This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/L CA.2014.2298394, |EEE Computer Architecture Letters

JOURNAL OF TEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

Synchronous I/O Scheduling of Independent Write
Caches for an Array of SSDs

Junghee Lee*, Youngjae Kim'$, Jongman Kim*, Galen M. Shipman
*Georgia Institute of Technology, TOak Ridge Natinoal Laboratory
Email: {jlee36, jkim}@ece.gatech.edu, {kimy1, gshipman}@ornl.gov

Abstract—Solid-state drives (SSD) offer a significant performance improvement over the hard disk drives (HDD), however, it can
exhibit a significant variance in latency and throughput due to internal garbage collection (GC) process on the SSD. When the SSDs
are configured in a RAID, the performance variance of individual SSDs could significantly degrade the overall performance of the RAID
of SSDs. The internal cache on the RAID controller can help mitigate the performance variability issues of SSDs in the array; however,
the state-of-the-art cache algorithm of the RAID controller does not consider the characteristics of SSDs. In this paper, we examine
the most recent write cache algorithm for the array of disks, and propose a synchronous independent write cache (SIW) algorithm. We
also present a pre-parity-computation technique for the RAID of SSDs with parity computations, which calculates parities of blocks in
advance before they are stored in the write cache. With this new technique, we propose a complete paradigm shift in the design of
write cache. In our evaluation study, large write requests dominant workloads show up to about 50% and 20% improvements in average
response times on RAID-0 and RAID-5 respectively as compared to the state-of-the-art write cache algorithm.

Index Terms—Redundant Array of Independent Disks (RAID), Solid-State Drive (SSD), flash memory, I/O scheduling, Write cache.

1 INTRODUCTION

In HPC storage systems, multiple disk drives are employed to
build arrays of disk drives. Redundant arrays of inexpensive
disks (RAID) were introduced to increase the performance and
reliability of disk drive systems. RAID provides parallelism
of I/O operations by combining multiple inexpensive disks,
thereby achieving higher performance and robustness. RAID
has become the de facto standard for building high perfor-
mance and robust storage systems. Unlike in-place update
operations in HDDs, SSDs incorporate software to allow out-of-
place update operations and to map sectors from the host into
their current locations in the SSDs. This out-of-place update
operation eventually requires a sweep of storage area to find
stale data and consolidate active data in order to create free
space. This process, known as garbage collection (GC), can
increase the service time of incoming requests significantly.
When SSDs are configured in RAID, the performance vari-
ability of individual SSDs becomes a major concern, because
the overall performance of the SSD-based RAID could be
limited by the slowest SSD. Even though several studies ad-
dressed the concern of the performance variability on a single
SSD due to the GC operation, there is still a concern on the
performance variability on an array of SSDs. In this paper, we
investigate a solution on a RAID controller that can alleviate
the performance degradation concern in the RAID of SSDs.
We suggest a new write cache architecture on a RAID controller
and a request scheduling approach to improve the overall I/O
performance by overcoming the aforementioned problems. Our
new write cache architecture maintains multiple sub-buffers for
every SSD, and the request scheduler reorders the requests in
their corresponding queues to increase the chance that multiple
SSDs trigger GC at the same time, resulting in improved I/0O
performance. Also a pre-parity-computation technique for the
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RAID configuration with parity computation will help flexible
rescheduling.

2 BACKGROUND

The write cache on the RAID controller employs non-volatile
memory or battery-back memory [1], [2] in order to prevent
data loss in case of power-failure on the system. As long as
there is free space in the write cache, an incoming write request
is stored in the write cache and it is immediately committed to
the requester. Otherwise, the request should be pending in the
I/0O queue until the write cache becomes available. The data
in the write cache will be synchronized with the disks later in
the background. This process is called destaging and the write
operations to the disk issued for destaging are called destage
writes. A destage write is split into multiple strips. Depending
on the RAID configuration, a parity strip may be added. Each
strip is stored in its corresponding disk. The strips and the
parity strip issued for a destage write are called stripe. The
write requests belonging to the same stripe are called write
group.

To fully exploit benefits of a write cache, a cache controller
should be designed to leverage temporal and spatial locality
as well as to resist bursty writes [1], [2]. High temporal locality
can be achieved by keeping as much hot data as possible.
On the other hand, to sustain bursty writes, dirty data in
the cache should be destaged in advance before the bursty
writes come in. Otherwise, it will increase pending requests in
the queues, causing delays for writes. However, early destag-
ing will redduce the chance of coalescing writes on writes,
reducing temporal locality. In the context of HDDs, leverag-
ing spatial locality means minimizing mechanical movement
inside a HDD. Extensive research has been conducted on
these cache scheduling algorithms to exploit the spatial locality
on a HDD [3]. In order to minimize the delay due to the
cache being full while maintaining locality requirements, the
cache controller should be carefully designed to make a smart
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Fig. 1. A typical RAID controller architecture employing a write
cache in WOW [1].

decision on when to destage, what to destage, and how much
to destage.

For the RAID controllers, WOW [1] has been proposed to
exploit both spatial locality and temporal locality at the same
time. One step further, STOW [2] enhances WOW by separating
random writes from sequential writes. The data structures of
the write cache are illustrated in Figure 1. Even if WOW [1],
and STOW [2] significantly improve write performance, their
work is limited only to an array of hard drives. On the
contrary, our work, more importantly, focuses on the design
of write cache for an array of SSDs. We consider the internal
characteristics of SSDs with more diverse resources than HDDs,
such as multiple chips, channels, multiple cores, etc. To the best
of our knowledge, no prior work has been performed on the
write cache design for an array of SSDs. GC needs to be carefully
considered in cache management on the RAID controller for
SSDs.

3 SSD-AWARE WRITE CACHE DESIGN

Wise ordering for Writes (WOW) [1]: Figure 1 shows an
overview of the WOW cache algorithm. A write hit can be
either a hit on a strip or a hit on a write group. A write
group consists of multiple strips. A hit on a strip means there
already exists the requested strip in the write cache. Even if
the requested strip does not exist, its write group could exist
(hit on a write group). Since a parity strip is computed for
each write group and parity is computed when a write group
is destaged, a hit on a write group could reduce the number of
parity computations. Write groups are always ordered by their
logical block address (LBA), which leverages spatial locality.
When destaging is necessary, the destage pointer advances.
How to determine when to destage will be discussed shortly.
If the recency bit of the write group pointed by the destage
pointer is zero, the write group is destaged. If the recency
bit is one, the write group is retained and the recency bit
is cleared. Then the destage pointer advances again until it
finds a write group whose recency bit is zero. The recency
bit is set when the write group is hit. The recency bit gives
one more chance for hit write groups to survive for one
more cycle, which leverages temporal locality. WOW adopts a
linear threshold scheduling [4] to determine when to destage,
where two thresholds are involved: low and high thresholds.
Destaging begins to be triggered when the number of write
groups (N) in the write cache reaches a low threshold. The
destaging rate linearly increases as N increases. If N reaches a
high threshold, it runs at a full rate.

Synchronous Independent Write Cache (SIW): All write
back cache algorithms including WOW, however well de-
signed, does not consider the characteristics of drives, and will
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Fig. 2. Timing diagram of processing write requests A and B and
read requests X and Y in an array of 4 SSDs.

suffer from performance degradation due to uncoordinated
garbage collection processes on an array of SSDs. Therefore, our
claim is that write cache algorithms for an array should be completely
redesigned by considering the device characteristics.

The main problem of applying traditional write cache archi-
tecture to an array of SSDs is that the destage write is bounded
by the slowest SSD. This problem is not addressed by the state-
of-the-art write cache designs such as WOW [1] and STOW [2].
We empirically observed that GC runs for 3 ms on average,
while a write operation in an SSD takes 0.2 ms [5]. It would
be very inefficient if the cache controller cannot proceed to the
next destage write for more than 3 ms because of a single SSD
delayed by GC, even though all other strips can be processed
within 0.2 ms. Figure 2 shows this situation in an example.

In Figure 2(a), suppose that write requests A and B arrive,
which are stored in the cache immediately, and the write cache
controller decides to destage at some later time. Request A is
split into A0, Al and A2 which are going to SSD0, SSD1 and
SSD2, respectively. If a strip that goes to SSD1 is delayed by
GC, the destage write cannot be committed until SSD1 finishes
GC and processes strip Al. Only after SSD1 finishes processing
A1l can the cache controller destage the next write group. If
bursty write requests come during this period, the write cache
may become full, which incurs long latency to subsequent
write requests. Even while SSD1 is delayed by GC, other SSDs
can accept strips. If the cache controller can issue the next
destage writes to other SSDs, it would reduce the chance of
the write cache being full, which results in more efficient use
of write cache space. This observation constitutes the primary
motivation of our proposed technique, which is described in
the rest of this section.

The proposed design of Synchronous Independent Write
Cache (SIW) is described in Figure 3. The main difference from
WOW or the traditional architecture (illustrated in Figure 1)
is that multiple write caches are employed. They are inde-
pendent of one another in that strips belonging to one write
group do not have to be destaged together because a parity
strip is already computed. The differences are summarized
as follows: First, SIW employs as many write caches as the
number of SSDs in the array. Thus, an entry of each write
cache is a strip. Second, the destages from write caches are
synchronized. Third, the parity can be computed in advance
before requests are stored in the write cache, which we call
pre-parity-computation. Even if any SSD is delayed by GC,
independent scheduling of write caches allow other SSDs to
accept a strip from their corresponding write caches.

The write caches are synchronized in that they attempt to
destage together at the same time. If all the write caches have at
least one strip to destage, they destage together. Note that those
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Fig. 3. An architectural overview of SIW.

strips destaged together do not have to belong to the same
write group. The destage pointer advances independently, it
advances while clearing the recency bit, until it finds a strip
whose recency bit is already cleared. The strip with cleared
recency bit is ready to destage. When the pointer finds a strip
to destage, it has to stop there until all the other pointers find
one. However, if the waiting time of those strips waiting for
being destaged together exceeds a predefined threshold, it is
allowed to destage to prevent the waiting write caches from
becoming full. Except for those having no strip, the other write
caches destage together.

The synchronization mechanism contributes to the perfor-
mance improvement by increasing the chance of GCs running
simultaneously. In the example of Figure 2(b), GC of SSD1 and
SSD3 run together by the synchronization. Let us suppose read
requests X and Y come, both of which span to SSD1, SSD2 and
SSD3. In Figure 2(a), both X and Y are delayed by GC whereas
in Figure 2(b) Y is not. As illustrated in this example, the
synchronization mechanism broadens the time window when
no GC is running. If the write caches are placed before parity
computation, they cannot work independently, which limits the
efficacy of synchronization.

We propose a pre-parity-computation technique, which com-
putes the parities of blocks before they are placed in their
caches. Let us suppose A2 and B2 are parity strips of requests
A and B respectively. A0, Al, and A2 should be destaged
together because A2 is computed while request A is split
into A0 and Al. Even though SSD3 is available, B3 cannot
be destaged because of the constraint that B2 and B3 should
be destaged together. The pre-parity-computation allows write
caches to work independently, which gives better chance for
synchronization.

The limitation of the pre-parity-computation is that the delay
taken by parity computation is always added to the response
time of any requests. In contrast, if the write queues are placed
before parity computation, the delay is hidden when the cache
hits. However, this overhead can be minimized by improve-
ment from the GC synchronization, as will be demonstrated by
experiments. The proposed design has no issues with recovery
from a disk failure because it employs non-volatile memory
as a cache. If the RAID controller detects failure on an SSD, it
destages all the data stored in the cache into the SSDs except
for the failed SSD before it starts rebuilding the failed disk.
Then it can rebuild the failed SSD based on other SSDs since
all the up-to-date data is in the SSDs.

Even though the pre-parity-computation incurs an overhead
of parity computation for every request, it still exploits the
temporal and spatial locality. In SIW, every write request incurs
parity computation, but if its subrequests are found in the write
caches, they do not incur additional I/Os to SSDs.

4 EVALUATION

Environment: In order to study the performance implications

TABLE 1
Varying workload parameters. W(R, |, W) denotes request size R
(KB), inter-arrival time | (ms), and write percentage W (%).

[ Parameter

| Values |
4 KB, 512 KB, 1024 KB, 4096 KB
10 ms, 20 ms, 40 ms

20 %, 60 %, 80 %

of our proposed scheme, we enhanced the DiskSim and SSD
simulator developed by Microsoft Research [5]. Our tests were
performed on RAID-0 and RAID-5. In RAID-5, 8 SSDs are for
data strips and one is for a parity strip whereas in RAID-0,
all of 8 SSDs are for data strips. The strip unit size for RAID
is 128KB, so the 1 MB request constitutes a write group (128
KB x 8 =1 MB) for RAID-0 configuration. In simulating an
SSD, we used 15% reserved free blocks with 5% minimum
free blocks, and a greedy GC policy. We also evaluated with a
semi-preemptive GC scheme [6]. Each SSD uses four flash chip
packages, where each package consists of four planes, and each
plane uses 512 blocks. Each block consists of 64 4KB pages.
Thus, the size of each SSD is 2GB. Page read and write times
of 0.025ms and 0.2ms are used and block erase time of 1.5 ms
is used.

We use a mixture of real-world and synthetic traces to study
the impact of our proposed scheme on a wide spectrum of
HPC workloads. For the realistic HPC workload, we used a
synthesized trace that was generated based on the study of real
I/0 workload characterization for one of the largest storage
systems for HPC [7]. Kim et. al. [7] developed synthesized
workloads for HPC, where it shows about 60% writes and 40%
reads, a bi-normal distribution for request size, and a poisson
distribution for inter-arrival times with an average of 20ms. For
the request size distribution, there are 50% 4K small requests,
and 50% large requests (17% of 512KB and 32% of 1MB re-
quests). We also widen the spectrum of our investigation using
synthetic workloads by varying various workload properties,
namely I/O request size, arrival rate of the requests, and the
percentage of write requests. Table 1 summarizes the values
of these parameters used in the experiments. In addition, we
use Microsoft (MSR) Exchange Server traces as a real-world
workload [8]. The MSR workload requires 4TB storage. So, we
grouped the traces in multiple sub-traces each of which can be
fed into our storage simulator. Due to the page limit, we only
show results of two traces. However, other traces show similar
findings.

Results: Figure 4 shows the effectiveness of our proposed
idea, SIW over WOW for HPC and Exchange workloads. The
notion of X label is [workload]-[GC policy]-[RAID configuration].
G indicates the greedy GC and P does semi-preemptive GC.
Zero (0) and five (5) of the RAID configuration mean RAID-
0 and RAID-5, respectively. In Figure 4(a), we observe the
improvement of response times by SIW over WOW is by up
to 42% . For RAID-0, where there is no pre-parity-computation
overhead, the improvement is 14.74% for HPC and 42.62% for
Exchange, which is mainly due to GC synronization. In the
RAID-5 configuration, even though the pre-parity-computation
incurs 5.21% overhead in response times, this computation
penalty is compensated by the increased efficiency of SIW. As a
result, the improvement by SIW for RAID-5 is slightly less than
that by WOW for RAID-0, but we can still observe the improve-
ment in the response times by 12.72% and 37.93% for HPC
and Exchange, respectively. Since Exchange workload exhibits
frequent and large requests, the performance improvement is
larger for Exchange than HPC. With a semi-preemptive GC

Request size (R)
Inter-arrival time (I)
Write percentage (W)
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Fig. 4. (a) compares the performance of WOW and SIW for HPC
and Exchange workloads. (b) compares the placement of write
caches. (c) and (d) show the probability of GC synchronization for
and RAID-0 and RAID-5 respectively. For (b),(c) and (d) we used
HPC workloads.

scheme [6], we observed up to 12.70% improvement for the
Exchange workload.

Figure 4(b) demonstrates that it is more efficient to place
the write cache on the RAID controller (WOW and SIW) than
in individual SSDs. In “ISC” configuration of this experiment,
individual SSD has its own write cache and the total amount of
write cache is the same with WOW and SIW. “None” denotes
SSDs without write cache.

The synchronization mechanism improves the performance
by increasing the probability of GCs operating simultaneously.
Figure 4(c) shows the cumulative distribution function (CDF)
of the number of synchronized GCs for RAID-0. We count
the number of SSDs that run GCs during a fixed time slice,
for which we use 0.1 ms in our measurement. In WOW, the
probability of the number of synchronized GC being at least
two, P(n > 2), is 0.40. By employing the synchronization
mechanism, the probability is drastically increased. P(n > 2)
becomes 0.70 (75.00% improvement). Figure 4(d) shows that
RAID-5 exhibits the same trend along with RAID-0. P(n > 2)
is increased from 0.46 to 0.74 (60.86% improvement).

In order to cover a wide-range of workload characteristics,
we evaluated our design with synthetic workloads. Figure 5
shows the results comparing SIW and WOW. Figure 5(a)
shows the results of RAID-0. The main benefit of employing
SIW comes from large requests. Compared to WOW, the re-
sponse time of W(512, 20, 60), W(1024, 20, 60), and W(4096,
20, 60) is reduced by 16.26%, 32.51%, and 12.05%, respectively.
Since the response time of large requests is much longer than
that of small requests, the response time reduction for large
requests substantially improves the overall performance. When
the request size is small (e.g., W(4, 20, 60)), the overhead of the
pre-parity-computation is not compensated. Even though the
parity computation is not required for RAID-0, the overhead of
striping still exists because every write request requires striping
in SIW whereas it may not be required upon a cache hit in
WOW. However, although the response time is increased by
12.05%, the absolute value of the increased response time is as
small as 0.01 ms because the response time for a small request
is very short. Thus, it does not have significant impact on the
overall performance. Varying inter-arrival time (e.g., W(1024,
10, 60) and W(1024, 40, 60)) and percentage of write requests
(e.g., W(1024, 20, 20) and W(1024, 20, 80)) does not affect the
overall trend. If the RAID configuration requires parity com-
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Fig. 5. Performance comparison for synthetic workloads.

putation (RAID-5), the overhead of the pre-parity-computation
increases. Figure 5(b) shows the results of RAID-5. For W(1024,
20, 60), W(4096, 20, 60), the performance improvement is 5.79%
and 14.79%, respectively. For small requests (e.g., W(4, 20, 60)),
the response time increases sharply in terms of percentage, but
the absolute value of their increment is still as small as 0.14 ms.
b In summary, the extra overhead of SIW includes reschedul-
ing and pre-parity-computation overheads. The rescheduling
overhead is incurred by the synchronization because a write
cache may need to wait until other write caches get to have one
strip to destage. The pre-parity-computation overhead includes
the striping and parity computation overheads, as discussed
above. For large requests, these overheads are compensated
and we can observe significant performance improvement, but
they are not compensated for small requests. Based on this
result, we envision to develop a hybrid approach that switches
between WOW and SIW adaptively to the workload.
5 CONCLUSION

This paper proposes a synchronous write cache algorithm
with a pre-parity-computation technique for an array of SSDs.
Unlike a traditional write cache, the proposed architecture
employs as many separate write queues as the number of SSDs
in the array. By employing multiple write queues, an impact
of GC on any write queue can be isolated from other queues.
The results revealed that the synchronization of destage writes
across SSDs can increase the probability of overlapped GC op-
erations, improving the overall performance of an SSD RAID.
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