J Grid Computing
DOI 10.1007/s10723-008-9113-0

Beyond Music Sharing: An Evaluation
of Peer-to-Peer Data Dissemination Techniques

in Large Scientific Collaborations

Samer Al-Kiswany - Matei Ripeanu -
Adriana Iamnitchi - Sudharshan Vazhkudai

Received: 8 October 2007 / Accepted: 27 November 2008
© Springer Science + Business Media B.V. 2008

Abstract The avalanche of data from scientific
instruments and the ensuing interest from geo-
graphically distributed users to analyze and inter-
pret it accentuates the need for efficient data
dissemination. A suitable data distribution scheme
will find the delicate balance between conflict-
ing requirements of minimizing transfer times,
minimizing the impact on the network, and uni-
formly distributing load among participants. We
identify several data distribution techniques, some
successfully employed by today’s peer-to-peer net-
works: staging, data partitioning, orthogonal band-
width exploitation, and combinations of the above.

S. Al-Kiswany (X)) - M. Ripeanu

Electrical and Computer Engineering Department,
The University of British Columbia,

Vancouver, Canada

e-mail: samera@ece.ubc.ca

M. Ripeanu
e-mail: matei@ece.ubc.ca

A. Tamnitchi

Computer Science and Engineering,
University of South Florida,
Tampa, FL, USA

e-mail: anda@cse.usf.edu

S. Vazhkudai

Computer Science and Mathematics Division,
Oak Ridge National Laboratory,

Oak Ridge, TN, USA

e-mail: vazhkudaiss@ornl.gov

Published online: 16 December 2008

We use simulations to explore the performance
of these techniques in contexts similar to those
used by today’s data-centric scientific collabora-
tions and derive several recommendations for effi-
cient data dissemination. Our experimental results
show that the peer-to-peer solutions that offer
load balancing and good fault tolerance proper-
ties and have embedded participation incentives
lead to unjustified costs in today’s scientific data
collaborations deployed on over-provisioned net-
work cores. However, as user communities grow
and these deployments scale, peer-to-peer data
delivery mechanisms will likely outperform other
techniques.

Keywords Data dissemination -
Application level multicast - Peer-to-peer -
Performance evaluation

1 Introduction

Today’s Grids provide the infrastructure that
enables users to dynamically distribute and share
massive datasets. A growing number of instru-
ments and observatories generate petabytes
(10" bytes) of data that need to be analyzed
by large, geographically dispersed user com-
munities, requesting more than ever efficient
data-dissemination solutions. Examples of data-
intensive collaborations include CERN’s Large

@ Springer

S. Al-Kiswany et al.

Hadron Collider (LHC) experiment [1], neutron
scattering at the Spallation Neutron Source (SNS)
[2], or the D@ experiment at Fermi National
Accelerator Laboratory [3]. Enabling the for-
mation of these collaborative data federations
are ever increasing network capabilities including
high-speed optical interconnects (e.g., TeraGrid
[4], LambdaGrid [5]) and optimized bulk transfer
tools and protocols (e.g., GridFTP [6], IBP [7]).

However, most data distribution strategies cur-
rently in place involve explicit data movement
through batch jobs [8, 9] that are seldom sympa-
thetic to changing network conditions, congestion
and latency, and rarely exploit the collaborative
nature [10] of modern-day science.

At the same time, peer-to-peer file sharing and
collaborative caching efficiently exploit patterns
in users’ data-sharing behavior. For instance, one
approach is to split files into blocks and transfer
them separately, possibly using different network
paths, as in BitTorrent [11]. Another approach is
to exploit the orthogonal bandwidth that might
be available outside a traditional, source-rooted
data-distribution tree [12]. Aforementioned tech-
niques offer several benefits such as increased
throughput, good use of network resources, and
resilience in the face of link and node failures. Fur-
thermore, these techniques have been deployed
[11] and studied [13, 14] in the context of peer-to-
peer file sharing and application-level multicast.

However, such techniques may not be directly
adaptable to Grid settings because of the different
usage scenarios, workloads, or resource proper-
ties. For example, an important usage scenario in
Grids is the dynamic distribution of data available
at one site to one or many target locations for
real-time analysis and visualization. This is, for
example, the processing mode for terabytes of
NASA satellite hyperspectral data that need to be
processed in near real time [15].

Two conflicting arguments compete for design-
ing one-to-many delivery systems of large-size sci-
entificdata over well provisioned networks. On one
side, there is the intuition that well-provisioned
networks are sufficient for guaranteeing good data-
delivery performance: sophisticated algorithms
(such as in peer-to-peer systems) that adapt to
unstable or limited-resource environments are
superfluous and add unjustified overheads.

@ Springer

The flip side is the argument that advanced
data dissemination systems are still required as
the high data volumes and the relatively large col-
laborations create contention and bottlenecks on
shared resources. Additionally, even if contention
for shared resources is not a serious concern,
the question remains whether networks are over
provisioned and thus advanced data dissemination
techniques induce unnecessary costs.

This debate motivates our study. We explore
experimentally the solution space for one-to-
many large-scale data delivery via simulations
using real-world network topologies. We consider
solutions typically associated with peer-to-peer
applications (such as BitTorrent [11] or Bullet[12])
and evaluate them in the large-scale data fed-
eration scenario. To this end, we use three real
topologies of production Grid testbeds in our sim-
ulations: LCG [16], EGEE [17] and GridPP [18].

The contribution of this study is threefold.
First, this study quantitatively evaluates and com-
pares a set of representative data-delivery tech-
niques applied to realistic Grid environments. The
quantitative evaluation is then used to derive well-
supported recommendations for choosing data-
dissemination solutions and for provisioning the
Grid network infrastructure. Further, our study
contributes to a better understanding of the per-
formance tradeoffs in the data-dissemination
space. Our goal in this article is to analyze and
contrast the many popular data dissemination so-
lutions that already exist rather than propose new
ones. As we point out, an entire suite of solutions
already popular in the peer-to-peer domain are
hardly used in Grid settings. In this situation, we
feel that a systematic study of the merits of the
various data dissemination strategies using multi-
ple success metrics is timely and potentially more
useful than introducing new solutions. To the best
of our knowledge, this is the first, head-to-head
comparison of alternative data dissemination so-
lutions using multiple performance metrics: time
to complete the data dissemination, generated
overhead, and load balance.

Second, in addition to comparing the data dis-
semination solutions along multiple success met-
rics, we provide, to the best of our knowledge,
the first quantitative evaluation of the fairness
of these solutions and their impact on competing

An evaluation of peer-to-peer data dissemination techniques

traffic. Our results show that this impact can
be significant and suggest that fairness is an
important factor when choosing a dissemina-
tion solution and the right network management
infrastructure.

Third, a byproduct of this study is a simula-
tion framework that can be used to explore ap-
propriate solutions for specific deployments and
can be extended to study new data dissemination
solutions.

The rest of this paper is organized as follows.
Section 2 presents the data usage characteristics
of scientific collaborations and compares them
with the assumptions of peer-to-peer file-sharing
systems. Section 3 surveys existing work on data
dissemination and describes in detail the dissem-
ination schemes this study analyzes. Section 4
presents the design of our simulator and Section 5
presents our evaluation results. We summarize
our findings in Section 6.

2 Data in Scientific Collaborations

Three key differences make it difficult to predict
the behavior of adaptive techniques employed in
peer-to-peer systems when applied to scientific
data federations: scale of data, data usage charac-
teristics, and resource availability.

The scale of data poses unique challenges: sci-
entific data access consists of transfers of massive
collections (terabytes), comprising of hundreds
to thousands of gigabyte-sized files. For instance,
of the more than one million files accessed in
D@ between January 2003 and May 2005, more
than 5% are larger than 1 GB and the mean
file size is larger than 300 MB [19]. This is more
than 20 times larger than the 14 MB average file
size transferred in the Kazaa network in 2002 as
reported in [20], but within the same order of
magnitude with the files currently transferred by
BitTorrent (mainly, movies and software distribu-
tions): Bellissimo et al. [21] report an average file
size of 600 MB.

Usage of data in scientific communities is of a
different intensity compared to other communi-
ties. For example, the 561 scientists part of the D@
project processed more than SPB of data between
January 2003 and May 2005, which translates to

accessing more than 1.13 million distinct data files
and a sustained data processing rate of 65MB/s
[19]. Additionally, popularity distributions for sci-
entific data are more uniform than in peer-to-
peer systems with a significant impact on caching
effectiveness. For example, while in D@ a file is
requested by at most 45 different users, a Bit-
Torrent file can be requested by thousands of
users or more [21].

Another difference in data usage is co-usage:
often, in scientific environments, files are used
in groups and not individually. Taking the high-
energy physics project D@ as a case study again,
each data analysis job accessed on average 108
files, with a maximum of more than 20,000. The
need for simultaneous access to multiple files
stresses the problems brought up by the large file
size, requesting transfers of data collections in the
order of terabytes. For example, the largest ten
datasets in the D@ traces analyzed in [19] are
between 11 and 62 TB.

Finally, resource availability in Grids poses
smaller challenges than in peer-to-peer networks.
Computers stay connected for longer, with sig-
nificantly lower churn rate and higher availabil-
ity due to hardware characteristics and software
configurations.

At the same time, data federations are over-
lays built atop well-provisioned (sometimes over-
provisioned) network links (e.g., TeraGrid) as
opposed to the commercial Internet. In particular,
network cores are well provisioned, often with
multiple Gbps links.

Yet another difference in resource availability
is that in scientific collaborations resource sharing
is often enforced by out-of-band means, such as
agreements between institutions or between insti-
tutions and research funding agencies. For this
reason, mechanisms that enforce participation,
such as the tit-for-tat scheme in BitTorrent, may
impose unnecessary overheads and may indeed
limit the overall system performance.

All these properties (huge size transfers, well
provisioned networks, more stable resources, co-
operative environments) invite the question of
whether peer-to-peer data distribution strategies
will result in tangible gains on the well-endowed
network infrastructures on which today’s Grids
are deployed. A careful study is necessary to

@ Springer

S. Al-Kiswany et al.

derive recommendations for constructing and
provisioning future testbeds and choosing efficient
dissemination approaches to support scientific
collaborations.

3 Data Distribution: Solutions and Metrics

The naive solution for data dissemination is to
set up an independent transfer channel between
each data source and destination pair. Although
this technique is clearly not efficient and overloads
the data source, it is often adopted in current
deployments [8].

A second well-understood solution is to use IP
multicast. IP multicasting lowers the load on the
data source and provides a scalable solution for
unreliable connectionless multimedia multicasting
[22]. However, despite significant efforts, IP mul-
ticast is not widely deployed as it requires new
routing hardware, and faces challenging problems
in providing reliability, congestion and flow con-
trol [23]. In addition, IP multicast is not widely
deployed due to its limited support for group
management, including authorization for group
creation, receiver and sender authorization, dis-
tributed address allocation, support for network
management, and limited support for congestion
control [24].

To provide an alternative, numerous research
projects have explored data dissemination solu-
tions at the application level. This section provides
a classification of data distribution techniques
(Section 3.1), details the representative tech-
niques we have selected to explore in depth in this
paper (Section 3.2), and presents the criteria over
which data dissemination solutions are typically
evaluated (Section 3.3).

However, before delving into these techniques,
it is important to note that no solution is ‘optimal’
for all deployment scenarios and success metrics.
Generally, solutions that do well on a particu-
lar success metric (e.g., dissemination time) often
compromise on others (e.g., fairness, or generated
overheads). This situation further motivates our
longitudinal study that quantitatively compares
dissemination schemes in realistic deployment
environments using a multitude of success metrics.

@ Springer

Section 3.4 discusses more the optimality of the
proposed solutions.

3.1 Classification of Approaches

This section identifies three broad categories of
techniques used in application-level data dissem-
ination systems: data staging, data partitioning,
and orthogonal bandwidth harnessing. Existing
data dissemination solutions often use combina-
tions of these techniques. The rest of this section
describes these techniques in detail in the context
of our target environment.

3.1.1 Data Staging

With data staging, participating nodes are used as
intermediate storage points for data distribution.
Such an approach is made feasible by the
emergence of network overlays. For instance, it
is becoming increasingly common practice in the
Internet community for application-specific groups
to build collaborative networks, replete with their
application-level routing infrastructure. This is
based on the premise that sophisticated applica-
tions are better aware of their resource needs,
deadlines, and associated constraints and can
thus perform intelligent resource allocation
and workload/data transfer scheduling. In this
vein, peer-to-peer file-sharing systems can be
viewed as data-sharing overlays with sophisticated
application-level routing performed atop the
traditional Internet [25].

Similarly, in scientific data-analysis commu-
nities, user collaboration patterns and shared
interest in data lead to a ‘natural’ way to struc-
ture an overlay. In data Grids, data staging is a
trend encouraged by the increasing significance
of application-level tuning of large transfers. For
instance, collaborating sites often gather intel-
ligent routing information through the use of
Network Weather Service [26] or GridFTP probes
[27]. Such information is then used to make in-
formed decisions regarding routes, such that data
transfers can be executed in an optimized fashion
based on a delivery constraint schedule [28]. A
logical extension is thus to use the participating

An evaluation of peer-to-peer data dissemination techniques

sites as intermediary data staging points for more
efficient dissemination.

Additionally, a data distribution infrastructure
can include a set of intermediary, strategically
placed resources (as in logistical computing [29])
to stage data. In this paper we study an ideal-
ized version of logistical multicast as the repre-
sentative exponent of this class of solutions. We
simulate an idealized, optimal IP-level logistical
multicast infrastructure that includes infinite buff-
ering capabilities associated with all the interme-
diate routers. This idealization aims to quantify
the maximum benefits data staging can offer when
used in isolation.

3.1.2 Data Partitioning

To add flexibility, various peer-to-peer data distri-
bution solutions split files into blocks and transfer
these blocks independently (e.g., BitTorrent [11],
Bullet [12], SPIDER [30] and many other sys-
tems). Much like the aforementioned application-
level routing, this approach allows applications a
greater degree of control over data distribution.
Further, it enables application-level error correc-
tion: for example, in the case of downloading a
file from multiple replicas, partitioning can be
coupled with erasure coding to achieve fault toler-
ance. Several of these techniques are used in pro-
duction systems (e.g., Digital Fountain [31, 32]).

Partitioning techniques can have significant
value in a data-Grid collaboration setting. For
instance, there is a genuine need to provide
application-level resilience when it comes to data
transfers. Bulk data movement in the Grid usually
involves transfers of large files that are required
to be resilient in the face of failures such as net-
work outages or security proxy expiration. This
prompted us to include two representative sys-
tems that use data partitioning in our study: Bullet
[12], a data dissemination solution developed in
academia, and the widely popular BitTorrent file-
sharing protocol [11].

3.1.3 Orthogonal Bandwidth Exploitation

Once a basicfile partitioning mechanismisin place,
it can then be used to exploit orthogonal band-

width. Thematic here is the use of alternate net-
work paths to speed-up data transfers. The reason
is that, in many cases, the bandwidth available to a
traditional source-routed distribution tree can be
augmented using additional ‘orthogonal’ network
paths that exist between its interior and leaf nodes.

This is the premise in a number of commercially
deployed or academically designed data distribu-
tion systems. Orthogonal bandwidth tapping relies
on partitioning files into blocks and, initially, send-
ing each block to a different peer with the intent
that peers would then form pair-wise relationships
and acquire from each other the data they are
missing. Such an approach works as a means both
to exploit the residual bandwidth available at the
peer and, more importantly, to employ alternate
network routes than would not have been avail-
able in a single source distribution scenario. Many
peer-to-peer networks owe much of their success
to such optimizations (e.g., BitTorrent).

Intuitively, it appears that what we described
so far will offer commensurate gains when ap-
plied to Grid data collaborations. However, sev-
eral of these optimizations are designed to work
in a naturally competitive environment such as
the Internet, where peers contend for bandwidth.
One question we address is how this intuition
translates when the bandwidth is plentiful and the
participants are cooperative, as is the case with
modern data collaborations deployed over heavily
provisioned networks.

3.2 Candidate Solutions

For our experimental study, we selected previ-
ously proposed solutions from each of the cate-
gories above. We also include other traditional,
well-understood techniques as a base for our com-
parison. This section presents a brief description
for each of the solutions we evaluate.

Logistical multicast (LMT) [29] (as described
earlier in Section 3.1.1), employs strategically
placed nodes in an overlay to support data dis-
tribution. We evaluate an idealized version of
this approach: we assume that logistical storage is
associated with each router, and that intermediary
storage nodes have infinite storage capacity. With
these idealizations, the logistical multicast version

@ Springer

S. Al-Kiswany et al.

we evaluate offers an upper bound for the perfor-
mance of data dissemination solutions based on
source-rooted distribution trees.

Application-level multicast (ALM) solutions or-
ganize participating nodes into a source-rooted
overlay tree used for data dissemination [33, 34].
Each node maintains information about the other
nodes in the tree it is connected to. Data routing
algorithms are trivial as data is simply passed
down the tree structure. Since, in our case, par-
ticipating nodes are endnodes with an interest in
long-term data storage, recovering lost blocks and
flow control can be simply implemented for each
tree branch.

What differentiates various ALM solutions is
the algorithm used to build and maintain the dis-
tribution tree. These algorithms can be classified
based on multiple criteria: the ownership of the
participating resources, their approach to decen-
tralization, their use of a structured or unstruc-
tured overlay, and the performance metric that is
optimized as follows:

e Resource ownership and infrastructure. Some
systems rely on strategically placed infrastruc-
ture proxies to support the construction of
their data distribution trees (Overcast [34],
OMNI [35]), while others aim to integrate
end-nodes without infrastructure support
(Narada [23], ALMI [33]).

e QOverlay structure. Some dissemination tree
construction algorithms assume the existence
of a structured [36, 37] or unstructured [38]
overlay substrate while others build the dis-
semination tree from scratch.

e Centralized vs. distributed tree construction.
For small and medium scale systems central-
ized tree construction and management algo-
rithms based on a full system view have been
designed (e.g., ALMI [33]). At the other end
of the spectrum, systems based on structured
overlays are able to handle millions of nodes
operating with partial views of the system.

e Success metrics. While some dissemination tree
construction algorithms strive to provide the
highest possible bandwidth, other algorithms
aim to minimize the resulting overheads in
terms of message delay or generated network
traffic (e.g. Narada, NICE [39], OMNI [35]).

@ Springer

Recently, a number of studies have proposed
data dissemination algorithms targeting the Grid
infrastructure. Grido [40], for example, builds a
shortest-path-first tree based on a virtual coordi-
nates system that advises each node of its nearby
neighbors. Another system, MOB [41], adopts
a hierarchical approach, wherein nodes are or-
ganized into clusters, and intra-cluster transfers
are preferred to inter-cluster transfers to reduce
overheads. The nodes exchange data within the
cluster and between the clusters in a BitTorrent
like approach (see BitTorrent description below
for details). MOB assumes that clustering infor-
mation is available and globally known to all the
nodes.

For our evaluation we chose a centralized so-
lution based on global topology view (similar to
ALMI [33]) appropriate for the scale we tar-
get and offering near optimal trees in terms of
dissemination bandwidth. Our algorithm con-
structs a bandwidth-optimized ALM tree without
assuming strategically placed proxy nodes or the
presence of a structured overlay substrate. The
reason to choose a bandwidth- optimized tree con-
struction is that the time-to-completion of a data
transfer is often considered the main data dissem-
ination success metric. Our technical report [42]
presents in detail our tree construction heuristic
and analyzes its complexity.

In addition to solutions using a single trees
we explore the performance of solutions using
multiple source-rooted trees like SPIDER [30],
which offers a set of heuristics that enables fast
content distribution by building multiple source-
rooted trees assuming global views. This way,
SPIDER exploits existing orthogonal bandwidth.
This technique can be used at the application as
well as at lower network layers. For our simula-
tions, we consider a scenario where SPIDER algo-
rithms are used at the network layer, which offers
an upper bound for solutions based on multiple
source-rooted trees. Note that when SPIDER is
able to build only a single tree it is equivalent to
traditional IP-multicast.

Unlike single-tree construction algorithms,
SPIDER builds a set of trees, and for each of
them tries to maximize the residual bandwidth
left for the other trees to be constructed. For
this, the construction algorithm selects from a set

An evaluation of peer-to-peer data dissemination techniques

of candidates the link that leaves the maximum
outgoing bandwidth for its source node.

A number of other algorithms are based on
the same principle of building a set of source-
rooted trees to exploit the orthogonal band-
width available. For example, Fast Parallel File
Replication (FPFR) tool [43] constructs multiple,
source-rooted multicast trees by repeatedly using
depth-first search to find a tree, spanning all hosts.
For each tree, bandwidth as high as the bottleneck
bandwidth is “reserved” on all links used in the
tree. The search for new trees continues until no
more trees spanning all hosts can be found. Data
to be distributed is then multicast in fixed-size
blocks using all trees found.

Bullet [12] offers a way to exploit orthogonal
bandwidth by initially distributing disjoint sub-
sets of data on different paths of a distribution
tree (while we use the ALM-built tree in this
study the Bullet project demonstrates that the
choice of the original tree is not essential). After
this step, nodes pair up and exchange missing
blocks to complete the file distribution. Bullet also
depends on the source rooted tree in exchanging
the control messages, more precisely, to aggregate
fixed size node content summaries from leafs to
the source node. The source, in turn, distributes
a random subset of these summaries in fixed size
blocks down the tree. Peers use these summaries
to discover the blocks they are interested in at
other peers in the system. Further, in the pairwise
exchange between peers, the exchange initiator
decides which blocks to send to the destination
depending on the summary of the destination
node. This push-based solution generates dupli-
cate traffic since incomplete summaries at the ini-
tiator node lead to the possibility of transmitting
duplicate blocks to a destination.

BitTorrent [11] is a popular data distribution
scheme that exploits the upload bandwidth of par-
ticipating peers for efficient data dissemination.
Participating nodes build transitory pair-wise re-
lationships and exchange missing file blocks. Bit-
Torrent assumes a non-cooperative environment
and employs a tit-for-tat incentive mechanism to
discourage free riders. Additionally, nodes are
selfish: each node selects its peers to minimize
its own time to acquire content, disregarding the
overall efficiency of the data distribution opera-

tion. Consequently, a node will serve data to the
peers that serve back in return useful blocks at a
high rate.

Other solutions. Finally, to offer a basis for
comparison, we also simulate IP-multicast and
the naive approach of using independent transfers
from the source to each destination.

3.3 Success Metrics

Multiple categories of success metrics can be de-
fined for most data management problems. The
relative importance of these metrics is highly de-
pendent on the application context. Thus, no data
distribution solution is optimal for all cases and
a careful evaluation of various techniques is re-
quired when choosing a solution appropriate for
a specific application context and deployment sce-
nario. Performance objectives include:

e Minimizing transfer times. Transfer time is of-
ten a key metric for data dissemination due to
the need to send all data to all destinations so
that real-time processing at the end-sites can
progress smoothly. The focus can be on mini-
mizing the average, median, Nth percentile, or
the highest transfer time to destination.

e Minimizing the overall impact on the network.
For advanced, dynamic data dissemination
techniques that build sophisticated distribu-
tion trees and exploit all available network
routes, it is vital to evaluate their overall
impact and their impact on bottleneck links.
A success metric tied to the network effort
might involve minimizing the load on bot-
tleneck links, the amount of duplicate data
transferred, or the aggregate network ‘effort’
(in megabit x mile transferred) in the distribu-
tion tree.

e Load balance. With the enlisting of end-
nodes in the data dissemination effort, evenly
spreading the load among participants be-
comes an important goal. The load balance
metric evaluates how well different dissemina-
tion mechanisms balance load among partici-
pating nodes.

e Fairness to other concurrent transfers can be
an important concern depending on the level
of isolation offered by lower-layer network

@ Springer

S. Al-Kiswany et al.

levels and the protocols used. Fairness is
especially important considering that most
of today’s networked applications are TCP
friendly. In this case, since TCP aims to pro-
vide a fair share of the available bandwidth to
each data flow, using multiple flows for a sin-
gle application will strongly affect concurrent
applications operating in a single flow mode.

3.4 A Note on Optimality

It is important to note that in generic, realistic
settings optimality is not achievable when con-
sidering the dissemination time related metrics,
and even less when defining aggregate metrics
that combine the above metrics using different
weights.

A number of reasons support the above state-
ment. First, on arbitrary topologies, determining
a dissemination overlay that is optimal in terms
of bandwidth is not scalable, because determining
optimal overlays is at least an NP-complete prob-
lem [30, 44]. Second, the problem is further com-
plicated by typical distributed system complexity
related to the dynamicity of the system and the
impossibility to guarantee accurate global system
views when failures may be present. Finally, it
is infeasible to optimize for the four different
metrics due to their conflicting requirements. For
instance, a data dissemination mechanism that is
optimal in terms of load balancing will enforce
that each node sends as much data as it receives,
which results in a solution that can not be opti-
mal in terms of transfer time, mainly because
of the heterogeneous nodes capability and links
bandwidth.

In restricted settings, however, optimal solu-
tions can be deducted. For example, the particu-
lar characteristics of the topologies we use make
logistical multicasting achieve optimal transfer
times as this scheme is able to saturate all bottle-
neck links and does not incur overheads.

On the other side, for other individual metrics
optimality can be immediately determined. For
example, for the network overheads metric, IP-
and logistical multicast provide an optimal solu-
tion as they use the router’s duplication capability
and the physical network topology information to
avoid sending duplicate packets.

@ Springer

4 Simulating Data Dissemination

In order to evaluate the techniques above, we
built a simulator that works at the file-block level.
This section presents key details about simulating
the techniques we chose to investigate (Section
4.1) and the simulation approach (Section 4.2)
that guided the simulator design (Section 4.3).
Further, this section discusses the scope of our
simulations (Section 4.4), the validation of our
simulator (Section 4.5) and evaluates and com-
pares our simulator with similar simulators in the
literature (Section 4.6).

4.1 The Data Dissemination Solutions Simulated

We experiment with the four solutions for
data dissemination described in Section 3.2:
application-level multicast (ALM), BitTorrent,
Bullet, and logistical multicasting. To analyze
their efficiency, we compare them with two base
cases. First, we consider the base case of IP-
multicast distribution (and its improvement using
SPIDER heuristics). IP-multicast, although not
guaranteed to always offer the minimal transfer
times, is optimal in terms of minimizing traffic
overhead and node load-balance. SPIDER builds
multiple TP multicast trees in order to best ex-
ploit the existing bandwidth through different
paths from source to destinations. Consequently,
SPIDER performs identically to IP multicasting
on sparse topologies where it can build only
one tree but may show improvements on dense
topologies.

The second base case evaluates the naive (yet
popular) data dissemination solution where the
source sends a copy of the file separately to each
node. For this case, the simulator uses the best
IP path to send data from the source to each
destination.

4.2 Simulation Approach

We built a high-level simulator to investigate the
performance of different data distribution proto-
cols. As with most simulators, the main tradeoff
we face is between the resource volume allocated
to simulation and the fidelity of the simulation. At
one end of the design spectrum are packet-level

An evaluation of peer-to-peer data dissemination techniques

simulators (such as ns [45]) and emulators (such as
ModelNet [46] or Emulab [47]): they require sig-
nificant hardware resources but model application
performance faithfully by running unmodified
application code and simulating or emulating net-
work transfers at the [P-packet level. At the other
end of the spectrum are high-level simulators
that abstract the application transfer patterns and
employ only coarse network modeling [48]. For
example, a commonly used approach is to model
the Internet as having limited-capacity access links
and infinite bandwidth at the core. Another exam-
ple is replacing packet-level simulation (which is
computationally expensive as it implies simulating
each packet’s propagation through router queues
and network links) with flow-level simulation.
This requires lower computational resources as
the characteristics of the network paths are com-
puted once per data flow. Flow-level simulations
have been successfully used to simulate multicast
trees with hundreds of destinations without con-
siderably reducing result accuracy [48].

Our simulator sits in between the two extremes
above. The granularity used is file-blocks, a nat-
ural choice since many of the data dissemination
schemes we investigate use file blocks as their data
management unit. Individual block transfers are
simulated at flow level. While we do not simu-
late at the packet level, however, we do consider
all properties of the physical network and sim-
ulate link-level contention between application
flows.

This approach, similar to the abstracted simu-
lation approach presented in [48], offers a good
balance between simulation scalability (as flow-
level simulation require fewer resources), network
simulation accuracy (as we do consider contention
at physical link level), and accuracy in simulating
dissemination techniques like BitTorrent or Bul-
let that continuously reconfigure data paths during
the dissemination process.

In addition, our simulator design is guided by
the following decisions:

e Ignore control overheads. For our target sce-
nario, i.e., distribution of large files, the gen-
erated control traffic is orders of magnitude
lower than useful payload. Similarly, the addi-
tional delay incurred while waiting for control

commands and synchronization on control
channels is minimal compared to actual data
transfer delays, especially given that control
messages overlap or are often piggybacked on
actual traffic. As a result, we do not attempt to
estimate control channel overhead and do not
model the delay it introduces.

e Use of global views. Our simulator uses a
global view of the system in order to hide
algorithmic details that are not relevant to
our investigation. Thus, following our high-
level simulation objective, the simulator re-
places decentralized configuration algorithms
(e.g., for building application-level dissemi-
nation trees) with their centralized alterna-
tives that use global views. As a consequence,
the performance of the centralized versions
we simulate (using global views) is an upper
bound of the performance of original distrib-
uted versions.

e [Isolated evaluation. The dissemination solu-
tions we compare put a different stress on the
network and, consequently, when evaluated in
a competitive environment, may offer better
apparent performance simply by being more
unfair to competing traffic. To overcome this
problem, and enable fair, head-to-head evalu-
ation, we perform our evaluation experiments
in two steps. We first evaluate each dissemi-
nation solution in isolation (Sections 5.2, 5.3,
and 5.4), then we compare their impact on
competing traffic (Section 5.5).

4.3 Simulator Design

For the naive dissemination solution (where the
source sends a copy of the file separately to each
node) as well as for all tree-based solutions where
all flows are stable during the entire simulation,
the simulator analyses the physical topology at
hand, determines the routing paths and the flow
contention at the physical link level, and estimates
transfer performance for each flow which is then
used to compute data transfer times.

For the more complex protocols, Bullet and
BitTorrent, the simulator models each block
transfer independently. This is necessary due to
the non-deterministic nature of these data dissem-
ination solutions.

@ Springer

S. Al-Kiswany et al.

For these protocols, the simulator is composed
of three main modules: routing, peering, and block
transfer. As their names indicate, the routing
module is responsible for running the routing pro-
tocol to decide flow paths using a shortest path
algorithm based on network topology informa-
tion; the peering module is responsible for con-
structing peering relationships between nodes
according to the specific dissemination protocol
specification; and, finally, the block transfer mod-
ule uses the information provided by the two other
modules to simulate block transfers between peers
using the paths provided by the routing module
while accounting for link level contention. We
note that the peering module uses a global view:
every node is fully informed about the content of
every other node, which slightly improves Bullet
and BitTorrent performance.

In more detail, after the routing information for
the topology is computed, the simulation works
in rounds for the two dissemination solutions that
use temporary peering, i.e., Bullet and BitTorrent.
In each round, first, the peering then the trans-
fer module are executed. The peering algorithm
analyzes the content of each node and identifies
the pairs of nodes that have to exchange data in
the next round. Then, using these pairs and the
computed routing paths between nodes, flow-level
simulations can decide on network contention on
each physical link, which determines the amount
of data each flow can carry in the round. Finally,
the set of blocks to be exchanged are selected, the
actual block transfer is simulated, and timers can
be advanced. Note that, while the routing module
is invoked only once at the beginning of the simu-
lation, the peering and the block transfer modules
are invoked in every cycle, thus determining the
overall simulation speed. In our simulation we set
the round length to a quarter of a second, a rea-
sonable small value compared to the time taken
to finish the transfer by the fastest mechanism.

4.4 Simulation Study Scope
In order to focus on the objectives of our study,
we limit the axes over which we vary parameters

to the strictly required ones. This does not impact
the validity of our results, since we are making the

@ Springer

same assumptions uniformly for all solutions we
compare. As a result:

e Consistent to our controlled deployment en-
vironment assumption, we do not attempt to
quantify the impact of node and link volatility.

e We do not quantify the impact of imperfect in-
formation (we compare instantiations of algo-
rithms that use global, complete system views
where required).

e We do not investigate the scalability of these
schemes (though all have been shown to work
well at the scale of today’s Grid deployments).

4.5 Simulator Validation

We validated the correctness of simulator in three
ways: we have inspected detailed execution log,
we have compared simulation results and perfor-
mance predictions obtained analytically on small
topologies, and, finally, we have been able to
reproduce a qualitative result presented in the
Bullet original paper [12]. This section details
these three avenues.

Firstly, we ran a set of Bullet and BitTorrent
simulations on small topologies. For each, we
logged all operations performed by the simulator.
The detailed inspection of the simulator logs ver-
ified that each of the simulator’s three main mod-
ules implements exactly the target mechanisms.

Secondly, we executed simulations on small,
regular topologies for which computing data
transfer times and load balance are tractable ana-
lytically. Simulation results on both these metrics
matched the analytical results.

Finally,we considered repeating the experi-
ments presented in previous Bullet or BitTorrent
publications. Unfortunately we have not been
able to find publications that make the experi-
ments entirely reproducible. There are a number
of reasons: the physical topologies used were not
described in enough detail, or the results were
based on experiments performed on non-isolated
testbeds (e.g., PlanetLab [49]) where uncontrolled
competing traffic influenced the results presented,
or the level of abstraction used in simulations
was different, or, finally, the simulation focused
on evaluating performance in presence of nodes
failures.

An evaluation of peer-to-peer data dissemination techniques

To avoid these issues we attempted to repro-
duce the main qualitative result of Kostic al. [12]
using our simulator. To this end we compared
the performance of Bullet using a bandwidth op-
timized tree (Bulletgor) and that of Bullet using
a randomly generated tree (Bulletrandrree). We
simulated these two Bullet versions on three real-
world testbeds (described in Section 5.1). Our
results confirm the results of Kostic et al., namely
that, Bullet performance is largely unaffected by
the type of the dissemination tree selected for the
data main stream dissemination.

4.6 Simulator Evaluation

We designed our simulator with strong emphasis
on accuracy and less on simulation performance.
This section presents the complexity of the simu-
lation for the most compute intensive strategies,
evaluates the simulator performance in a practical
setting, and compares the simulator performance
with that of simulators used for similar studies.

IP-multicast, ALM, logistical multicast,
SPIDER and independent transfers from the
source to every node use deterministic protocols
and the data distribution paths are stable
during data dissemination. Consequently, their
simulation is less complex than that of BitTorrent
and Bullet, which use block level simulation.

Bullet and BitTorrent simulation starts with
running the same routing module. However, each
of them has a complex peering and block trans-
fer module reflecting the respective protocol’s
characteristics. Since these are the most complex
protocols we simulate, they limit the size of the
physical topologies we can explore. Table 1 de-
tails the complexity of each module for these two
protocols.

Table 1 shows that the BitTorrent simulation
has a higher complexity. This is a result of the

—> Bullet
1000 | —*— BitTorrent

Simulation time (minuets) .
D
S

0 - M
1 2 4 8 16

Number of blocks (in thousands)

Fig. 1 Simulation time for a 25 node topology and 1 GB
file

complex peering (tit-for-tat) and block selection
(rarest-first) policies used.

To evaluate the simulator performance in real
settings we generated a set of Waxman topolo-
gies using BRITE [50] with different number of
nodes and simulated the distribution of 1 GB files
with different number/size of blocks. All simu-
lations were executed on a system with an Intel
P4@2.8 GHz processor and 1GB of memory.

Figures 1 and 2 present the time required to
simulate data dissemination with Bullet and Bit-
Torrent. Practically, for BitTorrent and Bullet
the simulator can simulate the distribution of a
file split into a few thousands of blocks to few
hundreds of nodes (a typical setting in today’s
scientific collaboration systems) in few hours. We
note that simulating the other protocols is much
faster: topologies with few thousands end-nodes
can be simulated in a few minutes.

Although we have not focused on perfor-
mance (e.g., we implemented the simulator in
Python), our simulator performance compares
well to others described in literature. For instance,
Bharambe et al. [14] present results for simulating

Table 1 The complexity of Bullet and BitTorrent protocol’s modules

Module Bullet BitTorrent
Routing O(E? x L) O(E®* x L)
Peering O(F? x B x Log(B)) O(E? x B.Log(B)+ E%)

Block transf. O(E x Px B)

O(E x P* + E x P x Log(N))

E the number of end nodes, L the number of links in the physical network topology, B the number of file-blocks, P the

number of peers per node

@ Springer

S. Al-Kiswany et al.

w2
[=}
f=}

—><— Bullet
—o— BitTorrent

[oe]

W

(=}
L

I3

(=3

(=}
L

Simulation time (minuets) .
S "
(=} (=)
‘ ‘

W
[}
L

25 50 100 200
Number of nodes

Fig. 2 Simulation time for disseminating a 1 GB file (di-
vided into 2,000 blocks)

a network with 300 simultaneously active nodes
and 100 MB file of 400 blocks, without incor-
porating physical topologies and consequently
not simulating network contention. Similarly,
Gkantsidis and Rodriguez [51] present a simula-
tion results for a topology of 200 nodes and a
file split in 100 blocks. They use a simplified net-
work topology model with infinite core capacity
and bandwidth constraints only on access links.
Further, their simulations are simplified by using
overlay topologies that are computed offline.

5 Simulation Results

This section presents the results of our compre-
hensive simulation study. We detail our experi-
mental setup in Section 5.1 and present simulation
results that compare, along multiple success met-
rics, the techniques we study. We present the data
dissemination time in Section 5.2, protocol over-
head in Section 5.3, load balancing characteristics
in Section 5.4, and fairness to competing traffic in
Section 5.5. Section 5.6 presents an experimental
validation of our choices of protocols parameters
for Bullet and BitTorrent.

5.1 Experimental Setup
We use the physical network topologies of three

real-world Grid testbeds LCG [16], EGEE and
GridPP [18] (Figs. 3, 4, 5). The authors of the

@ Springer

above references have obtained the above topolo-
gies either from the network monitoring data [17]
or from publicly available information on connec-
tivity and link bandwidth [16]. The LCG topology
incorporates 121 sites connected through 10 Gbps
core links. EGEE and GridPP are smaller and
have similar characteristics to LCG in terms of
network core bandwidth and access link to core
link bandwidth ratio.

Additionally, to increase the confidence in our
results, we generated three other sets of Waxman
topologies using BRITE [50]. The first two sets
have the same number of intermediate and end-
nodes and constant overall bandwidth, but they
differ in the density of network links in the core.
Comparing results on these two sets of topologies
gives a more direct measure of the degree to
which various proposed protocols are effective in
exploiting network path diversity.

The third generated set has a higher number
of intermediate and end-nodes (around 500 nodes
total). As these additional experiments mainly
validate our simulation results, we do not provide
their detailed description in here.

All simulations explore the performance of dis-
tributing a 1 GB file over the different topologies.
Bullet and BitTorrent are configured to work with
two and four peers, respectively. We chose these
configurations as they offer optimal performance
in the topologies we modeled in our experiments
(details about how we reached this conclusion are
presented in Section 5.5).

The simulations use a default block size of
512KB as in deployed BitTorrent systems [11, 52].
We experimented with multiple block sizes but
since the block size does not have a significant
impact on performance, we do not include these
results in here.

5.2 Performance: File Transfer Time

As discussed in Section 3.3, depending on the
application context, the performance focus can
be on minimizing the average, median, Nth per-
centile, or the highest transfer time to destination.
To cover all these performance criteria, for each
data dissemination technique we present the evo-
lution, in time, of the number of destinations that
have completed the file transfer.

An evaluation of peer-to-peer data dissemination techniques

—— 10 Gbps O Tier-0 site
— 3Ghps B TierI site M Edinburgh
— 2.5 Gbps . . Glasgow H M Durham
— | Gbps B Tier-2site Manchester W] Birmingham Nordic
622 Mbps W Router Liverpool H B Cambridge
155 Mbps Sheffield l B Warwick
:z e DI;:ﬂ'::STEf = = thag - & " B RUSSIAN T2
it e B Susex B !
Alberta Carleton : a
TRIUMF i m Brisiol W B Brunel] ™
- oronto
Victoria [l “;w(’"d o B omuL .. TO Japan
| |
B Warszawa

B Montreal

B Krakow

Beijing [Boston
Chicago Il M Harvard WP
‘\. Wisconsin W MIT = A ﬂ" : e
Indiana W g upgertal
Purdue - M Freiburg E
B Caliech WRWIH o e
TO France B UCsD B Mainz B KFKI
m Gs!
./ SZTAKI
ICEPP. Langston |] | u
New Mexico Debrecen
. [|
O France : UIBK
0 ' CIEMAT l 150
=] I EHE
Arlington ll Florida Fic W] B Roma : TO Indis
PAECH M Frascati
ASCC
Nce B | | Catania [l B Napoli
UNEsP W &
NusTH B Melbourne B UrRJ Legnaro Il B B Torino B WEIZMANN
|] Milano []
B yecoisme UERI B CBPF M TEL AVIV
TIFR M HATFA
Fig. 3 LCG topology. In all simulations the data dissemination source is the CERN node (source [16])
Fig. 4 EGEE topology. RAL
In all simulations the
data dissemination source
. Moscow
is the CERN node
(source: [17]) Wisconsin Russia
i 155M
France Switzerland
Padova/Legamo

Caltech
622M XS Bari

45M

@ CMS testbed site Catania

@ Router

Bologna Firenze

@ Springer

S. Al-Kiswany et al.

Fig. 5 GridPP topology. Glasgow
In all simulations the data 200, 10
source is the CERN node

(source: [18])

Lancaster
320,364

Manchester

225,10

Liverpool
1890, 163

Birmingham
150, 9

Oxford
412,38

Bristol
300,20 HHH

Edinburgh
40, 64

Durham
78,5.3

Sheffield
365, 13.6

Cambridge
8,33

UCL
150, 15

Imperial
1100, 40
QMW
220,20

Brunel
306, 28

ﬁ GridPP site and resoures

§ Router

_1G Bandwidth in Mb/s or Gb/s

CERN

Figures 6, 7 and 8 present this evolution for
the original LCG, EGEE, and GridPP topologies,
respectively. Despite the different experimental

1207 gl geesetterteed G 3
110 i

100
£ 90
Z 80
= 707
D 604 —— Bullet
2 —&— Separate transf
= 50 —— ALM
g 404 —0— IP-Multicast
3 — — Logistical MT
5 307 —=— BitTorrent
220
10

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (10s)

Fig. 6 Number of destinations that have completed the file
transfer for the original LCG topology (separate transfer
technique finishes the transfer at 730 s, not presented in
the plot for better readability)

@ Springer

results for these topologies, the following obser-
vations are common.

IP-multicast and Logistical Multicast are the
best solutions to deliver a file to the slowest node

20 —— Bullet
—&— Separate transf
—— ALM ;
—8— IP-Multicast
— — Logistical MT
—a— BitTorrent
I
I pagin
)

| 0000000,
[

[
sosod

AARAARZAA OO OO O00O0O00OO0O000O0O000OO0000O00000000m:

AAAAAA

oﬁ&ooooooooooé o
A

—
w
I

—_
(=}
L

W
I

AA.

of completed transfers

O T T T T T T T T T T T T T T T T T T T
012345678 91011121314151617 1819
Time (10s)

Fig.7 Number of destinations that have completed the file
transfer for the original EGEE topology

An evaluation of peer-to-peer data dissemination techniques

20 —— Bullet
—&— Separate transf
—6— ALM
—8—[P-Multicast
— — Logistical MT
—&— BitTorrent

v
L

of completed transfers .
f=}

v
L

DDDDDDDDDDDDDDDDDDD

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Time (s)

Fig.8 Number of destinations that have completed the file
transfer for the original GridPP topology

as they optimally exploit the bandwidth on bottle-
neck links. SPIDER is not presented here because
it does not build more than one dissemination
tree, and thus it is equivalent to IP-multicast for
these three topologies.

IP-multicast provides the worst intermediate
progress. The explanation is that IP-multicast
does not include buffering at intermediate points
in the network and limits its data distribution rate
to the rate of the bottleneck link.

Logistical Multicast is among the first to com-
plete the file dissemination process and also of-
fers one of the best intermediate progress per-
formance. This is a result of its ability to store
data at intermediate routers as well as a result
of the bandwidth distribution in these topologies:
the bottlenecks are the site access links and not
the links at the core of the network. As a result,
Logistical Multicast is able to push the file fast
through the core routers that border the final
access link and thus offer near optimal interme-
diate distribution times.

Application-level multicast (ALM), Bullet and
BitTorrent perform worse, but comparable to
Logistical Multicast both in terms of finishing time
as well as intermediate progress. They are able
to exploit the plentiful bandwidth at the core and
their performance is limited only by the access link
capacity of various destination nodes.

As expected, the naive technique of distrib-
uting the file through independent streams to
each destination does not offer any performance
advantage. Surprisingly, however, on these over-

provisioned networks, its performance is compet-
itive with that of other methods.

The surprisingly good performance of par-
allel independent transfers in these topologies
clearly indicates that the network core is over-
provisioned. Even with all nodes pairing up and
exchanging data at the full speed of their access
links, core links are far from being fully used.

We are interested in exploring the performance
of data dissemination techniques at various core-
to-access link capacity ratios for the following two
reasons. First, if the core is over-provisioned, we
would like to understand how much bandwidth
(and eventually cost) can be saved by reducing
the core capacity without significantly altering
the data dissemination performance. Second, we
aim to understand whether independent trans-
fers perform similarly well when compared to
the more sophisticated techniques under different
network conditions. Stated otherwise, we aim to
quantify the performance gains (in terms of dis-
semination time) that complex data dissemination
techniques offer when operating on less-endowed
infrastructures.

With these two goals in mind we ran the same
simulations on a set of hypothetical topologies.
These topologies are similar to the original LCG,
EGEE and GridPP topologies except that the
bandwidth of the core links (the links between
the core routers) is 1/2, 1/4, 1/8, 1/16 or 1/32 of the
original core link bandwidth.

Figures 9, 10 and 11, present the time to com-
plete the transfer to 50%, 90% and all destinations
for the LCG, EGEE, and GridPP topologies, re-
spectively, with different core link bandwidth. We
summarize our observations below.

Most importantly, we observe that the per-
formance of the parallel independent-transfers
technique degrades much faster than the perfor-
mance of any other technique when the band-
width in the core decreases. Additionally, the
performance of the more sophisticated dissem-
ination schemes does not degrade significantly
when reducing the core capacity. This is testament
to their ability to exploit orthogonal bandwidth.
Furthermore, it is an indication that similar per-
formance can be obtained at lower network core
budgets by employing sophisticated data distribu-
tion techniques.

@ Springer

S. Al-Kiswany et al.

[] Bullet

= Lo%\i/?tical MT
Bl AL £ BitTorrent

- 800 7 IP-Multicast [0 Separate transf
2700 [[f

200 A |
]
100 !
12 1/4 1/8

Core links reduction ratio

w N w =3
=3 =3 =3 (=3
S S S S
! ! ! !

L LE LI E L L L L L LT

o

Time to complete 90% of the trasnfer (sec)

<]

T

T
1/16 1/32

Fig. 9 Time to finish the transfer to 90% of the nodes for
the original LCG topology and the topology with reduced
core bandwidth. The lower error bar indicates the time
to complete the transfer for 50% of the nodes while the
top error bar indicates the time to complete the transfer
for the last node. Separate transfer finishes in 2,280 s on
the topology with core bandwidth reduced to 1/32 (not
presented here for clarity)

In addition, based on results obtained with re-
duced core capacity, we observe the following.
First, ALM and Logistical Multicast offer good
intermediate progress, while their completion
time, limited by a bottleneck link, is similar to
simple IP-multicast. Second, although Bullet and
BitTorrent offer good intermediate progress by
exploiting orthogonal bandwidth, their dissem-
ination completion time is worse than that of
tree-based solutions. The reason is that, as we

6004 |E Logistical MT [Bullet
Bl ALM ¥ BitTorrent
(3 TP-Multicast

w

=3

(=]
!

[0 Separate transf

] w S~
(=3 (=3 (=3
(=1 (=1 (=1
! ! !

(=3
=1
!

Time to complete 90% of the trasnfer (sec)

)
-
)

=1
L

1/16

Core link reduction ratio

Fig. 10 Time to finish the transfer to 50%, 90%, and all
nodes for the EGEE topology-original and reduced core
bandwidth

@ Springer

600 1| = Logistical MT [Bullet
& ALM 4 BitTorrent
500 1Bl TP-Multicast [Separate transf]

Time to complete 90% of the trasnfer (sec)
(98]
(=3
(=}

N f@"f@%
il | |
1 172 1/4 18

Core link reduction ratio

Fig. 11 Time to finish the transfer to 50%, 90%, and all
nodes for the GridPP topology-original and reduced core
bandwidth

demonstrate in Section 5.3, these algorithms gen-
erate higher network traffic overheads, and on
constrained networks, these overheads lead lower
dissemination performance.

To further investigate the ability to exploit
alternate network paths, we have generated two
sets of topologies in which the aggregate core
bandwidth is maintained constant but the number
of core links is changed. Figure 12 compares the
intermediate progress of the BitTorrent and ALM
protocols on these two topologies: the ‘dense’
topology has four times more links in the core
(and four times lower average core link band-
width). As shown in Fig. 12, BitTorrent perfor-

60
—e— BitTorrent sparse

50 4| —o— BitTorrent dense
w1
E —&— ALM sparse
Z 40 4
8 —— ALM dense
2 30+
3
=%
g 20
o
o
3 10
2 i

O T

A
0 2 4 6 8 10 12 14 16 18 20
Time (s)

Fig. 12 Number of destinations that have completed the
file transfer with two generated topologies. The dense
topology has four times more links in the core with four
times less average bandwidth per link

An evaluation of peer-to-peer data dissemination techniques

mance is better with more links in the core while
ALM performance slightly degrades. These re-
sults underline BitTorrent’s ability to exploit all
available transport capacity. Bullet shows similar
behavior.

Summary

Three key conclusions can be derived from the
above simulation results:

e In the real Grid deployments analyzed, net-
works appear to be over-provisioned and, in
these conditions, even naive algorithms per-
form well.

e The group of application-level schemes such
as Bullet, BitTorrent, and ALM are initially
within the same ballpark compared to others.
Since Bullet and BitTorrent generate higher
overheads (discussed in the next section),
ALM performance starts to dominate for
more constrained cores. We note, however,
that Bullet and BitTorrent have other addi-
tional intrinsic properties (e.g., tolerance to
node failures) that make them attractive in dif-
ferent scenarios, such as high churn conditions
specific to peer-to-peer systems.

e Bullet and BitTorent are more efficient in
exploiting the orthogonal bandwidth available
between the participating nodes, thus better
able to cope with different topologies and
adapt to dynamically changing workloads.

5.3 Overheads: Network Effort

A second important direction to compare data
dissemination solutions is evaluating the overhead
they generate.

The traditionally used method to compare
overheads for tree-based multicast solutions is
to compare maximum link stress (or link stress
distributions); where link stress is defined as the
number of identical logical flows that traverse the
link. However, this metric is irrelevant for Bullet
or BitTorrent as these protocols dynamically
adjust their distribution patterns and, therefore,
link stress varies continuously during the data
dissemination process.

For this reason, we propose a new metric to
estimate overheads. We estimate the volume of
duplicate traffic that traverses each physical link
and aggregate it over all links in the testbed. While
individual values of this metric are not relevant
in themselves, they offer interesting insights when
comparing distinct protocols.

Figure 13 shows the generated traffic (labeled
as useful or duplicate) for each protocol for the
original LCG. We define as useful the data traffic
that remains after excluding all link-level packet
duplicates. Note that the volume of useful traf-
fic differs between the protocols since different
schemes map differently on the physical topology.

The following observations can be made based
on Fig. 13 (and can be generalized, as there is
little variance across various topologies). First, as
expected, IP-layer solutions do not generate any
duplicates and thus are optimal in terms of total
generated traffic.

Second, Bullet, BitTorrent and ALM require
significantly higher network effort even without
considering the duplicates. This is the result of
node pairing relationships in these schemes that
pay little consideration to the nodes location in the
physical network topology.

When considering duplicate traffic, Bullet
emerges as the largest bandwidth consumer. This
is because Bullet uses approximate representa-
tions of the set of blocks available at each node
and the upload decision is made at the sender
node depending on the receiver content summary.
False negatives on the approximate data represen-
tations thus generate additional traffic overhead.

800 M Duplicate
B Useful

700

wn (=N
(=3
(=}

I

Total trafic volume (GB)
W A
(=1 f=1 f=1 f=3 [=1
(=] (=] f=] f=] f=] [=]

—_

BitTorrent 1P- ALM
Multicast

Bullet Separate

transfers

Fig. 13 Overhead for each protocol on the LCG topology

@ Springer

S. Al-Kiswany et al.

BitTorrent generates slightly smaller overheads as
nodes employ exact representations (bitmaps) to
represent the set of blocks available locally.

ALM trees also introduce considerable over-
head as the tree construction algorithm is op-
timized for high-bandwidth dissemination and
ignores nodes’ location in the physical topology.

Finally, one observation applies equally to all
application level techniques studied: the over-
head share in the generated traffic grows with
the size of the topology. For example, while for
the EGEE topology the ratio of duplicate traffic
is between 43% (for BitTorrent) and 66% (for
separate transfers), it grows to 55% (for ALM)
and 74% (for separate transfers) for the LCG
topology.

Summary

Application-level data dissemination solutions
generate significant overheads: their generated
traffic volume is up to four times larger than
that generated by optimal IP-level solutions. The
reason is that application-level techniques base
their dissemination decisions on application level
metrics rather than on node topology location.
Consequently, traffic often does not use optimal
network paths and the same block of data travels
multiple times on the same physical link or is sent
multiple times through the core through different
network paths.

5.4 Load Balance

Another metric to evaluate the performance
of data dissemination schemes is load balance.
To this end, we estimate the volume of data
processed (both received and sent) at each end-
node. Obviously, network-layer techniques (e.g.,
IP-multicast, SPIDER, logistical multicast) that
duplicate packets at routers or storage points
inside the network will offer ideal load balance
by taking over all work performed by end-nodes
while using the other application-level techniques.

At the other end of the spectrum, sending data
through independent connections directly from
the source will offer the worst load balance, be-
cause the load at the source is directly propor-
tional to the number of destinations.

@ Springer

13
" + Bullet
11
X
» ALM
— 9 + BitTorrent
m
<)
= 7K
<
S e
51 @ X
Y
3f H
1 T

0 20 40 60 80 100 120
Rank (nodes ranked by load)

Fig. 14 Load balancing for ALM, BitTorrent and Bullet.
Nodes are ranked in decreasing order of their load (LCG

topology)

Figure 14 presents the load balancing perfor-
mance of the remaining techniques: ALM, Bit-
Torrent, and Bullet for the LCG topology. For the
other topologies, the relative order of these tech-
niques in terms of load balance does not change.
Thus we do not present these results here.

ALM has the worst load balance among the
three solutions as it tends to increase the load
on the nodes with ample access-link bandwidth.
Of the remaining two, BitTorrent offers slightly
better load balance than Bullet due to its tit-for-tat
mechanism that implicitly aims to evenly spread
data dissemination efforts.

Summary

Application-level solutions offer better load bal-
ance than the naive solution of sending the data
through separate channels from the source to
each destination. Additionally, BitTorrent offers
the best load balance among application-level
solutions.

5.5 Fairness to Competing Traffic

While all the application layer dissemination
schemes we analyze use TCP or a TCP-friendly
congestion control scheme for data exchanges
between each individual pair of nodes, they dif-
fer in their impact on the network and on the
competing traffic. Some of these dissemination
schemes generate a large number of network flows
that are sometimes mapped randomly over the

An evaluation of peer-to-peer data dissemination techniques

20
18 1% 4 Bullet Avg
16 O BitTorrent Avg
141 x ALM
212 4,0
210 A T
A g
6 1 RRRAIIROIAAROAK
4 1 o
2 Y Y YVYYYYVYVYY
0 T

0O 5 10 15 20 25 30 35 40 45 50
Rank (links ranked by stress)

Fig. 15 Average link stress distribution for BitTorrent,
Bullet and ALM over the LCG topology. The plot presents
average link stress for the most stressed 50 links

network topology, and hence they have the poten-
tial to stress bottleneck links and, consequently,
impact the network flows generated by other ap-
plications. We are not aware of any related work
analyzing this impact, and implicitly, the fairness
of data dissemination techniques to competing
traffic.

Our evaluation of fairness is complicated by
the fact that, unlike for unicast traffic, for single-
source-multiple-destinations traffic there is no
commonly accepted definition of fairness. Even
for IP-multicast, although fairness has been ex-
haustively studied [53], there is still no general
consensus on what should be the relative fairness
between multicast and unicast traffic.

In general, with multicast traffic, multiple band-
width allocation policies are possible. For exam-
ple, on one side, at the individual physical link
level, a multicast session might deserve more
bandwidth than a point to point flow (e.g., a TCP
connection) as it serves multiple receivers. On the
other side, however, it is also reasonable to argue
that a multicast session should not be given more
bandwidth than individual point to point flows,
in order not to penalize competing unicast flows
that share a portion of the path with the multicast
session.

Different data dissemination solutions that
work at the application-layer have different im-
pact on competing traffic. For example, at one
end of the spectrum, a logistical multicast scheme
with intermediary storage nodes placed close to

network routers will be similar in impact to
[P-multicast. At the other end of the spectrum,
solutions that create a distribution tree for each
participating node have the highest impact on
competing traffic. For instance, in FastReplica
[54], the source node divides the file into n equal
blocks (where n equals the number of partici-
pating nodes) and sends each block to one of
the participating nodes. After receiving the first
block from the source, each node opens n— 1
separate channels and sends the block to every
other participating node. This solution creates a
number of (n — 1) x (n — 2) flows simultaneously
and is clearly unfair to competing traffic.

From the possible set of metrics to estimate
the impact of competing traffic, we choose link
stress distribution. The higher the number of flows
a data dissemination scheme maps on a physical
link, the higher its impact on competing traffic.
This impact is non-negligible, as Fig. 15 presenting
the average link stress distribution for the LCG
topology shows. In fact, the maximum link stress
generated by Bullet and BitTorrent can be signif-
icantly higher; as high as 70 on the LCG topol-
ogy, Fig. 16 shows. This implies that, if a unicast
transfer shares its bottleneck link with a link on
which Bullet or BitTorrent generates such stress,
its allocated bandwidth is drastically reduced.

ALM tends to stress more the links around the
nodes with high access link bandwidth, since these
nodes are favored to have many children nodes
in the bandwidth optimized dissemination trees.

80
70 15 4 Bullet Max
[m]
60 o BitTorrent Max
‘DDDD X ALM
o S04 DDDDmDD
O 40 - “.“ -
a Ady, u]
30 Aaaga, Ho
A, Oomooo,
20 1% AAA““AAA“A‘ ED[};Q;Q;
X AAA
10 7 mxwmmzccccc:c::ccccccccccc: I
T

O T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50
Rank (links ranked by stress)

Fig. 16 Maximum link stress distribution of BitTorrent
and Bullet over the LCG topology. The plot presents
maximum link stress for the most stressed 50 links

@ Springer

S. Al-Kiswany et al.

Similarly, the technique of sending the file from
the source to each destination through indepen-
dent channels is the worst in terms of fairness to
competing traffic, since the generated stress on the
access link of the source is proportional with the
number of destinations.

Of course, this is not a phenomenon particular
to Grids. In fact, the generous network provision-
ing in the topologies we analyze masks the prob-
lems raised by the lack of fairness. However, we
believe that presenting fairness metrics is germane
to our evaluation.

Summary

While IP multicast offers 1ideal fairness,
application-level solutions have a high impact
on competing traffic. Overall BitTorent and
Bullet are fairer than ALM, since our ALM
tree construction favors the nodes with high
bandwidth leading to more connections around
these nodes.

5.6 The Effect of Bullet and BitTorrent
Configurations

The number of ‘peering relationships’, that is, the
number of nodes each node exchanges data with,
is a configuration parameter specific for Bullet
and BitTorrent. To understand and make sure
we configure these two protocols optimally for
our environments, we have experimented with
different configurations for the number of peering
relationships.

We found that, for our topologies, configuring
Bullet with two peers and BitTorrent with four
peers in EGEE and GridPP topologies and eight
peers in LCG topology provides the fastest data
dissemination. We note, however, that the differ-
ences in dissemination speed among various con-
figurations are minor compared to the differences
among dissemination schemes.

The generated traffic volume remains constant
for BitTorrent, while it linearly, and non-trivially,
increases with the number of peers for Bullet. This
is a consequence of exchanging probabilistic sum-
maries in Bullet as opposed to accurate, though
slightly larger, summaries in BitTorrent. We esti-
mate that, for large files, the additional control

@ Springer

overhead required to provide accurate summaries
in Bullet will be entirely compensated by lower
duplicate traffic.

In terms of load balancing, the Bullet config-
uration with two peers provides the best load
balancing, while using more than the default four
peers (as in our experiments) slightly improves
load balance for BitTorrent.

In terms of fairness to competing traffic, in-
creasing the number of peers generally results
in reduced fairness on links around nodes with
high access bandwidth, since these nodes get data
sooner in the replication process and serve more
collaborating peers.

Summary

For our topologies, configuring Bullet with two
peers and BitTorrent with four peers in EGEE
and GridPP topologies, and eight peers in LCG
topology, provides the fastest data dissemination.
Increasing the number of peers provides bet-
ter load balancing without generating additional
overheads. Additionally, increasing the number of
peers in Bullet and BitTorrent reduces fairness
around the nodes with high access bandwidth, as
these nodes obtain the complete file first in the
data dissemination process and continue to serve
a large number of nodes.

6 Summary

This study focuses on the problem of disseminat-
ing large data volumes from one source to multi-
ple destinations in the context of today’s science
Grids. Data dissemination in these environments
is characterized by relatively small collaborations
(tens to hundreds of participating sites), large data
files to transfer, well-provisioned networks, and
collaborative participants.

The objective of this study was to provide an
experimentally-supported answer to the question:
Given the characteristics of deployed Grids, what
benefits can peer-to-peer solutions offer for one-
to-many data dissemination?

Table 2 summarizes, for each data dissemina-
tion solution studied, its characteristics: that is,

An evaluation of peer-to-peer data dissemination techniques

UOTIBIIPISUOD IOpUN WSTURYdAW a3y} }10ddns 0} popasu 2INjoNI)SBIul JI0M)OU 91} UT SOSURYD JO JUNOWE) SOJLWIIS J1070 juowiordoq

90IN0S Y} (oyyen Sunodwod
sty y3sryg USty punole IsoySIy MO MO MO uo joedwr) ssourreJ
WNIPIA WNIPaA WNIPIA peqg (rewndo) poon (tewmndo) pooy ([ewndo) poory 2due[Rq PEO[9pOU-PUT
43ty y3ry y3ry ydry (rewndo) mo (rewndo) mo7 (fewndo) mog peayI0AQ
ssa1301d ojeIpowIoIUL
poon poon poon peq pooH peq peq UOT}RUTWASSI(]
A3o10do) o) awn ysmuy
uo spuado(g Iseg MO[S Iseq Iseg Iseq UOTJBUTWASSI(] QOUBWLIOJIOJ
QUON QUON QUON QUON sy y3siyg WNIPIA 110J30 yuowkordo(q
AJuo -ojur
qIpmpueq UOT}BULIOJUT
ON ON [oA9r-1dd vy ON SOA SOA Sox ASojodoj reorsdyd sesn
S90I) PAILAId JO
Ioqunu 2y} uonejordxs
SOX SOX ON ON ON Aq poyuury ON UIpmpueq [euo3oyliQ
SOX SOX ON ON ON SOX ON Suruonnaed ejeq
SOX SOX SOX ON SOX ON ON Suideys ele sonsuolORIRY))
JUSLIO)-)Y wIng TV~ Uonnjos aAleN T JddIds isednnui-d1 BLIDILIS UONN[OS

S)[nsaI jo Arewrwing g d[qe],

pringer

As

S. Al-Kiswany et al.

which approach to accelerate data dissemination
is used, whether the solution uses physical net-
work topology information to make decisions, and
gauges the complexity of the changes required
to the networking infrastructure to deploy the
solution in practice. The table also summarizes
the performance characteristics of the solutions
studied in terms of the four success metrics de-
scribed in Section 3.3: transfer time, generated
overhead, end-node load balancing, and fairness
to competing traffic.

In summary, our simulation-based investigation
of seven solutions selected from a set of successful
Internet data-delivery and peer-to-peer deployed
systems shows the following:

e Some of today’s Grid testbeds are over-
provisioned. In this case, the deployment is
scalable with the size of the user community,
and peer-to-peer solutions that adapt to dy-
namic and under-provisioned networks do not
bring significant benefits. While they improve
load balance, they add significant overheads
and, more importantly, do not offer significant
improvements in terms of distribution time.

e Application-level schemes such as BitTorrent,
Bullet and application-level multicast perform
best in terms of dissemination time. However,
they introduce high-traffic overheads, even
higher than independent parallel transfers. On
the other hand, BitTorrent and Bullet are
designed to deal with dynamic environment
conditions, a property which might be desir-
able in some scenarios.

e The naive solution of individual data transfers
from source to each destination yields rea-
sonable performance on well-provisioned net-
works but its performance drops dramatically
when the available bandwidth decreases. In
such cases, adaptive, peer-to-peer like, tech-
niques able to exploit multiple paths exist-
ing in the physical topology can offer good
performance on a network that is less well
provisioned.

To summarize, the peer-to-peer solutions that
offer load balancing, adaptive data dissemina-
tion, and participation incentives lead to unjusti-
fied costs in today’s scientific data collaborations
deployed on over-provisioned network cores.

@ Springer

However, as user communities grow and these
deployments scale (as already seen in the Open
Science Grid [55], for example) peer-to-peer
data delivery mechanisms will outperform other
techniques.

In any case, network provisioning has to prog-
ress hand-in-hand with improvements and the
adoption of intelligent, adaptive data dissemina-
tion techniques. In conjunction with efficient data
distribution techniques, appropriate network pro-
visioning will not only reduce costs while building/
provisioning collaborations, but also derive im-
proved performance from deployed networks.

References

1. The Large Hardon Collider. http://lhc.web.cern.ch/lhc/.
Accessed 2008

2. The Spallation Neutron Source. http://www.sns.gov/.
Accessed 2008

3. The DO Experiment, Fermi National Laboratory.
http://www-d0.fnal.gov. Accessed 2008

4. The TeraGrid: a primer. http://www.teragrid.org
(2004). Accessed 2008

5. Brown, M.: Blueprint for the future of high-
performance networking. Commun. ACM 46(11),
30-77 (2003)

6. Allcock, W., Chervenak, A., Foster, 1., Kesselman,
C., et al.: Protocols and services for distributed data-
intensive science. In: Advanced Computing and Analy-
sis Techniques in Physics Research (ACAT), AIP
Conference Proceedings (2000)

7. Bassi, A., Beck, M., Moore, T., Plank, J.S., et al.
The internet backplane protocol: a study in resource
sharing. Future Gener. Comput. Syst. 19(4), 551-561
(2003)

8. Terekhov, 1., Pordes, R., White, V., Lueking, L., et al.:
Distributed data access and resource management in
the DO SAM system. In: IEEE International Sym-
posium on High Performance Distributed Computing
(2001)

9. Wang, F., Xin, Q., Hong, B., Brandt, S.A., et al.:
File system workload analysis for large scientific com-
puting applications. In: NASA/IEEE Conference on
Mass Storage Systems and Technologies (MSST 2004)
(2004)

10. Iamnitchi, A., Ripeanu, M., Foster I.: Small-world file-
sharing communities. In: Infocom 2004, Hong Kong
(2004)

11. Cohen, B.: BitTorrent web site. http://www.bittorrent.
com. Accessed 2008

12. Kostic, D., Rodriguez, A., Albrecht, J., Vahdat A.: Bul-
let: high bandwidth data dissemination using an overlay
mesh. In: SOSP’03, Lake George, NY (2003)

13. Guo, L., Chen, S., Xiao, Z., Tan, E., et al.. Mea-
surements, analysis and modeling of BitTorrent-like

http://lhc.web.cern.ch/lhc/
http://www.sns.gov/
http://www-d0.fnal.gov
http://www.teragrid.org
http://www.bittorrent.com
http://www.bittorrent.com

An evaluation of peer-to-peer data dissemination techniques

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

systems. In: ACM SIGCOMM Internet Measurement
Conference, New Orleans, LA (2005)

Bharambe, A.R., Herley, C., Padmanabhan, V.N.:
Analysing and improving a BitTorrent network’s
performance mechanisms. In: The 25th Annual Joint
Conference of the IEEE Computer and Communica-
tions Societies (INFOCOM 2006), Barcelona, Spain
(2006)

Plaza, A., Valencia, D., Plaza, J., Martinez, P.: Com-
modity cluster-based parallel processing of hyperspec-
tral imagery. J. Parallel Distrib. Comput. 66(3), 345-
358 (2006)

Doyle, A.T., Nicholson, C.: Grid data management:
simulations of LCG 2008. In: Computing in High
Energy and Nuclear Physics, CHEP’06, Mumbai, India
(2006)

Cameron, D.G., Millar, A.P., Nicholson, C., Carvajal-
Schiaffino, R., et al.: Analysis of scheduling and replica
optimisation strategies for data Grids using OptorSim.
J. Grid Comput. 2(1), 57-69 (2004)

Britton, D., Cass, A.J., Clarke, P.E.L., Coles, J.C.,
et al.: GridPP: meeting the particle physics computing
challenge. In: UK e-Science All Hands Conference
(2005)

Tamnitchi, A., Doraimani, S., Garzoglio, G.: Filecules
in high-energy physics: characteristics and impact
on resource management. In: HPDC 2006, France
(2006)

Gummadi, K.P., Dunn, R.J., Saroiu, S., Gribble, S.D.,
et al. Measurement, modeling, and analysis of a
peer-to-peer file-sharing workload. In: SOSP’03, Lake
George, NY (2003)

Bellissimo, A., Shenoy, P., Levine, B.N.: Exploring
the Use of BitTorrent as the Basis for a Large Trace
Repository, University of Massachuttes—Ambherst
Williamson, B.: Developing IP Multicast Networks,
vol. I. Cisco Press 592 (2008)

Chu, Y.-h., Rao, S.G., Seshan, S., Zhang, H.: A case
for end system multicast. IEEE J. Sel. Areas Commun.
20(8), 1489-1499 (2002)

Diot, C., Levine, B.N., Lyles, B., Kassem, H., et al.:
Deployment issues for the IP multicast service and
architecture. IEEE Netw. 14(1), 77-88 (2000)
Touch, J.D.: Overlay networks. Comput.
36(2001), 115-116 (2001)

Wolski, R.: Forecasting network performance to sup-
port dynamic scheduling using the network weather
service. In: Proc. 6th IEEE Symp. on High Perfor-
mance Distributed Computing, Portland, Oregon
(1997)

Vazhkudai, S., Schopf, J., Foster, I.: Predicting the
performance of wide-area data transfers. In: 16th
International Parallel and Distributed Processing
Symposium (IPDPS 2002). Fort Lauderdale, FL
(2002)

Vazhkudai, S., Tuecke, S., Foster, I.: Replica selec-
tion in the globus data Grid. In: IEEE Interna-
tional Conference on Cluster Computing and the Grid
(CCGRID2001), Brisbane, Australia (2001)

Beck, M., Moore, T., Plank, J.S., Swany M.: Logisti-
cal networking: sharing more than the wires. In:

Netw.

31.

32.

33.

34.

3s.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Active Middleware Services Workshop, Norwell, MA
(2000)

. Ganguly, S., Saxena, A., Bhatnagar, S., Banerjee, S.,

et al.: Fast replication in content distribution overlays.
In: IEEE INFOCOM, Miami, FL (2005)

Byers, J.W., Luby, M., Mitzenmacher, M., Rege, A.:
A digital fountain approach to reliable distribution of
bulk data. In: SIGCOM (1998)

Byers, J., Considine, J., Mitzenmacher, M., Rost, S.:
Informed content delivery across adaptive overlay net-
works. In: SIGCOMM?2002, Pittsburg, PA (2002)
Pendarakis, D., Shi, S., Verma, D., Waldvogel, M.:
ALMI: an application level multicast infrastructure.
In: USITS’01 (2001)

Jannotti, J., Gifford, D.K., Johnson, K.L., Kaashoek,
M.F., et al.: Overcast: reliable multicasting with an
overlay network. In: 4th Symposium on Operating
Systems Design and Implementation (OSDI 2000),
San Diego, California (2000)

Banerjee, S., Kommareddy, C., Kar, K., Bhattacharjee,
B., et al.: OMNI: an efficient overlay multicast infra-
structure for real-time applications. Comput. Netw.
50(6) (2006)

Ratnasamy, S., Handley, M., Karp, R.M., Shenker, S.:
Application-level multicast using content-addressable
networks. In: Third International COST264 Workshop
on Networked Group Communication (2001)

Castro, M., Druschel, P., Kermarrec, A.-M., Rowstron,
A.: Scribe: a large-scale and decentralized application-
level multicast infrastructure. IEEE J. Sel. Areas
Commun. 20(8) (2002)

Ripeanu, M., Iamnitchi, A., Foster, I., Rogers, A.: In
Search of Simplicity: a Self-organizing Group Com-
munication Overlay. University of British Columbia,
Vancouver (2007)

Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scal-
able application layer multicast. In: SIGCOMM2002,
Pittsburgh, PA (2002)

Das, S.,Nandan, A., Parker, M.G., Pau, G., et al.: Grido
an architecture for a Grid-based overlay network. In:
International Conference on Quality of Service in
Heterogeneous Wired/Wireless Networks (QShine
2005), FL, USA (2005)

Burger, M.d., Kielmann, T.: MOB: zero-configuration
high-throughput multicasting for Grid applications.
In: 16th International Symposium on High Perfor-
mance Distributed Computing (HPDC), California,
USA (2007)

Al-Kiswany, S., Ripeanu, M., lamnitchi, A., Vazhkudai,
S.: Are P2P data-dissemination techniques viable in
today’s data intensive scientific collaborations?, Tech-
nical Report, NetSysLab-TR-2007-01, University of
British Columbia (2007)

Izmailov, R., Ganguly, S.: Fast parallel file replication
in data Grid. In: Future of Grid Data Environments
Workshop, GGF-10. Berlin, Germany (2004)

Garg, N., Khandekar, R., Kunal, K., Pandit, V.: Band-
width maximization in multicasting. In: European Sym-
posium on Algorithms. Budapest (2003)

The Network Simulator—ns-2. http:/www.isi.edu/
nsnam/ns/. Accessed 2008

@ Springer

http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/

S. Al-Kiswany et al.

46.

47.

48.

49.

50.

Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P.,
et al: Scalability and accuracy in a large-scale network
emulator. In: OSDI (2002)

White, B., Lepreau, J., Stoller, L., Ricci, R., et al.: An
integrated experimental environment for distributed
systems and networks. In: OSDI, Boston, MA (2002)
Huang, P., Estrin, D., Heidemann, J.: Enabling large-
scale simulations: selective abstraction approach to the
study of multicast protocols. In: Proceedings of the
IEEE International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication
Systems, Montreal, Canada (1998)

Chun, B., Culler, D., Roscoe, T., Bavier, A., et al.:
PlanetLab: an overlay testbed for broad-coverage ser-
vices. ACM Comput. Commun. Rev. 33(3) (2003)
Medina, A., Lakhina, A., Matta, 1., Byers, J.: BRITE:
an approach to universal topology generation. In:

@ Springer

51

52.

53.

54.

55.

International Workshop on Modeling, Analysis and
Simulation of Computer and Telecommunications
Systems- MASCOTS ’01, Cincinnati, Ohio (2001)
Gkantsidis, C., Rodriguez, P.R.: Network coding for
large scale content distribution. In: 24th Annual Joint
Conference of the IEEE Computer and Communica-
tions Societies (INFOCOM 2005), Miami, FL (2005)
Azureus. http://azureus.sourceforge.net/. Accessed 2008
Yang, Y.R., Lam, S.S.: Internet multicast congestion
control: a survey. In: ICT 2000, Acapulco, Mexico
(2000)

Cherkasova, L., Lee, J.: FastReplica: efficient large file
distribution within content delivery networks. In: Pro-
ceedings of the 4th USENIX Symposium on Internet
Technologies and Systems, Seattle, Washington (2003)
Open Science Grid. http://www.opensciencegrid.org/.
Accessed 2008

http://azureus.sourceforge.net/
http://www.opensciencegrid.org/

	Beyond Music Sharing: An Evaluation of Peer-to-Peer Data Dissemination Techniques in Large Scientific Collaborations
	Abstract
	Introduction
	Data in Scientific Collaborations
	Data Distribution: Solutions and Metrics
	Classification of Approaches
	Data Staging
	Data Partitioning
	Orthogonal Bandwidth Exploitation

	Candidate Solutions
	Success Metrics
	A Note on Optimality

	Simulating Data Dissemination
	The Data Dissemination Solutions Simulated
	Simulation Approach
	Simulator Design
	Simulation Study Scope
	Simulator Validation
	Simulator Evaluation

	Simulation Results
	Experimental Setup
	Performance: File Transfer Time
	Summary
	Overheads: Network Effort
	Summary
	Load Balance
	Summary
	Fairness to Competing Traffic
	Summary
	The Effect of Bullet and BitTorrent Configurations
	Summary

	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

