the world’s fastest

supercomputers, Titan. The Spider II system is designed to

provide 32PB of capacity with tens of thousands of spindles

at an aggregate transfer rate of 1 TB/s. Spider II can only

achieve that rate, however, when all the spindles operate at

their maximum speed for ideal, sequential I/O patterns. As

this is a shared resource where multiple jobs can share the

same storage groups, typically throughputs are less. Hotspots

(i.e. congestion) occur within some of the disk volume

groups, which causes an I/O load imbalance over the disk

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B
a

n
d

w
id

th
 (

M
B

/s
)

Controller no.

2012-01-01-00:51:23

2012-03-10-11:56:49

Figure 1. Snapshot of individual controller’s bandwidth for two different times. We show the statistics of performance data for each day above with (Min,
Max, Avg, STD, Date). (0.0, 2449.0, 373.2, 724.6, 2012-01-01), (0.0, 2713.0, 465.5, 822.6, 2012-03-10).

volume groups.

I/O load imbalance is a serious problem in parallel storage

systems [6], [5]. We empirically observed the bandwidth

imbalance of the 24 RAID controllers for a quarter partition

of the Spider storage system at Oak Ridge National Lab-

oratory. Figure 1 presents the snapshots of the controllers’

bandwidths at two different times. We clearly see that a

few of controllers are overloaded while most are not. The

details of how we collected the data will be explained later in

Section III. One slow disk volume can significantly decrease

the performance of bulk synchronous I/O workloads. Most

parallel file systems balance I/O loads in terms of space,

to allow the disk volumes usage to grow at the same rate,

with the constraint that individual files might only use a

subset of storage servers. As a result, some of disk volumes

are overloaded by a large number of data read and write

requests. Caching and buffering can alleviate the I/O load

imbalance problem to some degree, but they cannot solve

the issue completely. Prediction based I/O rescheduling can

also alleviate the issues of overloading disk volumes to some

extent, however, in HPC systems, it is very difficult to predict

I/O requests and their disk layouts.

With these motivations, this work makes the following

contributions:

• This work investigates the problems of optimizing end-

to-end data transfers in a dynamic operating environ-

ment, where I/O loads to disk volumes periodically

change, often dramatically. To identify the I/O load

imbalance problems in real world systems, we analyze

the I/O performance data collected from each disk

controller in the OLCF Spider storage system.

• To avoid the congested disk groups for terabit data

movement, we propose I/O scheduling algorithms with

layout-awareness on source and sink hosts. Our layout-

aware scheduling algorithms can mitigate the storage-

to-network I/O imbalance, a major problem in our ter-

abit data transfer architecture. These algorithms adapt

dynamically to changing I/O loads on the storage

systems by avoiding overloaded disk volumes while

striving to maximize available, uncongested I/O band-

width.

Disk

Disk

WAN

Data
Mover

IB

Data
Mover

Ethernet

Disk

Disk

Source Sink

1

3

Arrow #1: CCI/Verbs
Arrow #2: CCI/UDP WAN or CCI/LinuxEthDirect
Arrow #3: LAN or CCI/Myricom

2

Figure 2. Data Movement Flow Diagram.

The rest of this paper is organized as follows. Section II

presents an overview of terabit data movement and discusses

related works for bulk data movement. Section III inves-

tigates the problems of load imbalance over disk volume

groups in the shared storage sytsems. Section IV presents

our design and implementation on I/O scheduling techniques

for PFS. We show our evaluation results in Section V and

conclude in Section VI.

II. OVERVIEW FOR BULK DATA MOVEMENT

When moving between two PFS at separate sites, the

data will traverse one or more networks. Over the wide-

area network (WAN), the data will travel via high-bandwidth

networks such as DOE’s ESnet and Internet2. If a PFS is

not directly connected to the WAN, the data will additionally

transit one or more local networks. Some of these networks

may provide zero-copy, OS-bypass interfaces and others

only support the standard Sockets interface. In Figure 2,

we illustrate data moving from a PFS over an InfiniBand

(IB) network to a data mover connected to the WAN.

The data arrives at the remote site at another data mover

which forwards the data over the local Ethernet network.

The Common Communication Interface (CCI)[2] is used to

enable zero-copy, OS-bypass when supported by the network

to improve performance. CCI provides message (MSG) and

remote memory access (RMA) semantics. We use MSGs for

control and RMA for bulk data movement. Also, the data

movers act as routers between different networks.

Bulk Data Movement: There have been many prior studies

on the design and implementation of bulk data movement

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 500 1000 1500 2000 2500 3000

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

Bandwidth (MB/s)

min
avg
max

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

Standard Deviation (Log-Scale)

(112)

(1,246)
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000 2500

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

Average bandwidth on 24 RAID controllers (MB/s)

(bandwidth, std)

(a) Bandwidth (b) Standard Deviation (c) Bandwidth and Dispersion Relationship

Figure 3. Analysis results for I/O load imbalance on the Spider storage system. We analyzed bandwidth data collected from 24 RAID controllers of the
Spider storage system for three months from Jan. to Mar. in 2012.

framework [1], [3], [11], [10] and their optimization in wide-

area networks. GridFTP [1], provided by Globus toolkit, ex-

tends the standard File Transfer Protocol (FTP), and provides

high speed, reliable, and secure data transfer. BBCP [3] is

anther data transfer utility for moving large files securely,

and quickly using multiple streams. These tools are useful

for moving large data faster and securely from source host

to remote host over the network, however little work has

been done to optimize I/O performance for PFS. XDD [11]

optimizes the disk I/O performance; enabling file access with

direct I/Os and multiple thread for parallelism, and varying

file offset ordering improve I/O access times. However,

there are several key differences when compared to our

work. First, our work, in particular, focuses on developing

congestion-aware I/O optimization techniques on data source

and sink hosts in a shared storage environment rather than

optimization for dedicated storage systems. Second, we

address the challenges of integrating our I/O optimization

algorithms to resolve the I/O impedance mismatch between

storage and network using the Common Communication

Interface (CCI) [2]. Third, our work focuses on sourcing

and sinking to parallel file systems where data is distributed

among many storage servers.

III. I/O LOAD IMBALANCE ON THE STORAGE SYSTEM

In this section, we present our analysis of actual measure-

ments on a real production system at Oak Ridge National

Laboratory. Our analysis clearly illustrates the I/O load

imbalance (LI) problems in the storage systems for HPC

workloads. We are interested in storage systems that that

run parallel file systems for multiple scientific applications

running concurrently on different sets of compute nodes.

We observe the presence of intermittently congested storage

servers and the duration of this congestion. Lastly, we

motivate the need for an implementation of layout-aware

I/O optimization at end systems for bulk data movement.

A. Data Collection at Spider

Spider is a Lustre-based storage cluster of 96 DDN

S2A9900 RAID controllers (henceforth referred to as a con-

troller) providing an aggregate capacity of over 10 petabytes

(PB) from 13,440 1-terabyte SATA drives [12], [4]. For

analysis, we characterize I/O statistics for the data we

collected from the controllers. The controllers have a custom

API for querying performance and status information over

the network. A custom daemon utility [8] periodically polls

the controllers for data and stores the collected results in a

MySQL database. Among the various I/O performance met-

rics, our primary interest is studying the I/O load imbalance.

To do so, we measure the bandwidth and latency for reads

and writes every two seconds. We studied this workload for

24 of the controllers over a period of three months (January–

March 2012). This partition includes a quarter of our total

storage system (in terms of capacity and performance) and

its workload is representative of our overall workload.

B. Bandwdith Analysis

The I/O bandwidth distribution helps us understand the

I/O utilization and requirements of our scientific workloads.

Figure 3(a) shows the controller utilization in terms of

bandwidth. We generated the CDF (Cumulative Distribution

Function) plot of the minimum, average, and maximum

bandwidth data. Each bandwidth is the sum of the bandwidth

for reads and writes as well as the internal bandwidth taken

by background services, such as disk scrubbing for latent

sector errors [7]. From the CDF plot, we extract the 95th

percentile of the minimum, average, and maximum band-

width; 21MB/s, 1,430MB/s, and 2,908MB/s respectively.

This observation implies that the bandwidth distribution

is highly likely to follow a heavy, long-tail distribution.

The heavy-tail distribution can be found in many natural

phenomena such as stock market crashes and earthquakes,

which do not occur often but are clustered when they

occur. Similarly, our observation implies that an individual

controller would receive a burst of I/O demands in a very

short time, overloading the controller. However, the CDF

plot in 3(a) is not enough to explain I/O load imbalance on

the storage system.

C. Load Imbalance Analysis with Bandwidth

One of the metrics for evaluating I/O load imbalance is

the standard deviation of the controllers’ bandwidths. For

a given time period i, the instant standard deviation, stdi

is calculated by stdi =

√

∑

(xi,j−x̄)2

n−1 where j is an index

for controller. If all the controllers’ I/O loads are evenly

distribution at time i, the standard deviation would be very

low, otherwise, it should be high. Therefore, the higher the

standard deviation is, the more the I/O load imbalance is.

Figure 3(b) shows the CDF plot of the standard deviation of

bandwidth of the controllers. Similar to the observation for

bandwidth distribution, the standard deviation plot shows

a long tail distribution. For example, we observe that the

80th percentile on the CDF plot is 112 MB/s and the 95th

percentile on the CDF plot 1,246 MB/s. This indicates that,

over the three months, that 80% of the time the standard

deviation was less than than 112 MB/s, which is reasonably

low.

Figure 3(c) presents a dispersion plot of bandwidth with

standard deviation. The region with std<200 accounts for

about 82% of the measurements during the three months

(refer to Figure 3(b)), which is fairly balanced compared

to the rest. However, the rest on the region with std>200

shows significantly high deviation of bandwidth versus the

region below 200. We observe that the standard deviation

increases with respect to bandwidth. It shows either a log

linear increase or a linear increase, which implies that higher

bandwidth leads to more load imbalance. Interestingly, the

standard deviation decreases after the bandwidth is around

1,000MB/s. It implies that many controllers start to become

busy all together, reducing the I/O load imbalance.

D. Lifetime and Inter-Distance of Load Imblance

The lifetime distribution of load imbalance period is

essential to understanding and optimizing storage and file

system performance. Above, we use the controllers’ stan-

dard deviation as the imbalance metric. For a given time

period i, the instant standard deviation is smaller than

the threshold, then the storage systems can be said to be

fairly balanced, otherwise, the system is poorly balanced.

We use two thresholds, which are 112 and 1,246 standard

deviations corresponding to 80th and 95th percentiles in

Figure 3(b). Figure 4(a) presents the lifetime distribution

of load imbalance. Interestingly, we observe that the higher

threshold is the shorter lifetime. For example, for the 90th

percentile, the lifetime for std 95th is around 16 sec, whereas

that for std(80th) is around 58 sec. The load imbalance does

not continue over 60 seconds in our data analysis.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

Lifetime (x 2sec)

std(95th)
std(80th)

(a) Lifetime of LI

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

Inter-Distance between Load Imbalances (x 2sec)

std(95th)
std(80th)

 0.9975

 0.998

 0.9985

 0.999

 0.9995

 1

 2000 4000 6000 8000

std(95th)
std(80th)

(b) Distance between LIs

Figure 4. Lifetime and distance distribution of load imbalance.

Inter-distance analysis provides an estimate of time be-

tween load imbalance periods. Interestingly, we see that the

short lifetime for std 95th shows a smaller inter-distance

than for std 80th for 99% of the time, which means that

once the system is highly imbalanced, the system is likely

to remain imbalanced. However, as we see from the zoom-

in plot, two lines are crossed around at 3000–4000 seconds.

This indicates that the 95th data is more bursty than the 80th

data in terms of I/O load imbalance duration. Note that the

95th shows a longer tail distribution than the 80th.

E. Impact of I/O Load Imbalance Problem

When data are moved from source to sink over the net-

work the data that resides in the storage system must be read

through the parallel file systems, buffered in the application’s

memory region, and then shipped over the network. In a

PFS, a file is striped over multiple object storage nodes.

The highest throughput can only be achieved if none of the

storage nodes are hotspots. However, unfortunately we have

seen that hot spots often happen, and those hot spots create

I/O load imbalance problems on storage systems. When a

file is transferred to the sink node, the file needs to be

striped and stored in multiple object storage nodes as well.

Similar to the impact of hot spots on file reads at source,

hot spots can delay write completions of objects, increasing

a file-write completion time. When hot spots occur, I/O

requests be serviced responsively. Therefore, in our design

I/O schedulers at source and sink use algorithms that avoid

these hot spots.

IV. I/O SCHEDULING FOR TERABIT DATA MOVEMENT

We observed that storage systems have had intermittent

congestion on a subset of storage servers in Section III. In

this section, we present our design and implementation for

efficient I/O scheduling at the data source and sink hosts for

bulk data movement.

A. Design Goal

The source algorithm optimizes I/O accesses at the data

source and the sink algorithm optimizes them at the data

sink. Source and sink algorithms are designed to exploit

high I/O parallelism available in the PFS, and adapt to

congestion on the storage servers to minimize the impact

on I/O operations. Our design goal is that less congested

servers progress faster for I/O accesses. We implement

several policies for comparison to evaluate the effectiveness

of our algorithms with layout-awareness at data source and

sink hosts in our bulk data movement architecture. Our

scheduling algorithms can automatically detect congested

servers and avoid accessing them, while sustaining I/O

throughputs similar to the uncongested case.

B. Layout-Aware Source Algorithm

We implement two policies, naive and layout-aware algo-

rithms. The naive algorithm exploits I/O parallelism in the

PFS with multiple worker threads, and uses a file as its data

access granularity. A global queue maintains a list of files

that will be read. In this policy, a complete file is assigned

to each thread, and each thread works on the file until the

file is read. After completing the file, the next file task is

dispatched from the queue. It ignores file layout information,

thus there is no overhead involving metadata access on

metadata servers. Note that in PFS, large files are broken

up into to chunks and stored on multiple storage servers.

The metadata is stored on one or more metadata servers

depending on the PFS and the metadata access requires a

network round-trip.

The layout-aware algorithm uses a chunk as a its data

access unit. A file is segmented to chunks according to stripe

size. A chunk is assigned to each thread, unlike the naive im-

plementation where a file is assigned to each thread. A thread

works on a chunk of a file, and it may work on a chunk

of a different file. It needs the stripe information, such as

stripe size, and width, thus requiring an additional metadata

access to determine stripe information. In our evaluation, we

found that this metadata overhead is negligible, compared

to the performance gain by this algorithm. It implements

a server congestion detection and avoidance algorithm, to

avoid intermittently congested storage servers. As such, each

storage server has a separate queue and each file stripe

information is input to the appropriate server queue. Threads

select the next server queue in round-robin and retrieve the

stripe information. If another thread is already accessing the

server, it skips and procedes to the next server. Eventually, it

could achieve performance gains by allowing more progress

on fast (uncongested) servers than on slow (congested)

servers.

We implement our algorithms using pthreads in C and

test using the Lustre PFS. The naive algorithm implements

a global queue and data access at the granularity of a file,

whereas data layout-aware algorithm maintains a separate

queue for each of the servers. In the layout-aware algorithm,

the data access unit is a chunk (i.e., an object in Lustre). The

layout-aware implementation uses a Lustre utility library,

get_file_info() to find object information of a file

such as stripe size, width, and object layout. It uses the

POSIX pread() to access specific chunks on a file. It

implements a server-congestion-detection algorithm, which

is a threshold-based throttling mechanism. A thread reads

a chunk on a specific region on a file from its appropriate

server and records the chunk read time, and computes an

average of multiple chunk read times during a pre-set time

window time (W). If the chunk read time on average during

W is greater than the pre-set threshold value (T), then the

server is marked congested. When marked congested, the

algorithm tells the next M number of threads to skip this

server’s queue.

C. Layout-Aware Sink Algorithm

As with the source, we implement two sink policies,

file-per-server and layout-aware algorithms. The file-per-

server algorithm exploits I/O parallelism for parallel file

systems using a multi-thread design. It assigns the threads

to servers in round-robin, and the thread begins to operate

with the server at the granularity of a file. A server that

a thread will operate on is fixed, so it cannot avoid the

servers with congestion. In contrast, the layout-aware al-

gorithm implements a congestion detection that detects and

avoids congested servers and maintains a list of uncongested

servers for writes. It also uses a multi-thread design for I/O

parallelism, however, different from the file per server policy,

it maintains a thread pool, and the association between

threads and servers is not fixed. Uncongested storage servers

can store more data than congested servers. In the current

implementation, when a file is written on the PFS, the file

is not striped. We intentionally set the stripe width of a file

to one such that it can minimize I/O interference between

threads and because the current Lustre implementation does

not allow the user to specify the storage servers. Both of our

policies use a file as their data access granularity, however,

Workloads
Test Workloads Overloading Workloads

File Size (MB) Files (#) Client Threads (#) Overloading Threads (#) File Size (MB) Access Pattern

W(src) 20 1,000 4 2 256 RR

W(sink) 20 5,000 8 2 256 Fixed

Table I
WORKLOADS AND TEST CASES. RR MEANS ROUND-ROBIN, AND FIXED MEANS THAT ONLY ONE OST IS OVERLOADED BY THE OVERLOADING

WORKLOADS.

a chunk-level implementation will provide a more flexible

design in locating the servers for writes, which is a part of

our future work.

V. EVALUATION

In this section, we present our experimental results to

demonstrate the effectiveness of data layout-aware algo-

rithms.

A. Experimental Setup

We evaluate our algorithms using a NetApp e5424 storage

system, which has 24 SAS 10K RPM 500MB drives. We

created eight logical volumes drives such that each volume is

configured in RAID-0 with three of the drives. We installed

Lustre 1.8 with two OSS servers with 4 OSTs each and one

MDS server. Each of the OSTs manages one of the RAID

volumes. All hosts run Linux kernel 2.6.18-308.4.1.el5 and

are connected via IB QDR (40Gb/sec).

B. Workloads

In evaluating algorithms, we use different workloads

and test cases for source and sink algorithms to cover a

wide spectrum of workloads. The descriptions of these are

described in Table I. In the table, RR means round-robin,

and Fixed means that only one OST is overloaded by the

competing workload. To generate the imbalanced loads over

the OSTs, we assigned two hosts to run two overloading I/O

threads. For W(src), each thread creates 256MB files on a

Lustre-mounted directory, such that a file is created on the

first OST, then the next file is created on the next OST, and

so on. Thus, files are created in a round-robin fashion by

these two threads. For W(sink), both threads create 256MB

files on a particular OST (OST5 in our evaluation). For sink

algorithm evaluation, prior to testing, we created files in

a Lustre-mounted directory with a default setting of stripe

count and size (4 and 1MB respectively), such that all disk

volumes could serve the same amount of data. We minimize

the caching effect on our evaluation by clearing the caches

prior to each measurement.

C. Results

To fairly evaluate each algorithm’s performance, we en-

sured that storage server bandwidth is not over-provisioned

compared to network bandwidth (i.e., the network would not

be the bottleneck). For storage bandwidth, we ran block-level

I/O benchmarks [9] on two hosts to eight disk volumes in

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2 8 32 128 512 2K 8K 16K

B
a

n
d

w
id

th
 (

M
B

/s
)

Message Size (Bytes)

1.93GB/s

IB Bandwidth

Figure 5. IB bandwidth vs. storage bandwidth. Max sequential I/O
bandwidth on the storage is shown at 1.93 GB/s.

parallel with 1M sequential I/O streams on each benchmark

with the highest queue depth. Figure 5 shows the results

on comparing network and storage I/O bandwidths. The

IB bandwidth increases as the message size increases, and

it reaches about 3.2GB/s, whereas the I/O bandwidth is

measured around 1.9GB/s at the most.

Figure 6(a) shows the performance improvement by the

source algorithm with layout-awareness for W(src) in Ta-

ble I. When none of the disk volumes are overloaded by

I/Os, we observe that the aggregate I/O throughput for file

reads scales linearly with respect to the increased number

of threads. At four threads, it reaches 424.6MB/s. When

a few of the OSTs are overloaded, we observe that there

is a huge drop in throughput for the naive algorithm,

for example, Naive(4,1) drops by 30% compared to the

Naive(4,0) because it cannot avoid the congested OSTs. We

can observe that there is only a 16% drop in throughput

when using the layout-aware algorithm. For the layout-aware

algorithm, we implement a heuristic algorithm for detecting

congested servers, with three tunable parameters; window

size (W), threshold (T), and the number of threads that skip

the congested server (M). For the experiments in Figure 6, we

used 40 for the window size (W), 0.05sec for the threshold

(T), based on the latency of 1MB I/O operation on an OST,

and 16 for M. Figure 6(b) shows the impact of varying the

window size to the overall performance of the layout-aware

algorithm. We observe that the throughput slightly improves

as the window size increases, however, it significantly drops

down to 220-230MB/s when W reaches 1,000. It implies that

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Layout-aware(4,1)

Naive(4,1)

Naive(4,0)

Naive(2,0)

Naive(1,0)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)
Overloaded Normal

(a) Source Algorithm

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

50 100 150 200 250 500 1000

T
h

ro
u

g
h

p
u

t

Window Size

slope=1.78
slope=
-41.3

(b) Sensitivity Test

Figure 6. Performance comparison for source algorithms. In (x, y), ‘x’
indicates the number of threads operating for file reads. ‘y’ indicates the
status of congestion on the storage systems. ‘1’ indicates that a few of
OSTs are overloaded, and ‘0’ means it’s not.

the window size needs to be carefully set in the algorithm,

otherwise, it can reduce performance.

Figure 7 shows the efficacy of the congestion detection

engine with the layout-aware algorithm in the analysis of

the time series. We measured the response time of every

1MB read. The upper plot in Figure 7 shows the results

when the congestion detection engine is disabled, and the

lower plot shows when it is enabled. The congested OST

can cause an increase in service time for the request. This

in turn causes the pending request in the I/O driver queue

to incur longer latency. For example, a request in the region

marked ‘A’ on the plot competes with another workload on

the OST, resulting in very high I/O service time. In sharp

contrast, during the same period, the layout-aware algorithm

with the congestion detection engine enabled is able to keep

the I/O service time low and provide sustained improved

performance. However, we also see a slight increase in

service time in the region marked ‘B’, most likely due to an

incorrect decision by the congestion detection engine.

Figure 8 compares the results of sink algorithms for

W(sink) in Table I. When none of the OSTs are over-

loaded, we see that Lustre(4) shows a lower throughput than

 0

 40

 80

 120

 160

 200

 240

 0 10 20 30 40 50 60 70 80 90 100

1
M

B
 L

a
t.
 (

m
s
)

A

B

(Avg: 15.61, Std: 35.76, Kurt: 11.83)

Congestion Detection Disabled

(a) Congestion Detection Engine Disabled

 0

 40

 80

 120

 160

 200

 240

 0 10 20 30 40 50 60 70 80 90 100

1
M

B
 L

a
t.
 (

m
s
)

Chunk Count

A

B

(Avg: 10.17, Std: 18.35, Kurt: 9.53)

Congestion Detection Enabled

(b) Congestion Detection Engine Enabled

Figure 7. Time-series analysis of layout-aware algorithm when the
congestion detection engine is disabled, and enabled. The average, standard
deviation, and kurtosis are shown on each plot. Kurtosis characterizes the
relative peakedness compared with the normal distribution.

Lustre(1). With Lustre(1), the I/O streams access separate

servers so that there is less interference between them.

Overall, all four cases show higher throughputs between

1-1.2GB/s than those in Figure 6. Note that we ran with

eight threads for W(sink). When a few of the OSTs are

overloaded, all cases except for the layout-aware algorithm

experience reduced bandwidth by an average of 37% from

the max throughput (1.27GB/s) when not congested. The

layout-aware algorithm, in contrast, experiences a drop of

just under 10% from the max throughput achieved when

not congested.

VI. SUMMARY AND FUTURE WORK

As data-sharing in scientific data sets is growing, data

movement becomes a critical component helping building

virtual computing and data centers by computing geograph-

ically distributed facilities. In this paper, we address the

issue of competing workloads accessing a parallel file system

becoming a bottleneck for bulk data movement in and out of

the PFS. We investigated the I/O load imbalance problems

using actual performance data collected from the Spider

storage system. We also examined several I/O scheduling

 0

 200

 400

 600

 800

 1000

 1200

 1400

Layout-Aware

File-per-OST

Lustre (4)

Lustre (1)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

(a) Normal condition

 0

 200

 400

 600

 800

 1000

 1200

 1400

Layout-Aware

File-per-OST

Lustre (4)

Lustre (1)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

(b) Congested condition

Figure 8. Performance comparison for sink algorithms. All experiments
were done using eight threads. The number in the parentheses denotes stripe
count for Lustre.

algorithms to optimize I/O performance at data source and

sink hosts and we showed that local scheduling policies with

layout-awareness can help match impedance within a single

host. Initial results are promising and we need to further ex-

amine algorithms for large scale resources. For future work,

we plan to implement the scheduling of parallel file system

I/O operations in concert with network transfers using CCI

and to investigate hierarchical storage awareness using non-

volatile memory devices in the orchestration framework.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their

detailed comments which helped us improve the quality

of this paper This research is sponsored by the Office of

Advanced Scientific Computing Research; U.S. Department

of Energy and used resources of the Oak Ridge Leader-

ship Computing Facility, located in the National Center for

Computational Sciences at Oak Ridge National Laboratory,

which is supported by the Office of Science of the Depart-

ment of Energy under Contract DE-AC05-00OR22725.

REFERENCES

[1] William Allcock, John Bresnahan, Rajkumar Kettimuthu,
Michael Link, Catalin Dumitrescu, Ioan Raicu, and Ian Foster.
The Globus Striped GridFTP Framework and Server. In
Proceedings of the 2005 ACM/IEEE conference on Supercom-
puting, SC ’05, Washington, DC, USA, 2005. IEEE Computer
Society.

[2] Scott Atchley Atchley, David A. Dillow, Galen M. Shipman,
Patrick Geoffray, Jeffrey M. Squyres, and Georgie Bosilca. The
Common Communication Interface (CCI). In Hot Intercon-
nects, pages 51–60, 2011.

[3] Andrew Hanushevsky. BBCP. http://www.slac.stanford.edu/
∼abh/bbcp/.

[4] Youngjae Kim, Raghul Gunasekaran, Galen M. Shipman, and
David A. Dillow. Workload Characterization of a Leadership
Class Storage. In Proceedings of 2010 5th Petascale Data
Storage Workshop, PDSW ’10, pages 1–5, 2010.

[5] Qing Liu, Norbert Podhorszki, Jeremy Logan, and Scott
Klasky. Runtime I/O Re-Routing + Throttling on HPC Storage.
In Proceedings of the Workshop on Hot Topics in Storage and
File Systems, HotStorage ’13, 2013.

[6] Jay Lofstead, Fang Zheng, Qing Liu, Scott Klasky, Ron
Oldfield, Todd Kordenbrock, Karsten Schwan, and Matthew
Wolf. Managing Variability in the IO Performance of Petascale
Storage Systems. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pages 1–12, Wash-
ington, DC, USA, 2010. IEEE Computer Society.

[7] Ningfang Mi, Alma Riska, Qi Zhang, Evgenia Smirni, and Erik
Riedel. Efficient Management of Idleness in Storage Systems.
Trans. Storage, 5(2):4:1–4:25, June 2009.

[8] Ross Miller, Jason Hill, David A. Dillow, Raghul Gunasekaran,
Galen M. Shipman, and Don Maxwell. Monitoring Tools For
Large Scale Systems. In Proceedings of the Cray User Group
Meeting, CUG ’10, 2010.

[9] Oak Ridge National Laboratory. I/O Benchmark Suite. https:
//www.olcf.ornl.gov/center-projects/file-system-projects/.

[10] Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, Thomas Rober-
tazzi, Brian L. Tierney, and Eric Pouyoul. Protocols for Wide-
Area Data-Intensive Applications: Design and Performance
Issues. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis,
SC ’12, pages 34:1–34:11, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press.

[11] Bradley Settlemyer, Jonathan M. Dobson, Stephen W. Hod-
son, Jeffery A. Kuehn, Stephen W. Poole, and Thomas M.
Ruwart. A Technique for Moving Large Data Sets over High-
Performance Long Distance Networks. In Proceedings of the
2011 IEEE 27th Symposium on Mass Storage Systems and
Technologies, MSST ’11, pages 1–6, Washington, DC, USA,
2011. IEEE Computer Society.

[12] Galen M. Shipman, David A. Dillow, Sarp Oral, Feiyi Wang,
Douglas Fuller, Jason Hill, and Zhe Zhang. Lessons Learned
in Deploying the World’s Largest Scale Lustre File System. In
Proceedings of the Cray User Group Meeting, CUG ’10, 2010.

