FlashSm: A Simulator for NAND Flash-based
Solid-State Drives

Youngjae Kini ~ Brendan Taurds Aayush Gupta
Dragos Mihai Nistor Bhuvan Urgaonkar

Department of Computer Science and Engineering
The Pennsylvania State University
University Park, PA 16802
f{youkim, axg354, bhuvgr@cse.psu.edu {tauras, nistor@psu.edu

Technical Report CSE-09-008
May 4, 2009

Abstract

NAND Flash memory-based Solid-State Disks (SSDs) are bewppopular as the storage media in do-
mains ranging from mobile laptops to enterprise-scaleg®systems due to a number of benefits (e.g., lighter
weights, faster access times, lower power consumptiormehigesistance to vibrations) they offer over the
conventionally popular Hard Disk Drives (HDDs). While a nioen of well-regarded simulation environments
exist for HDDs, the same is not yet true for SSDs. This is dugS®s having been in the storage market for
relatively less time as well as the lack of information (haade configuration and software methods) about
state-of-the-art SSDs that is publicly available. We déscthe design and implementation BfashSm, a
simulator aimed at filling this void in performance evaloatbf emerging storage systems that employ SSDs.
FlashSim is an event-driven simulator that follows the otgd-oriented programming paradigm for modu-
larity. We have validated the performance of FlashSim aja@mumber of commercial SSDs for behavioral
similarity. We have also used FlashSim to compare the pmdace of SSD devices employing different Flash
Translation Layer (FTL) schemes, and analyzed the enenmgguwoption of different FTL schemes in the SSD.
FlashSim has been written to be inter-operable with the-veglarded DiskSim simulator, thus enabling the
simulation of a variety of “hybrid” storage systems empitaycombinations of SSDs and HDDs. Given the
currentinterest in such hybrid systems as opposed to sgstemSSDs replacing HDDs (due to higher price),
we believe this to be an especially useful feature of FlashSMe have made FlashSim freely available for
download with the hope that it would be of use to researchgr®eng the design of SSD-based systems.

1 Introduction

Recently, NAND Flash memory has become the main storageanriediembedded devices, such as PDAs and
music players. NAND Flash memory is now also being used itegys ranging from laptop and desktop com-
puters to enterprise-scale storage servers. NAND Flashamyeoffers a number of benefits over the conventional
hard disk drives (HDDs). These benefits include lower povesisamption, lighter weight, higher resilience to
external shock, the ability to sustain hotter operatingmneg, and faster access times (with some exceptions that
arise due to random writes). Unlike HDDs, NAND flash memorgdshSolid-State Disks (SSDs) have no me-

chanical moving parts, such as a spindle and voice-coil mofespite these benefits, a storage system designer

needs to carefully consider the use of SSDs because thephalsosome notable weaknesses. The main weak-
nesses of SSDs include a higher price ($/GB) than HDDs, svhiggng 4-5 times slower than reads, slowdown

in device throughput during periods of garbage collectivat tare hastened by small, random writes [15], and
limited lifetime (10K-1M erase cycles per block) [4].

In order to overcome the limitations described above, aetyamf complementary approaches have been
proposed. For example, Multi-level Cell (MLC) technologyes higher density and cost per GB than Single-
level Cell (SLC) [21]. The downside of MLC is that read andteriimes of MLC are slower. Consequently,
there are current attempts to employ combinations of SLOMInG Flash chips in SSDs. Numerous techniques
for efficient address translation, garbage collection,\aedr-leveling in the Flash Translation Layer (FTL) (more
details in Section 2) have been explored to improve the padace of the SSD devices and/or providing longer

lifetimes.

1.1 Motivation

The design and implementation of cost efficient, reliabl®S&quires faithful and accurate evaluation test-beds
for evaluating new algorithms for specific software compusgsuch as those that constitute the FTL) within
different hardware configurations of the SSD before implating them in the actual firmware. The fact that
significant aspects of the techniques employed within S$®s@known to the pubic due to technology property
issues further adds to the urgency of having such a testdre83D research. With this motivation, we have

designed and developed a simulation infrastructure. Heréha salient features and contributions of our work.

1.2 Research Contributions

e The components of an SSD are can be classified as those lmgjdaoghe hardware and the software categories.
The hardware component consists of a processing unit, nyeings, and Flash chips. The software component
(which executes on the processing unit) consists of a FTle fifice of the SSD depends on the hardware
configuration in the SSD and the software running on the harelwbut there is a lack of test infrastructure to
examine cost-effective hardware configurations and sofakgorithms in research environments outside those
affiliated with manufacturers of SSDs. In this work, we pd®/an experimental test-bed to fill this void.

e The few efforts that have attempted to provide the simulétimulation infrastructure [14, 3] lack desirable fea-
tures, especially an object-oriented design. It is tyyadifficult to understand and enhance these simulators.
Compared to other existing/evolving SSD simulators, Fashis entirely objected-oriented. Our approach
allows the developers to easily understand, use, and ertanslmulator. Furthermore, our simulator has been
integrated with the well-regarded and popular DiskSim s$ataw [7] and validated for behavioral similarity

with real SSD devices.

Data Unit Size Access Time
Flash Type | Page (Bytes) Block Page Page Block
Data | OOB (Bytes) READ (us) | WRITE (us) | ERASE (ms)
SmallBlock | 512 | 16 | (16K+512) 41.75 226.75 2
Large Block | 2048 | 64 | (128K+4K) 130.9 405.9 2

Table 1:NAND Flash organization and access time comparison for BBiatk vs. Large-Block schemes [22].

e Energy consumption in SSDs is surprisingly higher thanalt expected; energy consumption is approxi-
mately the same as mobile HDDs [19]. Thus, it is importantridarstand the causes of the energy consump-
tion. We have analyzed the energy consumption in SSDs wittsiowilator by considering a simple energy

model including various FTL schemes with real traces (Firedrand TPC-H).

1.3 Road-map

The rest of this paper is organized as follows: In Section &,present the basics of NAND Flash memory
technology. We present the design of FlashSim and its imgheation details in Section 3. We present the
experimental results in Section 4. We discuss related woigedction 5. Finally, we summarize our work and

discuss future direction in Section 6.

2 Background
2.1 Basicsof NAND Flash Memory Technology

The most popular flash type for storage media is NAND flash mmgrdoe to higher density and lower cost than
NOR flash. NAND flash provides three different operationsadrewrite, and erase. Each operation requres
different operation time and granularity: Erase operatiane performed at the granularity ofbkock that is
composed of multiplpages. A page is the granularity at which reads and writes are padd. In addition to its
data area, a page contains a small spare Out-of-Band areB) {@tich is used for storing a variety of information
including: (i) Error Correction Code (ECC) information dst check data correctness, (ii) the logical page
number corresponding to the data stored in the data arediiiqupdige state. Each page on flash can be in one of
three different states: (Jalid, (ii) invalid, and (iii) free/ferased. When no data has been written to a page, itis in
the free/erased state. A write can be done only to a free padjeranges its state to valid. An erase operation on
an entire block of pages is required to revert the pages lmtietfree/erased state. Out-of-place updates result
in certain written pages that are no longer valid. They atledanvalid pages. Table 1 shows comparisons for
different flash types in terms of access time and data urat[822].

As shown in Table 1, erase operations are significantly sioan reads/writes. Additionally, write latency

can be higher than read latency by up to a factor of 4-5. Thérike of flash memory is limited by the number

of erase operations on its cells. Each memory cell typidadly a lifetime of 10K-1M erase operations [6]. Thus,
wear-leveling techniques [9, 11, 18] are used to delay the wear-out of thiflish block. The granularity at which
wear-leveling is carried out impacts the variance in thetilite of individual blocks and also the performance of

flash. The finer the granularity, the smaller the variancéatirne.

2.2 TheFlash Trandation Layer

The FTL is mainly composed of three software componentsréaddtranslation, garbage collector, and wear-
leveler), but the FTL is generally thought of as the addressstation layer. The address translation layer that
translates logical addresses from the file system into palyaiddresses on flash devices helps in emulating flash
as a normal block device; the layer performs out-of-placgatgs which in turn help to hide the erase operation
in the flash memory. The mapping table is stored in a smatlpfadoard SSD RAM. The garbage collector is in
charge of collecting invalid pages to create free spacedrilé#sh memory. Since the lifetime of flash memory is
limited by the number of erase operations on its cells (eaemany cell typically has a lifetime of 10K-1M erase
operations [6]), the wear-leveler elongates the lifetichflash by maintaining the same level of wear for every

block in the flash memory.

2.3 State-of-The-Art FTL Scheme

FTLs can be implemented at different granularities of hongdaan address space a single entry in the mapping
table captures. Page-based FTLs map the logical page nwhber request sent to the device from the upper
layers, such as file system, to any physical page on flash. Bagslation requires a large mapping table to
be stored in RAM. At the other extreme, a block-level FTL sobkeonly translates the logical block number
into a physical block number; the logical page number offg#tin the block remains fixed, thus reducing the
mapping table. To address the shortcomings of the abovextkenee mapping schemes, researchers have come
up with a variety of alternatives. Although many schemeseHasen proposed [5, 12, 16, 10, 17], they share
one fundamental design principle. Each schemehgbaid between page-level and block-level schemes. The
schemes logically partition their blocks into two grouf3ata Blocks andLog/Update Blocks. Data blocks form

the majority and are mapped using a block-level mappingrigcle, whereas the log blocks are mapped using a

page-level mapping technique.

3 SSD Simulator Design

We have designed and implemented a SSD simulator that igl loasthe hardware diagram in Figure 1. The first

version of our SSD simulator focused on software compon@atsnstance, FTL schemes, garbage collection,

Controller FTL
RAM | Bus L—{ | wear ||Garbage
[channel | ... [Channet | Leveler | | Collector

T

1

L
S e | | R = 'i
| Package | | Package I
: Die Die : : Die Die i
| Plane Plane Plane Plane : : :
: | Register | | Register | | Register | | Register | | | :
1 | |
] Block Block Block Block [:
| [reoc]|| || [rese]|| | | | i

; T : ; |

1 : : : : | | i
1 : : R : | |
| Al e] L |
V| =]} =] [| 1=
! : : [:
| : : : : [i
| Pl |
1 Block Block Block Block | | i
| Cpaoe]|| || [pese]|| | | |
! - - - - |
| : : : : - |
1 | |
| el ||l || | 1 |
1 | |
! [:
| ! 1 |

=

Figure 1. Hardware diagram for the SSD Simulator. Ellipsebatween two of the same components indicate
where more of the same components may be added. Only th@fpanent break-down of the left-most package
is shown.

and wear-leveling); we considered a simplified hardware ehtitht simulated a singlBlane with a simplified
channel implementation.

Since this version of our simulator was limited by a simptifieardware model and not easy to extend due
to a highly coupled implementation with DiskSim, we re-desid and re-implemented the simulator with an
object-oriented approach. Our new simulator is entiregngdriven and written in a familiar language, C++; we

achieve modularity, low coupling, and high cohesion. Oudhare-level diagram is shown in Figure 1.

3.1 Object-Oriented Component Design

The simulator was written as a single-threaded program i fo# simplicity. C++ could provide a compre-
hensible object-oriented scheme where each class instapaesented a hardware or software component. The
UML diagram in Figure 2 and 3 contains all C++ classes used&ysiSD simulator. FlashSim is integrated with

Disksim’s C code.

3.2 Component Design

3.21 Hardware Components

The classes in the SSD simulator for hardware componentsdmlows:

SSD: The SSD class serves to provide an interface to Disksim amdd® a single class to instantiate in order
to create the SSD simulator module. The SSD class creates$ elvcts to wrap the Disksinoreg_event
structures and returns the event time to disksim.

Package: The package class represents a group of flash dies that shasechannel. The package class allo-
cates its dies in its constructor and connects the dies ts alimnnel. The package also facilitates addressing.
Die: A die is a single flash memory chip that is organized into a $gflanes. Dies are connected to bus
channels, but individual planes contained in the die buftes transfers. In future development, the highest
level at which merge operations may take place will be at ibdaVel. The corresponding event object is
updated with the merge delay time.

Plane: Planes are comprised of blocks and provide a single page-segister to buffer page data for bus
transfers. The register is also used as a buffer for mergebpes inside planes. The corresponding event
object is updated with merge delays for merge operationcansiders register delays.

Block: A block is comprised of pages and is the smallest componantctm be individually erased. When a
block is erased, all pages in it are erased and can then emwtit again. The corresponding event object is
updated with the erase delay time. A block can only be eradadt@ number of times because of reliability
constraints [4].

Page: Each page maintains its state and updates event objecttheitead and write delays of the given flash
technology. Page states include free/empty after eragalid,after a successful write, and invalid after being
copied to a new location in a merge operation.

Controller: The controller class receives event objects from the SSDcandults the FTL regarding how to
handle each event. The controller sends the virtual dateviemts to the RAM for buffering before sending the
event object to the bus.

RAM: The RAM class calculates how long it takes to read or write datitself. The RAM buffers virtual
event data for the controller to send across the bus.

Bus: The bus class has a number of channels that are each shadethbydés in a package. The bus examines
addresses in events and passes the event object on to tlee phapnel.

Channel: Channels must schedule usage for events and update thetievenalues. Each channel keeps a
scheduling table that keeps track of channel usage, andveawseare scheduled at the next available free time

slot after dependencies have been met. The schedulingsiablées synonymous to queue length.

3.2.2 Software Components

The classes in the SSD simulator for software componentassieiows:

Page <--------=-=-=----- Block <------- Plane

-state: int -size: uint -size: uint

-parent: Block & -data: Page * -data: Block *

-read_delay: double -parent: Plane & -parent: Die &

-write delay: double -state: int -least_worn: uint

+Page(parent:const Bl -last_erase_time: double -erases_remaining: ulong
wr?geds}:%ydgggé%epéﬁEEnﬁé?TEE'ﬁélﬂ) -erases_remaining: ulong -last_erase_time: double

+~Page() -erase delay: double -reg_read_delay: double

+_read(event :Event &): int +Bl°ck<Pg;gnﬁlggngfogkaghv ;;T:n:[isie:ilale gouble

+_write(event:Event &): int erases_remaining: ulong BLOCK_ERASES) glane size: uln PLANE SIZ|

+get_parent(const Block & +~Block() reg_read_delay:double: PLANE REG_READ_DELAY,

+get_state(): int +read(event:Event &): int reg_write delay double PLANE_REG_WRITE DELAYi

+set_state(state:int): void +write(event:Event &): int +~Plane()

+read(event:Event &): int

+write(event:Event &): int

+erase(event:Event &): int

+_merge(even vent &): int

+get_parent(): const Die &
+get_last_erase_time(address:const Address &): double
+get_erases_remaining(address:const Address &): ulong
+get_least_worn(address:Address &): void

+_erase(event:Event &): int
+get_parent(): const Plane &

Bus == Fm=-=-=-=-=-- +get_state(page:int): int
+get_state(address:const Address &): int
+get_last_erase_time(): double
+get_erases_remaining(): ulong
+get_size(): uint

+set state(page

-channels: Channel *
-num_channels: uint
+Bus(num channels:uint,
trT_delay:doubl

data delay:doubl

US_CTRL_DELAY,
US DATA DELAY

nt

table_size:uint=BUS_TABLE 5. te:int): void +get_size(): uint

max_connections:uint=BUS_I MAX CONNECTJ +5et75tate(address:const Address &, +get_state(address:const Address &): int
+~Bus () state:int): +set_state(address:const Address &): void
+connect (channel:uint): void -update_wear_stats(): void -update_wear_stats(address:const Address &): void

+disconnect(channel:uint): void

+lock(channel:uint,start_time:double, A
uration:double,
event:Event &): void L

+get_channel (channel:uint): Channel & B = Channel - - - Die

-ctrl_delay: double
1 -data_delay: double
1 -channels: uint

Ssd -num_connected: uint
friends: Controller -max_connections: uint
-table_size: uint
-table: double **
-table_entries: uint
—selected entry: uint

-size: uint

-data: Plane *

-channel: Channel &

-parent: Package &

-least_worn: uint

-erases_remaining: ulong

-last erase time: double

Die(parent:Package &
channel:Channel
die_size:uint=l DIE -_SIZE)

-size: uint
-data: Package *
-contol: Controller *

-ram: Ram * +Channel (ctrl_delay:double=BUS_CTRL_DELAY, l< - -
_bus: Bus * data_delay:double-8US DATA DELAY, +-Die()
table_size:uint=BUS_TABLE 5. +read(event:Event &): int

-erases_remaining: ulong
-least_worn: uint
-last erase time: double

1
1
1
1
:
: max_connections:uint=BUS_| MAX _CONNECTIONS)
1

suint) !
1
1
1
1
1
1
1
1
1
1

+~Channel()
+lock(start time:double,

+write(event:Event &): int
+erase(event:Event &): int

+SSD(ssd_siz ration:double, +merge(event:Event &): int
+~SSD() N event Event &): void +get_parent(): const Package &
+event_arrive(event:ioreq event *, +connect(): Bus * +get_last_erase_time(): double
- stream:FILE™*): void +disconnect(): Bus * +get_erases_remaining(): ulong
-read(event:Event &): int -unlock(start_time:double): void +get_least_worn(address:Address &): void
-write(event:Event &): int A +get_state(address:const Address &): int
)

-erase(event:Event &): int
-merge(event:Event &): int
-get_erases_remaining(address:const Address &): ulong
-update_wear_stats(address:const Address &): void
-get_least_worn(Address:Address &): void

+set_state(address:const Address &): void
I -update_wear_stats(address:const Address &): void

-get_last_erase_time(address:const Address &): double b e e e e e e e e e e e > Package
-get_data(): Package & |
-get_state(address:const Address &): int 1 -size: uint
-set_state(address: const Address &, [RE——. Controller _data: Die *
te:int): vo friends: Ftl “parent: SSD &
I -ssd: Ssd & -least_worn: uint
! -ftl: FTL & -last_erase_time: double
v -erases remaining: ulong —erases remaining: ulong
Ram +Controller(parent:Ssd &) +Packa9e1pagﬁg;lscmnne1 .,
+~Controller() package_size:uintPACKAGE_SIZE)
-read_delay: double +event_arrive(event:Event &): int +~Package ()
-write delay: double -issue(event_list:Event &): int +read(event:Event &): int
+5fa"'(read dgliv double -get_erases_remaining(): ulong +write(event:Event &): int
elay: doubte) -get_least_worn(address:Address &): void +erase(event:Event &): int
+~Sram() -get_last_erase_time(address:const Address &): double +merge (event:Event &): int
+re§d(event:Event &) 1r.|t -get_state(address:const Address &): int +get_parent(): const SSD &
twrite(event:Event &): int -set_state(address:const Address &): void +get_last_erase_time(): double

T +get_erases_remaining(): ulong

| +get_least_worn(address:Address &): void
L +get_state(address:const Address &): int
Y +set_state(address:const Address &): void

Ftl -update_wear_stats(address:const Address &): void

friends: Garbage_collector, |
Wear_leveler

R Garbage_collector
-controller: Controller * =

-garbage: Garbage_collector * -ftl: Ftl &
-wear: Wear_leveler * +Garbage_collector(ftl:Ftl &)

-valid_list: Address * +collect(event:Event &): int
-invalid_list: Address *

1
1
1
-free_list: Address * I +~Garbage_collector()
1
1
1

-map:_long *

+Ft1(control:Controller &) - -3 Wear_leveler
=Fro . Sftl: Ftl &
+read(event:Event &): int s Teveler (FELFeL)

+write(event:Event &): int
+get_erases_remaining(address:const Address &): ulong
+get_least_worn(address:Address &): const Package *
-erase(event:Event &): int

-merge(event:Event &): int

-garbage_collect(): void

-get_state(address:const Address &): int

-set state(address const Address &,
te:int):

+~Wear_leveler()
+insert(address:const Address &): void

Figure 2: Arrows indicate dependencies of all types, iniclgdaggregation. Most dependencies arise from one
class having references to another class, though manenekes are initialized by allocating a new instance of
the aggregate class in the constructor.

Event

-start_time: double

-time_taken: double ioreq_event
-type: int struct ioreq_ev
-address: Address
-address_merge: Address +time: double
Address -size: uint +type: int
- _bus wait time: double +next: struct ioreq_ev *
+package: nt - - i
+21e. glntUl -ioreq: ioreq_event * +prev: struct ioreq_ev *
5 H . _next: Event * +bcount: int
+| H i
plane: uin +Event (address:const Address &, +blkno: int
+block: uint ioreq:ioreq_event *) +flags: u_int
+page: uint +~Event () +busno: uiint
+valid: char +commit_to_ioreq(): void +slotno: ; int
+Address () +get_address(): const Address & +devno: int
+Address (address:const Address &) +get_merge_address(): const Address & +opid: int
+Address (address:const Address *) << ------ +get_event_type(): int F === =~ our: void *
+AddreSS(PBCk?g§ é?ane int, +get_bus_wait_time(): double +cause: int
block: 1nt gage 1nt +get_ioreq(): const ioreq_event * +tempintl: int
valid:cha +get_ioreq_time(): double +tempint2: int
+~Address () +get_start_time(): double +tempptrl: void *
+is_valid(ssd_size:uint=SSD_SIZ i : .
package_size;uints| PACKAGE - STZE, rget_tine_taken(): double +tempptr2: void *
dle size:uint=DIE_SIZ| +get_next(): Event +mems_sled: void *
B{ggﬁ giig ERE ;Eégl& g%E) int +set_address(address:const Address &): int +mems_reqginfo: void *
+print (stream:FILE *): void +set_merge_address(address:const Address &): int +start_time: double
P +set_bus(bus:Bus *): void s
+operator=(rhs:const Address &): Address & - > ‘ . +batchno: int
+set_ioreq(ioreq:const ioreq_event *): void +batch_complete: int
+set_next(next:Event &): void +batch_size: int
+incr_bus_wait_time(time_incr:double): double +batch_next: struct ioreq_ev *

+incr_time_taken(time_incr:double): double +batch prev: struct ioreg ev *
+commit_to_ioreq(): void

+print(stream:FILE &): void

+operator=(rhs:const ioreq_event &): ioreq_event &

Figure 3: Arrows indicate dependencies of all types, iniclgdaggregation. Most dependencies arise from one
class having references to another class, though manenekes are initialized by allocating a new instance of
the aggregate class in the constructor.

e Event: First, the event class keeps track of its correspondingdisloreq_event structure. Second, the event
class holds methods and attributes to do all the recordikgdpr the SSD simulator’s state, including SSD
addresses. Simulator objects pass event class objectpdatkuhe event objects statistics.

e Address. Addresses are comprised of a separate field for each haréuwdress level from the package down
to the page. We provide an address class insteadtofiet to help make a clear interface to assign and validate
addresses.

e FTL: The FTL provides address translation from logical addess@hysical addresses. It determines how to
process events that involve many pages by producing a lisingfe-page events to be processed in-order by
the controller. The FTL is responsible for taking advantafyeardware parallelism for performance. The FTL
also has a wear leveler and garbage collector to facilitateigks.

e Wear Leveler: The wear leveler class helps spread the block erasures Ih#ocks in the SSD. The wear
leveler is responsible for keeping as many blocks functitraas long as possible because blocks of pages can
only be erased for reuse a finite number of times.

e Garbage Collector: The garbage collector is activated when a write requestatdnm satisfied because the
selected block is not writable or there is not enough freeespa the selected block. The garbage collector
seeks to merge partially-used blocks and free up blocksdwiray them. Any other algorithm for GC can also

be simulated.

R1 [cul] Rd_Jcirl] Data |

R2 [cti] Rd] Wait [Ctrl | Data |

; Event
Rs i ' Start
(a) Read Interleaving

R71 [Ctrl] Data | Wr]

Rz [ctr] Data | Wr

(b) Write Interleaving

Figure 4: Interleaving for read/write requests

3.3 BusChannd Interleaving

Figure 4 shows the interleaving of processing events fortmrgechannel. As per Figure 1, each bus channel
connects to several flash dies that are grouped in a packash liis channel functions independently and in
parallel; operations on different channels are not depgnue each other.

The read interleaving for one bus channel is shown in Fige(e 4First, the control time signifies when the
bus channel is locked for control signals that request a fliesto prepare data from a specific page. Next, the
flash die processes the request for the data to be read. Tlebdusel is free to handle other requests at this time.

Finally, the bus channel is locked for control signals tlegjuest the flash die to send data from a specific page
and sending the data. The interesting part of this figureeisotts channel idle time period between the end of the
control time for request twol{,) and the beginning of the second control time period for esone ;). A
control time period for request three cannot fit; requesdtiRs) must be delayed until after request two finishes.

The write for one bus channel is shown in Figure4-(b). Fitts¢ bus channel must be locked for control
signals to inform the proper flash die that it will receiveadaSecond, the bus remains locked to send the data.
Finally, the flash die writes the data; the bus channel is togleandle other requests at this time. Since write

requests only require one contiguous time block of bus oblaime, write request happen in FIFO.

3.4 Event Flow

The SSD simulator is instantiated as a SSD object designaddeptioreq_event structures from Disksim. Its
functionality is described in detail in Algorithm 1. The S®Dbntroller uses the FTL software module to create
a list of events for a multi-page request. The controllenésseach event in the list to the data hardware through
corresponding bus channels. The bus channels handle tbdudicty and interleaving of events for the controller;
this simplifies our controller implementation.

In Algorithm 2, events continue through the package and arglled starting at the die level; merge events

can be handled inside flash dies or planes. Erase eventsratiedhanside blocks, and read and write events are

handled inside pages. The SSD and package components kadethdn the call stack after consulting the bus
channel because these components also keep track of wisticsta\Wear statistics stored in the SSD, package,
die, plane, and block are updated every time an erase evaunsdo keep a simple interface with lower algorithmic

complexity for the FTL.

Input: Disksim’s I/0O Request Structuréof-eq_event)
Output: Device Service Time
foreach ioreq_event do
begin SSD processoreq_event
wrap inevent object;
begin controller, F'T L processvent
consultwearleveler andgarbagecollector;
create page-sized list ebent objects;
foreach e in event_list do
begin SSD, bus, channel process
lock for next available transfer time;
€time “— €time + channel_delay;
end
Packagel);
end
if erype = erase then
updateSSD wear stats;
end
begin inform bus, channel: e finished
channel update scheduling table for event dependencies;

end
end
end

end

Algorithm 1: SSD simulator functionality

10

Input: Event object¢)
Output: NULL
begin package, die process
/= Merge event e in die */
if Ctype = mergeandeaddr.plane 7£ €addr_merge.plane then
foreach valid page v in eqqdr piock © dO

foreach empty page tin €addr_merge.block Y do
t«— v,

Vstate < tnvalid;
tstate — valzd,

end
€time “— €time + die_merge_delay;
end
end
[+ Merge event e in plane */

else plane process
planeregister “ €datas
if erype = merge then
foreach valid page v in eqqar prock © dO

foreach empty page tin €addr_merge.block Y do
t«— v,
Vstate < tnvalid;
tstate < valid,
end
€time — Ctime + die_merge_delay;
end
end
| % erype =read OF write Or erase */
else
begin block process:
if erype = erase then
for each page in block x do
pagestate < empty,
end
€time “— €time + €rase_delay;
update wear stats;
end
I % etype = read or write «/
else page process:
if erype = read then
€time < €time + TEad_delay;
end
elseif esype = write then
Ctime < €time + Write_delay;
end
end
end
if erype = erase then
updateplane, die, package wear stats;
end
end

Algorithm 2: Package (event object) - SSD hardware functionality msigpackage. This function is being
called in Algorithm 1.

11

4 Experimental Results

We validated our simulator by comparing it to real SSDs fdrdséoral similarity; we compared the performance
of different FTL schemes for realistic workload traces. Véedithe simplified version of the simulator that
simulates a singl®lane with with a simplified channel implementation for varioudte@re implementations,

such as the FTL, garbage collector, and wear-leveler. Maymtgh evaluation that also considers interleaving

with parallelism effects is left for future work.

4.1 Evaluation Setup

The specifications available for commercial SSDs are ingefft for modeling them accurately. For example, the
memory cache size for FTL mappings and the exact FTL scheettare not disclosed. Hence, it is difficult to
simulate these commercial devices. We made assumptiofiaghrdevices as described in Table 2 and configured

our simulator accordingly. Table 3 presents the salieritifea of our workloads.

| Default simulation parameters |

Flash Type Large Block
Page (Data) 2KB
Page (OOB) 64B
Block (128KB+4KB) .
Real SSD Device
Interface SATA Real SSD1_| Real SSD2
GC Yes
Wear-leveling| Implicit/Explicit MSP-7000 FSD32GB25M
FTL Type | Page/FAST/DFTL MTron Super Talent
= 2.5in 25in
Access Time 4-way SLC SLC
PageRead | 130.9us Read: 120 MB/Y 60 MBIs
Page Write 405.9 us Write: 90 MB/s | 45 MBJs
Block Erase 1.5ms
Energy Consumption
Page Read 4.72ud
Page Write 38.04uJ
Block Erase 527.68ud

Table 2: Simulation parameters and real SSD device obsepexifications.

Avg. Req. Size| Read| Seq.| Avg. Req. Inter-| Simulated Time
Workloads (KB) (%) | (%) | arrival Time (ms) (sec)
Financial [20] 4.38 9.0 | 20 133.50 43,712
TPC-H [23] 12.82 95.0 | 18.0 155.56 37,058

Table 3: Enterprise-scale workload characteristics.

12

Write Read

» »
S 20.00 Real SSD1 ---2--- 1S 5.00 Real SSD1 ---2---
= 18. A Real SSD2 -0 - Real SSD2 -
°E’ 8.00 FlashSim1 & g FlashSim1 &
= 16.00 FlashSim2 - = 4.00 FlashSim2 -
= [
3 14.00 B 2
5 h 5
g 1200 . 8 3.00
3 10.00 N . a 2
o o) x o
£ 800 e o. £ 200
2 I R 2
(% 6.00 oo a (% A
o 400 i = o 1.00 e
> e o)) D e e X
®© 200 ® B I R - BoverreeE]
o : N
Z 000 . Z 0.00 <
0.0 0.2 04 06 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Seaquentiality (in Block Accesses) Sequentiality (in Block Accesses)
(a) Write Behavior (b) Read Behavior
20% Sequentiality, 80% Writes 80% Sequentiality, 20% Writes
1.00 - e i) 1.00 e - e~ S~ : : :
PN
2 0.80 2 0.80
3 3
] [4¥]
o] QO
S 0.60 S 0.60
a a
(0] (0]
= =
=040 =040
=} =}
€ €
=) >
O 020 Real SSD1 ------ O 0.20 Real SSD{ -2
Real SSD2 —o— Real SSD2 —o—
FlashSim1 - FlashSim1 -
0.00 & FlashSim2 ----x--- 0.00 & FlashSim2 ----3----
0 1 2 4 8 16 32 64 96 128 128+ 0 1 2 4 8 16 32 64 96 128 128+
Svstem Response Time (ms), Loa-scale Svstem Response Time (ms), Loa-scale
(c) Random Write Dominant (d) Sequential Read Dominant

Figure 5: Validation of our SSD Simulator. Note that in thgdeds, Real SSD1, Real SSD2, FlashSim1, and
FlashSim2 denote Mtron’s SSD, SuperTalent’s SSD, a SSYaspage-based FTL, and a SSD using DFTL.

4.2 Validation of SSD Simulator

Using the parameters from Table 2, we validated our flashcdesimulator against commercial SSDs (MTron’s
SSD [1] and Super-Talent’s SSD [2]) foehavioral similarity. For this purpose, we sent raw 1/O requests to real
SSDs and similar traces to our flash device simulator to mmeagevice performance. As shown in Figure 5, our
simulator was able to capture the performance trends dzdibly the real SSDs. With increasing sequentiality of
writes (Figure 5-(a)), the performance of real SSDs impdoaad our flash simulator with various FTLs was able
to provide similar characteristics. When examining readgure 5-(b)), real SSDs showed much less variation;
the same was observed with our simulator. With a high degremndomness in writes (80% random in Figure 5-

(c)), real SSDs demonstrated long-tailed response tintakdison (due to larger GC overhead); our simulator

13

rrrrrrrrrrrrrrrr

1.00

094 |, 094

0.92 0.92

Cumulative Probability
Cumulative Probability

0.90 .
0.20 2 4 8 16 32 64 96 128128+

0.90
0.20 2 4 8 16 32 64 96 128128+

DFTL ---o--- DFTL ---o---
Page-based FTL —&— Page-based FTL —&—

0 1 2 4 8 16 32 64 96 128 128+ 0 1 2 4 8 16 32 64 96 128 128+
Response Time (ms) Response Time (ms)

(a) Financial Trace (b) TPC-H

Figure 6: Cumulative Distribution Function of the averagstem response time for different FTL schemes.

exhibited a similar trend.

4.3 Evaluation

We conducted a comparison of performance and energy corisumgzcording to different FTL schemes, in-
cluding a page-based FTL, FAST [16], and DFTL [8]. We assuthedmnemory was just sufficient to hold the
address translations for FAST. Since the actual memorysiza disclosed by device manufacturers, our estimate
represents the minimum memory required for the functiorihg typical hybrid FTL. We allocated extra space

(approximately 3% of the total active region [10]) for usdagsbuffers by the hybrid FTL (FAST).

431 Performance Analysis

The Cumulative Distribution Function of the average systesponse time for different workloads is shown in
Figure 6. DFTL is able to closely match the performance ofphge-based FTL for the Financial trace. In
comparison with the page-based FTL, DFTL reduces the tatalber of block erases as well as the extra page
read/write operations by about 3 times. This results in owed device service times and shorter queuing delays;
this improvement in turn improves the overall /0O systenpogse time by about 78% as compared to FAST.
For read-oriented workloads, DFTL incurs a larger addaladdress translation overhead, and its performance
deviates from the page-based FTL. When considering TPQGiFi¢jure 6(b)), however, FAST exhibitslang

tail primarily because of the expensive full merges and the curesd high latencies seen by requests in the 1/O
driver queue. Hence, even though FAST services about 95%eakquests faster, it suffers from long latencies

in the remaining requests, resulting in a higher averagesysesponse time than DFTL.

14

80

40

Il Page read M Il Page read

Hll Page write Il Page write _
Z 6ol Il Address Translation (Read) i 2 30! Il Address Translation (Read)
s I Address Translation (Write) _ s I Address Translation (Write)
= []GC Block erase = []GC Block erase
E [1GC Page read E [1GC Page read
@ 40/]GC Page write @ 20/]GC Page write
3 3
> >
o o
S 20/ I I I : S 10}
c c
’ ’ Jl IIIIH H Il

0 . ’_‘ — . ﬂ 0 | ﬂ = . H

Page-based DFTL FAST Page-based DFTL FAST

(a) Financial Trace (b) TPC-H

Figure 7: Energy consumption by different FTL schemes.

4.3.2 Analysisof Energy Consumption

Power consumption of the flash memory in the SSD may not béfisgm when compared to other components
(CPU and Memory), but as shown in Table 2, erase operationsucee significant power. Unlike individual
read and write operations, erase operations have a gregiact on the overall SSD’s energy consumption, and
the number of erase operations for a given workload variesrding to the current FTL scheme. Figure 7
shows the energy consumption by operations for differerit §&hemes in the Financial and TPC-H traces. The
Financial trace is mostly random-write-dominant, whileCFP is read-dominant (see Table 3). Thus, the energy
consumption for the Financial trace is much higher than i@ PC-H due to the power consumed by GCs.
DFTL requires additional page read and write operations tdumapping table entry misses in the memory,
causing additional energy consumption in both traces. Ameted, FAST FTL consumes significantly more
energy than other FTL schemes due to more erase and writatimoesr during GC.

In addition to power consumption by flash operations, thegssor power consumption can be considerably
high during GC. GC involves victim block searching overheatlich aims at finding the block with the least
number of valid pages in order to reduce page copying ovdrhégure 8 shows the tradeoff between normalized
average response time and the number of FTL search opeyalimimg GC for the Financial trace. Higher search
operations decreases the response time while consumirgyenergy because (i) blocks with fewer valid pages
require fewer copy operations, and (ii) the search operatioduce energy consumption by processor and system
bus usage. Thus, the energy consumption during GC can beagdhy balancing fewer search operations with
a greater number of copy operations. Fewer search opesatidhslightly increase response time because an
incomplete search may select blocks with more valid pagasntiust be copied.

On-board RAM is another considerable factor in the powesamption in the SSD. Since the page-based

15

B
@

P
3]

I
1
T

I
o
=

I
kS
T

Loy .
", Response time

Search count

\

L L L I
o o I o o
v =) ~ © ©

=
o

L
o
©

\
\
\
\
\
\
\

I
w
T

P
o
©

.
N
Normalized Search Count

.
o
3

Normalized Average Response Time
o
!
’

1
L

o

=)

1.0 1 1 1 1 il
0.0 0.17 0.33 0.5 0.67 0.83

Ratio of search operations to complete linear search

==10.5
1.0

Figure 8: Tradeoff between performance and search operatiergy consumption. This experiment has been
conducted with DFTL for the Financial trace. We varied thenber of search operations. Note that 0.0 on the
X-axis means that the victim block is selected randomly auttany search, and 1.0 means the victim block with
the least number of invalid pages is selected after a compfetar search.

FTL requires more memory as compared to the block-based fiElidle power consumption of the additional
memory will be larger. FAST maintains block-level mappirg €lata regions and page-level mapping for log
regions; the on-board RAM’s energy consumption is as clogbadt of the block-level FTL. DFTL requires the

same memory as the block-level FTL; the idle power conswmps the same as that of the block-level FTL.

5 Reated Work

Other research has been conducted to develop a simulatbiAND flash-based SSDs [3, 14]. Microsoft Re-
search’s simulator [3] is one of the first available SSD satars; however, it is highly coupled with DiskSim.
The strengths of their simulator include the implementatd parallelism effects across multiple channels and
interleaving across different components within a sindgga@, but only a page-based FTL scheme is available. J.
Lee et. al have developed a simple flash based SSD simuldprTkis simulator is a stand-alone simulator that
is limited by a single FTL scheme implementation, and theypakosimulate 1/0 queueing effects.

Compared to the above simulators, our simulator has alidityimulate multiple FTL schemes, including
page-based, block-based, FAST [16], and DFTL [8]. Our sataulis integrated with DiskSim to simulate queuing
effects, and our simulator module can be instantiated pleltimes within Disksim. Our single-threaded, event-
driven, object-oriented approach is comprehensible andutaoto allow for future extensions. Furthermore, we

have validated FlashSim against real SSD devices for befsgimilarity.

16

6 Summary and Future Work

We have developed a flexible and robust simulator for SSDisféadures an object-oriented design. We have
validated our simulator with real SSD devices by demonsgaiehavioral similarity and compared performance
results for various FTL schemes. We also have analyzed thadnof various FTL schemes on performance and
power consumption in the SSD.

This project is a work in progress. Since the simulator hdg baen validated with a simple behavioral
model for a single plane and simplified channel implemenative will continue with more thorough validation
methods that include bus channel interleaving effects. hibgcand 1/0O scheduling effects will be added and
examined. Since our simulator module can have multipleirss in Disksim, we can simulate disk arrays that
contain a combination of both SSDs and HDDs. In addition tdgomance simulation, our simulator is able to
incorporate power models and other extensions. We planrtdice our thermal-performance simulator of disk
drives [13] with our future work involving hybrid disk arrayhat contain a combination of both SSDs and HDDs.

Source-code is available for download frémt p: / / csl . cse. psu. edu/ hybri dst ore.

Acknowledgments
We would like to thank Euiseong Seo for his detailed commethish helped us improve the quality of this work.

References

[1] 2.5" MTron SATA Solid State Drive - MSP 700t t p: / / www. nt ron. net/ Engl i sh/ Product/ec_nsp7000. asp.

[2] 2.5" Super-Talent SATA Solid State Drive.http://ww. supertal ent. conl product s/ ssd- conmerci al . php?
t ype=SATA.

[3] AGRAWAL, N., PRABHAKARAN, V., WOBBER, T., DAvIS, J. D., MANASSE, M. S., AND PANIGRAHY, R. Design tradeoffs for
ssd performance. IRroceedings of the USENIX Annual Technical Conference (June 2008), pp. 57—70.

[4] CHANG, Y.-H., HsIEH, J.-W.,AND KuoO, T.-W. Endurance enhancement of flash-memory storagensgstan efficient static
wear leveling design. IiProceedings of the 44th Annual Conference on Design Automation (New York, NY, USA, 2007), ACM,
pp. 212-217.

[5] CHUNG, T., PaRK, D., PARK, S., LEE, D., LEE, S.,AND SONG, H. System Software for Flash Memory: A Survey RAroceedings
of the International Conference on Embedded and Ubiquitous Computing (August 2006), pp. 394-404.

[6] E.GALAND S. TOLEDO. Algorithms and Data Structures for Flash Memorié&M Computing Survey 37, 2 (June 2005), 138-163.

[7] GANGER, G., WORTHINGTON, B., AND PATT, Y. The DiskSm Smulation Environment Version 3.0 Reference Manual.

[8] GuPTA, A., KiM, Y., AND URGAONKAR, B. DFTL: A Flash Translation Layer Employing Demand-baSatective Caching of
Page-level Address Mappings. Pnoceedings of the International Conference on Architectural Support for Programming Languages
and Operating System (ASPLOS) (March 2009), pp. 229-240.

[9] JuNgG, D., CHAE, Y., Jo, H., Kim, J.,AND LEE, J. A Group-based Wear-Leveling Algorithm for Large-CapaElash Memory
Storage Systems. IRroceedings of the International Conference on Compilers, Architecture, and Synthesis for Embedded Systems
(CASES) (September 2007), pp. 160-164.

17

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

(23]

KANG, J., b, H., Kim, J.,AND LEE, J. A Superblock-based Flash Translation Layer for NANDsRl&lemory. InProceedings
of the International Conference on Embedded Software (EMSOFT) (October 2006), pp. 161-170.

KAWAGUCHI, A., NISHIOKA, S., AND MOTODA, H. A Flash-Memory based File System. Pnoceedings of the Winter 1995
USENIX Technical Conference (1995), pp. 155-164.

Kim, J., KM, J., NoH, S., MIN, S.,AND CHO, Y. A Space-Efficient Flash Translation Layer for Compastil&ystemsI|EEE
Transactions on Consumer Electronics 48, 2 (May 2002), 366—375.

KiM, Y., GURUMURTHI, S.,AND SIVASUBRAMANIAM , A. Understanding the Performance-Temperature Intenagtin Disk /0O
of Server Workloads. IRroceedings of the International Symposium on High-Performance Computer Architecture (HPCA) (Febuary
2006).

LEE, J., Bvun, E., RRK, H., CHol, J., LEE, D., AND NOH, S. H. CPS-SIM: Configurable and accurate clock precisidid so
state drive simulator. IRroceedings of the Annual ACM Symposium on Applied Computing (SAC) (March 2009), pp. 318—-325.

LEE, S., AND MOON, B. Design of Flash-based DBMS: An In-Page Logging Approadtm Proceedings of the International
Conference on Management of Data (S GMOD) (August 2007), pp. 55-66.

LEE, S., RRK, D., CHUNG, T., LEE, D., PARK, S.,AND SONG, H. A Log Buffer based Flash Translation Layer Using Fully
Associative Sector TranslatiohEEE Transactions on Embedded Computing Systems 6, 3 (2007), 18.

LEE, S., $HIN, D., KiM, Y., AND KIM, J. LAST: Locality-Aware Sector Translation for NAND Flastemory-Based Storage
Systems. IrProceedings of the International Workshop on Storage and 1/O Virtualization, Performance, Energy, Evaluation and
Dependability (SPEED2008) (Feburary 2008).

LOFGREN K. M. J., NORMAN, R. D., THELIN, G. B.,AND GUPTA, A. Wear Leveling Techniques for Flash EEPROM United
Sates Patent, No 6,850,443 (2005).

NARAYANAN , D., THERESKA, E., DONNELLY, A., ELNIKETY, S.,AND ROWSTRON A. Migrating enterprise storage to ssds:
Analysis of tradeoffs. IProceedings of the ACM European Conference on Computer Systems (Eurosys) (March 2009), pp. 145—
158.

OLTP Trace from UMass Trace Repositohtt p: //traces. cs. umass. edu/ i ndex. php/ St or age/ St or age.

PARK, S., RRK, J., EONG, J., KM, J., AND KIM, S. A Mixed Flash Translation Layer Structure for SLC-MLCrttuned
Flash Memory System. IRroceedings of the 1th International Workshop on Storage and 1/O Virtualization, Performance, Energy,
Evaluation and Dependability (SPEED2008) (2008).

Technical Report (TN-29-07): Small-Block vs. LargéeBk NAND Flash Devicesht t p: / / www. i cr on. coni pr oduct s/
nand/ t echnot es.

ZHANG, J., SVASUBRAMANIAM , A., FRANKE, H., GAUTAM, N., ZHANG, Y., AND NAGAR, S. Synthesizing Representative
1/0 Workloads for TPC-H. IrProceedings of the International Symposium on High Performance Computer Architecture (HPCA)
(2004).

18

