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Abstract—As storage systems get larger to meet the demands
of petascale systems, careful planning must be applied to avoid
congestion points and extract the maximum performance. In
addition, the large data sets generated by such systems makes
it desirable for all compute resources to have common access to
this data without needing to copy it to each machine. This paper
describes a method of placing I/O close to the storage nodes to
minimize contention on Cray’s SeaStar2+ network, and extends
it to a routed Lustre configuration to gain the same benefits when
running against a center-wide file system. Our experiments using
half of the resources of Spider – the center-wide file system at
the Oak Ridge Leadership Computing Facility – show that I/O
write bandwidth can be improved by up to 45% (from 71.9 to
104 GB/s) for a direct-attached configuration and by 137% (47.6
GB/s to 115 GB/s) for a routed configuration. We demonstrated
up to 20.7% reduction in run-time for production scientific
applications. With the full Spider system, we demonstrated over
240 GB/s of aggregate bandwidth using our techniques.

Index Terms—Network congestion, SeaStar network, Lustre
file systems, Spider.

I. INTRODUCTION

The Oak Ridge Leadership Computing Facility (OLCF),

located at Oak Ridge National Laboratory, houses Jaguar –

a 200 cabinet Cray XT5 system. Jaguar [6] offers 18,688

compute nodes with two hex-core AMD Opterons each,

and provides 224,256 cores and 2.3 petaflops of compute

performance and nearly 300 terabytes of system memory.

The OLCF also hosts a number of smaller systems used for

analysis and visualization work, software development, and

integration of evolving storage and compute technologies such

as accelerator-enhanced systems. Supporting the I/O demands

of these systems falls to Spider [22], our Lustre [25] based

center-wide file system. Spider is designed to provide reliable

global accessibility and high performance.

Time on Jaguar is a limited resource. The majority of com-

pute time on Jaguar is managed as part of the US Department

of Energy’s Innovative and Novel Computational Impact on

Theory and Experiment (INCITE) program. For 2011, the

average allocation for each accepted project was 27 million

CPU-hours [1]. While this may seem to be all the time in the

world, it represents just over 120 hours (5 days) at full scale on

Jaguar. In these situations, it is desirable to achieve as much

efficiency as possible to conserve resources. Much of this work

†This work was performed while Zhe Zhang was a staff member at Oak
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is focused on improving the computational performance of the

scientific codes, as that is where they spend the bulk of their

time. However, attention should also be paid to the time spent

reading the input deck, writing out results, and performing

defensive I/O (checkpointing) to protect against system failure

during long-running simulations. Time spent performing these

operations is time that could be used to more quickly perform

the science and/or improve the resolution and detail of the

subject being studied.

Our activities during the acceptance of Jaguar and Spider

revealed a substantial digression between the expected and

actual I/O performance of the system. While we had made

provisions during the design of the system to spread the

I/O load throughout the network in a manner inspired by

Azeez et al [5], we found that congestion and the associated

load imbalance degraded our aggregate performance. This

was clearly visible when watching the bandwidth statistics

of the back-end storage. We would see impressive sustained

performance at the expected peak bandwidth numbers, only to

see the average bandwidth numbers plummet as the bulk of the

writes completed their task, leaving several stragglers writing

their share of the work at a small fraction of the available

aggregate speed. This reduction from the peak bandwidth

represents the loss of over 134 GB/s when utilizing the full

resources of Spider.

Much research has been done to optimize network com-

munications in high-performance computing (HPC) environ-

ments. In [26] the authors present an adaptive routing mech-

anism that is capable of eliminating deadlocks in 2D torus

networks. While adaptive routing strategies have shown sig-

nificant performance improvements for long-lived communi-

cation patterns [15], their effectiveness in short-lived, highly-

dynamic communication patterns such as HPC I/O has not

been demonstrated. The Quadrics network [20] uses a network

operating system and specialized hardware to support high-

performance data transfers. PaScal [16] is an I/O network-

ing infrastructure which employs several novel technologies,

including multi-level switch-fabric interconnection network,

bandwidth on demand, and so forth. It has been implemented

and evaluated on a 1024 node Linux cluster in LANL installed

with the Panasas parallel filesystem. The storage architecture

and networking technologies used in the Panasas parallel file

system are presented in [19].

This paper makes the following contributions as a result



of our detailed investigation and analysis of the performance

issues discovered during the development and deployment to

production of the Spider center-wide file system:

• We identified sources of file system performance loss,

and characterized their impact (Sections IV-A2, IV-B1,

and IV-B2).

• We characterized the link saturation bandwidth of the

Cray SeaStar2+ network, and verified the impact of

round-robin packet arbitration on network fairness (Sec-

tion IV-A3).

• We developed techniques to minimize network congestion

using a nearest-neighbor communication pattern, resulting

in better aggregate performance and improved balance

between clients performing I/O (Section IV-A4).

• We extended our techniques to improve LNET route

configurations to minimize congestion on the InfiniBand

fabric and allow our placement strategy to work in a

routed file system environment (Section III-B).

• We demonstrated a 20.7% reduction in run-time for pro-

duction scientific workloads using our projection routing

method (Section IV-B3).

II. BACKGROUND

A. Jaguar XT5

Jaguar, the primary computational platform for the OLCF, is

a Cray XT5 massively parallel, distributed memory system [6].

Each of Jaguar’s 18,688 compute nodes is a powerful general

purpose computer in its own right, powered by two hex-

core AMD Opterons running at 2.6 GHz. These nodes are

specifically designed to support large-scale, high-performance

computing applications in a dense physical footprint. In ad-

dition, there are 256 service and I/O (SIO) nodes to provide

access to storage and other system services such as user logins

and batch system management. These nodes are less powerful,

with a single dual-core 2.6 GHz AMD Opteron.

The XT5 is a descendant of the Red Storm system de-

veloped by a partnership between Cray and Sandia National

Laboratories (SNL). Each node in the system is connected

into a 3D torus network via the SeaStar 2+ network inter-

connect chip (NIC). SeaStar [10] is a networking technology

combining high-speed serial links with a router ASIC wired

into a 3D torus topology. While it has been widely studied [9],

[4], [8], these studies have focused on MPI-level performance

evaluation, without investigating network routing and data

object placement issues.

Each SeaStar ASIC acts as a router for the network, with

six independent, full duplex links to the rest of the system.

Each input port has a dedicated set of look-up tables that

determines the egress port of a packet based on the destination

address of the packet. These tables are initialized to imple-

ment dimension-order routing during the process of booting

the machine, and remain static until the next boot. Barring

accommodations for failed or missing components that prevent

a uniform torus topology, packets are routed in a fix dimension

order (X+, Y+, Z+, X-, Y-, Z-) [2].

The XT5 system runs Compute Node Linux (CNL), a

stripped-down version of the Linux operating system enhanced

for HPC environments. CNL implements the Portals data

movement interface for communication among the nodes of

the system. Portals was developed at Sandia National Labora-

tories in collaboration with the University of New Mexico [7].

Its connectionless semantics provides the scalability necessary

to grow a distributed memory system to tens of thousands of

nodes. Earlier versions of Portals ran on several large-scale

machines of their time, including a 1024-node nCUBE-2, a

1800-node Intel Paragon, and the 4500-node Intel ASCI Red

machine.

B. Spider

Spider is one of the world’s fastest and largest POSIX

complaint parallel file systems. Intended for the write-heavy

workloads found on scratch file systems, Spider is designed

for high performance in a small footprint, and built from

scalable building blocks. Each building block is comprised of

a DataDirect Networks (DDN) S2A9900 storage system [14],

driven by four Lustre Object Storage Servers (OSS). S2A9900

controllers are configured to run in pairs for increased relia-

bility. Each controller is called a singlet and a pair is called

a couplet. Each couplet is configured with five high density

drive trays, with 300 drives housed in 20U of rack space. For

Spider, we populate those trays with 280 SATA drives, each

with a capacity of 1 TB. Write-back caching is disabled to

prevent unrecoverable data loss in the event of a controller

failure. These drives are grouped into 28 DirectRAID tiers

(RAID3 with two parity drives), with seven 7.2 TB LUNs

exposed over DDR InfiniBand for each OSS. Each OSS is a

Dell PowerEdge 1950, with 16 GB of memory and two quad

core Xeon E5410 running at 2.3GHz. Each OSS serves seven

Object Storage Targets (OST). This building block is capable

of delivering over 5.5 GB per second of raw block storage.

There are 48 of these building blocks in the Spider system,

giving it an aggregate of 13,440 TB raw storage, or over

10 PB of capacity after accounting for the parity overhead

of DirectRAID. There are 192 OSS servers, providing 14

teraflops of compute and 3 TB of memory dedicated to our

Lustre file systems. This aggregate capability is broken up into

three disjoint chunks to spread the metadata load. Widow1 has

half the storage – 672 OSTs – while widow2 and widow3

equally and disjointly split the other half, each with 336 OSTs.

Metadata services are provided by three identical MetaData

Servers (MDS). Each MDS is a Dell R900 with 64 GB of

memory and four quad core Xeon E7330 running at 2.6 GHz.

The MetaData Target (MDT) for each file system is stored on

a shared Engineo 7900 (XBB2) storage system, connected via

four 4Gbps Fibre Channel connections to each MDS. Each

MDT is configured as a RAID10 volume on the XBB2 with

80 SATA 1 TB drives, short stroked to provide an 8 TB LUN.

Details of the Lustre parallel file system can be found in [25].



Fig. 1. Scalable I/O Network (SION) architecture.

C. Scalable I/O Network (SION)

Spider was intended to be used as a center-wide file system,

and we designed our Scalable I/O Network (SION) to support

its performance goals. SION is deployed as a multi-stage DDR

InfiniBand fabric, and provides over 889 GB/s of bi-sectional

bandwidth. The network infrastructure is based on 288-port

Cisco 7024D DDR InfiniBand switches. Two switches are

dedicated to providing connectivity between Jaguar and Spi-

der, while other switches provide links to the MDS and

management services, as well as the smaller compute resources

in the center.

The 7024D switches each provide 288 user-facing ports via

24 leaf modules with 12 external ports and 12 uplinks into

the internal fat-tree topology. As shown in Figure 1, the 192

storage servers in Spider – and 192 SIO nodes on Jaguar – are

grouped into 32 sets of 12 connections (6 storage servers, 6

SIO nodes). Each of the members of these groups are plugged

into the external ports on the same leaf module. In this manner,

they share a single crossbar and traffic among the members

avoids traversing the fabric.

D. LNET and Routing

Lustre uses an API called LNET (Lustre Networking) [23],

[25] which was derived from Portals. LNET provides commu-

nication among Lustre servers and between Lustre servers and

clients.

LNET uses a Lustre Networking Device (LND) layer to

implement different network types. An LND exists for Portals

as well as TCP/IP, InfiniBand, Quadrics, Myrinet, and other

high-performance interconnects. The term “LNET” is also

used to refer to the network served by an LND. A Lustre

address is of the form <NID>@LNET[X], where <NID> is

specific to the LND in use, and LNET determines which

LND to use – “ptl” uses the Portals LND, “o2ib” uses the

InfiniBand, and so on. “X” is an optional number identifying

a particular network on an LND when multiple networks of a

given type are in use.

Most importantly, LNET supports routing between these

different networks in the Lustre Networking layer using a

simple algorithm. In order to chose the router to use for a

given message to a remote network, LNET keeps each router

of a weight class on a list. For each message to be sent, the

first alive router is selected from the list, and that router is

then placed at the tail of the list. In this manner, LNET will

distribute the load among all alive routers in a weight class

for a remote network.

III. CONGESTION AVOIDANCE TECHNIQUES

A. I/O Placement

To avoid congestion on the 3D torus, we must carefully

control which client talks to a particular OSS. We achieve this

by drawing from the well known pattern of “nearest-neighbor”

communication often found in HPC applications. Client nodes

are chosen such that each client is a minimum number of hops

(distance) from the OSS responsible for the file it is writing.

Given a sufficient set of nodes from which to select active

clients, it is possible to avoid saturating a link.

B. Avoiding Link Congestion via Routing

When combined with simple routing configurations, the

basic properties of LNET routing described in Section II-D

preclude using I/O placement to avoid congestion. Worse still,

they will often inject traffic into the InfiniBand fabric in non-

optimal locations, leading to significant congestion on both

networks in the system.

To minimize the congestion on the InfiniBand network and

to allow application developers the ability to optimize their

I/O using our placement strategy, we consider the following

three routing configurations:

• Nearest-neighbor. In this configuration, the servers and

routers are broken up into 32 sets. Membership in a set

is governed by the module in the core switch the element

is connected to. This configuration leads to 32 remote

LNETs, with each one accessible by 6 routers. Each

client is configured to communicate with a remote LNET

using the router for that set that is topologically nearest

in the 3D torus. As the distribution of routers is not

perfectly even throughout the torus, static load-balancing

is performed to balance the number of clients serviced by

each router. This configuration would increase variability

in performance as the bandwidth available to a job will

have a greater dependency on its location within the torus.

Smaller jobs will see reduced bandwidth as the set of

routers in active use grows proportionally to the job size.

• Round-robin. In this configuration, the servers and routers

are again broken up into 32 sets as with Nearest-neighbor.

Instead of using the nearest router, one of the 6 optimal

routers is chosen in a round-robin fashion for each remote

LNET. While this configuration allows for placement and

avoids congestion on the InfiniBand fabric, it unnecessar-

ily distributes I/O traffic throughout the torus.



• Projection. In this configuration, each server gets a unique

remote LNET. There are 192 remote LNETs, and the

clients are configured with a single router for each remote

LNET. This is effectively a projection of the OSS servers

into the torus. It allows placement of clients to avoid

congestion on the torus and avoids congestion on the In-

finiBand fabric. Each client may see significant variances

in distance to particular servers, but this is no worse than

encountered in traditional direct-attached storage.

In all cases, I/O for a particular OSS is directed to a router

attached to a crossbar in the InfiniBand fabric common to that

OSS. This ensures that there is no traversal of the switch’s

internal fat-tree thereby avoiding the issue of link saturation

and head-of-line blocking in the fabric.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Developing Spider presented multiple technical challenges

consummate with breaking new technical ground. As well as

being the first routed file system deployed at this scale, it was

the largest Lustre file system in the world at the time of its

deployment. No Lustre file system had been deployed with

such number of servers and amount of disk storage, and it

served the largest number of clients in terms of core count.

To mitigate technical risk and to separate scaling issues

from routing issues, we initially deployed a direct-attached

Lustre file system with Jaguar. This allowed us to address

any issues in the back-end storage and provide early users a

more stable platform while we proceeded to develop and test

Lustre’s routing capabilities at this unprecedented scale.

Once we had proven the stability of Lustre at this scale using

the direct-attached file system, we proceeded to reconfigure

the storage for use as a routed file system to allow access to

all of the OLCF’s resources. After testing and developing our

improved routing configurations, this configuration was then

deployed to production.

A. Direct Attached Storage

As a first step to deployment, 96 SIO nodes on Jaguar were

configured to be OSSes. Each OSS was configured virtually

identically to the eventual Spider system – 7 OSTs, one per

exported LUN, with one LUN per DDN 9900 tier. Using

the properties of SION noted in section II-C, we carefully

paired each SIO node with storage that would be directly

accessible from the same leaf module in the 7024D switch as

the SIO node. This allowed us to avoid any potential source

of congestion on the InfiniBand network as all network traffic

from the OSS to the back-end storage was isolated to the

crossbar and did not traverse the fat-tree fabric.

1) Performance of the Block Storage System: To establish

a baseline for potential performance, we measured the block-

level bandwidth of the storage system. We configured seven

LUNs on each XT5 SIO node, and exercised all LUNs on each

OSS simultaneously. Each LUN received a steady workload

of sequential 1 MB requests, with 4 requests in flight at all

times. In this manner, each OSS had a total of 28 I/O requests

outstanding at any given point during the testing. Each test was
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Fig. 2. Write performance for direct-attached Lustre file system. The solid
line denoted “Block Write” is the raw storage system performance, and sets
the expectations for performance scaling.
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Fig. 3. Cumulative Distribution Function plot of per-writer completion time.
“Default” series is from best run without placement, “Placed” series is from
worst run with placement.

run for 60 seconds, and the maximum bandwidth achieved

from three trials is presented in Figure 2. The aggregate

performance of the system scales nearly linearly as each

additional OSS is added to the test. We reach a peak bandwidth

of 120 GB/s when running with 96 OSSes (672 LUNs, half

of the available storage), with each LUN contributing nearly

180 MB/s. The slight ripple in the results as the number

of OSSes increases is due to internal limits of the DDN

9900 architecture – while each InfiniBand port is capable of

1,500 MB/s when tested in isolation, running two ports on a

single controller (singlet) reaches a maximum bandwidth of

approximately 2,500 MB/s. More recent versions of the DDN

firmware lift the per-controller bandwidth to slightly more than

2,800 MB/s in our configuration.

2) Initial Performance of the Direct Attached File System:

Having demonstrated that half of the back-end storage is

capable of delivering a raw performance of over 120 GB/s, we
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Fig. 4. Unidirectional and bidirectional link bandwidths on SeaStar.

pressed forward with a Lustre configuration on the XT5. Each

of the 18,688 compute nodes was configured to be a client of

the direct-attached file system, communicating directly over

Cray’s proprietary network to the OSS servers. We used IOR

(an MPI-level file system benchmark [21]) in file-per-process

mode to load the file system for the Lustre level testing. We

configured the job launcher to only place one process per node

to avoid any host-level bottlenecks in the client code, allowing

us to focus on the network and storage performance. We pre-

created the output files for the IOR runs to avoid file creation

overheads and ensure that we did not have multiple ranks

and/or files sharing an OST and reducing the performance

of the storage system. IOR was configured to insert a barrier

between each phase of its operation to ensure that all ranks had

their respective file open prior to testing bulk I/O performance.

Each rank transferred 3 GB of data with a transfer size of 8

MB. The maximum bandwidth achieved from five trials is

presented in Figure 2.

Testing at small OSS counts demonstrated performance that

was in line with our expectations of approximately 1250 MB/s

per OSS. This performance scaled linearly up to 6 OSSes.

However, above 6 OSSes, the performance fell below our

expectations of near-linear scaling. Beyond 40 servers in this

scaling study, performance became highly erratic, achieving

at best 86% of the raw baseline, and 61% in the worst

case. As illustrated by the “Default” series in the cumulative

distribution function (CDF) presented in Figure 3, there is

a large difference in completion times persists between the

fastest and slowest ranks. A large number of writers complete

near the 18 second mark, but after 19 seconds a number of

writes straggle in over the course of 10 seconds. Investigating

the cause of this behavior led us to network-congestion on

Jaguar’s SeaStar2+ network as a primary cause.

3) Measurement of SeaStar Bandwidth: There are two or-

ders of magnitude more compute nodes than service nodes on

Jaguar; this presents natural hot spots in the torus surrounding

the SIO nodes. To fully understand the link capacity of

SeaStar, we performed bandwidth testing at the Portals level.
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Fig. 5. SeaStar link balance under congestion.

Pairing nodes on each side of the link under test, we offered

a streaming load of 1 MB requests. We varied the number of

participating node pairs from 1 to 16, as Jaguar has 32 nodes

in its largest dimension.

As shown in Figure 4, injection bandwidth from user space

on a single node was observed to be 1,705 MB/s. We observed

the link bandwidth to be approximately 3,020 MB/s. There is

little variation in performance across the range of pairings.

We find that there is minimal degradation when operating in

full duplex mode. There is a slight loss at 16 nodes pairs; this

is believed to be an issue with the test harness and was not

investigated.

Now that we know the link capacity of the SeaStar network,

we can determine the number of client-OST pairs possible

without link saturation. With each OST contributing 180 MB/s

(§ IV-A2), a link can support the communications of 17 client-

OST pairs before reaching saturation. Examination of the

routes in use on the torus during the file system level testing

in Figure 2 reveals that 70% of the tests using the Default

placement had at least one link with 18 or more client-OST

pairs traversing it. 42% had at least one link with over 34

pairs, 21% with over 60 pairs, and 3% had over 70 pairs. This

magnitude of bandwidth sharing is a significant contributing

factor to the poor scaling results initially demonstrated.

Our link bandwidth test revealed an additional contributing

factor to our poor aggregate performance at scale – unfair

link balance under congested conditions. In their discussion

of age-based packet arbitration, Abts and Weisser [3] describe

the behavior of the SeaStar network when using round-robin

packet arbitration. Traffic traveling over more hops receives

geometrically less bandwidth. The bandwidth each node re-

ceives in the link bandwidth test is governed by the equation

Bnode =
Blink

(2n)H

where n is the number merging streams (1 for the farthest

node from the congestion point, 2 for all other nodes) and H

is the number of hops to the network segment under test. The

transmitting node adjacent to the tested link has n = 2, H = 1,

and is expected to receive half of the available bandwidth; the

next node from the test link has n = 2, D = 2 and receives a



quarter of the available bandwidth, and so on. Figure 5 shows

that the the first node achieved 1,513 MB/s, which compares

favorably to the expected value of 1,510 MB/s (one-half of

the 3,020 MB/s link capacity.) For the nodes farthest from the

test link, the nodes receive approximately 166 KB/s, or three

orders of magnitude less bandwidth than the node nearest the

link. This behavior further distorts the balance of the I/O times

of client-OST pairs sharing a saturated link.

4) Avoiding Congestion via I/O Placement: To avoid con-

gestion on the SeaStar links, we must carefully control which

client talks to a particular OSS for the direct-attached file sys-

tem. Using the well known “nearest-neighbor” communication

pattern, client nodes are chosen such that each client is a

minimum number of hops (distance) from the OSS responsible

for the file it is writing. Given a sufficient set of nodes from

which to select active clients, it is possible to avoid saturating

a link as there are only seven OSTs served by each OSS –

much less than the saturation point of 17 client-OST pairs –

and a single client/file per OST for our testing.

For a 3D torus, given the coordinates of two nodes n1, n2,

and the length of each axis Laxis, the hop count h (distance)

is given by:

h(n1,n2) = dx(n1,n2)+ dy(n1,n2)+ dz(n1,n2)

where

daxis(n1,n2) = min

{

(n1,axis − n2,axis) mod Laxis

(n2,axis − n1,axis) mod Laxis

The best client(s) to use for a specified OSS nOSS is given by

calculating h(n,nOSS) for each n in the set of compute nodes

available. Choose the N nodes with minimum distance to nOSS,

and remove them from the set of available nodes. These are

the best clients to use for the OSS. Repeat these steps for each

OSS involved in the test.

Placing all 18,688 compute nodes into the available set

for the algorithm, we ran another scaling study of the direct

attached Lustre file system. We placed the file for each rank

on a known OST – and thereby known OSS – and used a

feature of the job launch facility to place the ranks of the IOR

job onto the compute nodes such that the clients were paired

up with OSTs on the nearest OSS to the client. The results

were dramatic; as seen in Figure 2, aggregate bandwidth was

increased an average of 18% when more than 40 OSSes were

involved in the test. We see a minimum gain of 5%, and realize

increases of over 45% in the best cases. Using placement of

the I/O to avoid saturating links of the torus, IOR is able

to achieve 87 to 92% of the aggregate raw performance of

the back-end storage system. In these tests, no more than

7 client-OST pairs shared a common link in the torus for

their communication. This compares favorably to the default

placement, where over 70% of the links had 18 or more client-

OST pairs, overwhelming the links with offered load.

The reduction in the difference between the fastest and

slowest writer when using placement is shown by the “Placed”

series in Figure 3. All writes complete within a span of less

than 5 seconds, while the “Default” placement complete over
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Fig. 6. Write performance for direct-attached Lustre file system with
confinement of available compute nodes.

a span of approximately 15.5 seconds. With the elimination of

congestion in the torus, we achieve a better balance between

writers and we leave less of the storage system idle while

waiting for the stragglers.

5) Effect of Torus Location on Performance: While the

results when allowing the placement algorithm free reign of

the machine to optimize the node choice are very encouraging,

many applications desire the improved performance when

not using every possible core. To determine the potential

improvement when using only 672 nodes of the machine

– one for each OST in the test file system – we ran an

experiment using the same nodes that the job launcher gave for

the un-optimized placement. Additionally, to investigate the

impact of location in the torus on performance, we launched

a “place-holder” job that consumed a specified number of

nodes and kept them idle, displacing the location from which

our test job would execute. The parameters of the test are

as before, with the number of OSTs fixed at 672 and the

variables being the offset within the machine and placement

of the processes performing I/O. Each test was run five times,

and the best bandwidth is reported in Figure 6. Optimizing

which processing element performs I/O to a particular OST

improved performance from 38 to 58%. In all cases throughput

within 5% of the maximum observed was achieved when

allowing unconfined placement of processes performing I/O.

This demonstrates that substantial improvements are possible

using our approach even for smaller scale application runs.

B. Indirectly Attached (Routed) Storage

For the initial routed configuration, all of Jaguar was in the

Portals ’ptl’ LNET, while the servers (OSS and MDS) moved

to the InfiniBand ’o2ib’ LNET. To enable these two LNETs

to communicate, we reconfigured the 96 SIO nodes used for

the direct attached system into LNET routers between the ’ptl’

and ’o2ib’ LNETs. We added an additional 96 SIO nodes as

routers, yielding a total of 196.



Congested
Uncongested

Nodes

G
B

y
te

s
p

er
se

co
n

d

1009080706050403020

140

120

100

80

60

40

20

Fig. 7. Aggregate block-level bandwidth of SION to 24 DDN 9900 Couplets.
This test was performed with updated tools and firmware relative to Figure 2,
leading to improved performance.

While this configuration had the benefits of a shared center-

wide file system, we quickly found that there were obstacles

to achieving the performance potential we had demonstrated

during our direct-attached testing. The LNET algorithm for

choosing a router (§ II-D) prohibited the use of the placement

techniques from § IV-A4 to avoid congestion on the torus.

Furthermore, the simple route configuration injected traffic

into the InfiniBand fabric via ports that were not on the appro-

priate crossbar, leading to congestion within the SION fat-tree

network and significantly reduced aggregate performance.

1) Impact of Congestion on the InfiniBand Fabric: Figure 7

shows the impact of congestion in the SION InfiniBand fabric.

This is a block level test similar to Figure 2, though it

demonstrates improved performance due to firmware updates.

The “Uncongested” series shows the linear increase in speed

expected when the SIO node is issuing block IO to a storage

back-end on the same crossbar. The “Congested” series shows

the aggregate bandwidth achieved when an SIO node is forced

to traverse the fat-tree to communicate with an off-module

storage module. At 96 SIO nodes – using half of the Spider

hardware (24 couplets/48 singlets) – the observed performance

is 135.7 GB/s without congestion and 94.1 GB/s with conges-

tion. This represents a 30% performance degradation.

2) Evaluation of Routing Configurations via IOR: We

tested the three routing configurations from § III-B with IOR

and compared them to the baseline route configuration. We

tested with the full machine available for optimization using

IOR in file-per-process mode against 672 OSTs. Each rank

wrote 8 GB of data with a transfer size of 8 MB to a file

configured with a single stripe. Five trials were run and the

maximum aggregate bandwidth is reported in Figure 8. Our

baseline configuration, with its congestion issues in both the

torus and InfiniBand fabric, resulted in 57.1 GB/s for reads

and 47.6 GB/s for writes using the default placement of ranks.

Round-robin does slightly better when not using our placement
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Fig. 9. Application run-time for sample problem on routed file system.

strategy, at 60.6 GB/s for reads and 48.1 GB/s for writes.

Round-robin performs well when placement is used, yielding

102 GB/s reads and 83 GB/s writes. Projection yields the best

observed results with 115 GB/s reads and 92 GB/s writes

without placement, and 123 GB/s reads and 113 GB/s writes

with placement. Nearest-neighbor is not reported due to issues

in the placement calculations and limited dedicated system

time for testing these configuration. We leave this issue open

for further analysis and future work.

Using the Projection routing configuration with the com-

bined storage of Spider – 1,344 OSTs – we were able to

demonstrate aggregate bandwidths of over 244 GB/s for both

read and writes. This result was generated by IOR in file-per-

process mode. Each rank wrote 8 GB of data with a transfer

size of 8 MB.

3) Evaluation of Routing Configurations via Applications:

While the results from § IV-B2 were encouraging, the synthetic

nature of the benchmarks does not provide direct insight on the



effect our techniques to scientific productivity. To gauge the

user-visible impact, we ran a suite of production applications

under each configuration. The following applications were run

simultaneously on the machine, with no optimization to avoid

I/O congestion on the torus:

• GTC (global gyrokinetic toroidal code) [17] is a widely

used simulation code to study fusion plasmas. Different

from the above two applications, GTC uses collective I/O,

where only a small number of files are created.

• S3D is a high-fidelity turbulent reacting flow solver

developed at the Sandia National Laboratory. S3D uses a

file-per-process mode [18], [24].

• XGC is a gyrokinetic Particle-in-Cell code designed to

model the development of an edge pedestal in the radial

density and temperature profiles of tokamak fusion plas-

mas. XGC uses collective I/O, where only a small number

of files are created. [12], [13]

• GenASiS2 is an astrophysics program simulating the

merger and collision of polytrope stars. Similar to S3D,

GenASiS2 uses one file for each process in the computing

job [11].

The problem sizes were set to fit into the nodes available

and to give run-times suitable for a reasonable allocation of

dedicated machine time. We ran the suite multiple times in

each configuration, and summarize the results in Figure 9.

Overall, the Projection configuration reduced application run-

times by 8.7% (XGC) to 20.7% (GenASiS2).

XGC and S3D show better performance when running on

the Round-robin configuration than on Projected. This is due to

the relatively smaller number of files these applications were

writing. With the smaller number of files, there were fewer

OSSes involved, making the I/O performance more susceptible

to hotspots in the torus. The round-robin configuration has

greater path diversity to the OSSes as neighboring compute

nodes will use routers in different areas of the torus. This

helps to avoid hotspots in the network, thereby increasing the

I/O performance.

We believe the poor performance of S3D with the nearest-

neighbor configuration to be a result of the small job size in

our mixed application workload. The nearest-neighbor config-

uration provides jobs with an aggregate bandwidth that varies

with respect to the size of the job and its location within the

torus. As the routers are distributed throughout the torus, and

each compute node will communicate with the topologically

closest router for each OSS group, larger jobs will spread

through the torus and have more routers available, therefore

achieving better I/O performance.

V. CONCLUSIONS

During the deployment of Cray XT5 known as Jaguar at the

OLCF, the interim direct-attached Lustre file system fell far

short of the expected performance. A detailed analysis revealed

that congestion on the SeaStar torus network had a significant

effect on the realized performance. We characterized the band-

width capacity of the SeaStar network links, and developed a

placement strategy to pair clients to specific I/O server that

are topologically close to each other, reducing the load on the

common torus links and avoiding link saturation. With this

approach, 92% of the raw back-end storage performance was

achieved at the file system level. Furthermore, this level of

performance (within 5%) was maintained when the choice of

clients performing I/O was significantly limited. These results

indicate that placement is a viable mechanism to increase

aggregate I/O performance, not only for large-scale application

invocations that span the entire Jaguar system, but also for

applications that use a much smaller fraction of the available

compute resources.

The performance benefits of placement did not automat-

ically follow when the Lustre file system was transitioned

from a direct-attached configuration to a routed configuration

in support of center-wide access to Spider. The naive con-

figuration in which all 192 routers were assigned the same

weight coupled with LNET’s per-message round-robin selec-

tion policy prohibited our placement optimization strategy. In

addition to negating the benefits of reduced congestion on

the torus, this configuration introduced substantial congestion

within the SION InfiniBand fabric. To regain opportunities

for optimization via placement and eliminate InfiniBand con-

gestion, we developed and evaluated three additional LNET

routing configurations.

After weighing the benefits and drawbacks of alternate rout-

ing schemes, we selected a configuration for the production

environment that “Projected” the I/O servers into the torus.

This configuration yielded over 90% of the raw back-end

storage performance, and reduced the run-time of production

scientific applications by up to 20.7%. When combined with

the placement strategies outlined in section IV-A4, this con-

figuration demonstrated aggregate performance of 244 GB/s

for both reads and writes when using the entire Spider storage

system.
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