
Automatic Identification of Application I/O Signatures from Noisy

Server-Side Traces

Yang Liu⋆, Raghul Gunasekaran†, Xiaosong Ma⋄∗, and Sudharshan S. Vazhkudai†

⋆North Carolina State University, yliu43@ncsu.edu
⋄Qatar Computing Research Institute, xma@qf.org.qa

†Oak Ridge National Laboratory, {gunasekaranr, vazhkudaiss}@ornl.gov

Abstract

Competing workloads on a shared storage system cause

I/O resource contention and application performance va-

garies. This problem is already evident in today’s HPC

storage systems and is likely to become acute at ex-

ascale. We need more interaction between application

I/O requirements and system software tools to help al-

leviate the I/O bottleneck, moving towards I/O-aware

job scheduling. However, this requires rich techniques

to capture application I/O characteristics, which remain

evasive in production systems.

Traditionally, I/O characteristics have been obtained

using client-side tracing tools, with drawbacks such

as non-trivial instrumentation/development costs, large

trace traffic, and inconsistent adoption. We present

a novel approach, I/O Signature Identifier (IOSI), to

characterize the I/O behavior of data-intensive appli-

cations. IOSI extracts signatures from noisy, zero-

overhead server-side I/O throughput logs that are al-

ready collected on today’s supercomputers, without in-

terfering with the compiling/execution of applications.

We evaluated IOSI using the Spider storage system

at Oak Ridge National Laboratory, the S3D turbu-

lence application (running on 18,000 Titan nodes), and

benchmark-based pseudo-applications. Through our ex-

periments we confirmed that IOSI effectively extracts

an application’s I/O signature despite significant server-

side noise. Compared to client-side tracing tools, IOSI is

transparent, interface-agnostic, and incurs no overhead.

Compared to alternative data alignment techniques (e.g.,

dynamic time warping), it offers higher signature accu-

racy and shorter processing time.

1 Introduction

High-performance computing (HPC) systems cater to

a diverse mix of scientific applications that run concur-

rently. While individual compute nodes are usually ded-

icated to a single parallel job at a time, the interconnec-

tion network and the storage subsystem are often shared

∗Part of this work was conducted at North Carolina State Univer-

sity.

among jobs. Network topology-aware job placement at-

tempts to allocate larger groups of contiguous compute

nodes to each application, in order to provide more sta-

ble message-passing performance for inter-process com-

munication. I/O resource contention, however, contin-

ues to cause significant performance vagaries in appli-

cations [16, 59]. For example, the indispensable task

of checkpointing is becoming increasingly cumbersome.

The CHIMERA [13] astrophysics application produces

160TB of data per checkpoint, taking around an hour to

write [36] on Oak Ridge National Laboratory’s Titan [3]

(currently the world’s No. 2 supercomputer [58]).

This already bottleneck-prone I/O operation is further

stymied by resource contention due to concurrent appli-

cations, as there is no I/O-aware scheduling or inter-job

coordination on supercomputers. As hard disks remain

the dominant parallel file system storage media, I/O con-

tention leads to excessive seeks, significantly degrading

the overall I/O throughput.

This problem is expected to exacerbate on future

extreme-scale machines (hundreds of petaflops). Future

systems demand a sophisticated interplay between ap-

plication requirements and system software tools that is

lacking in today’s systems. The aforementioned I/O per-

formance variance problem makes an excellent candi-

date for such synergistic efforts. For example, knowl-

edge of application-specific I/O behavior potentially al-

lows a scheduler to stagger I/O-intensive jobs, improv-

ing both the stability of individual applications’ I/O per-

formance and the overall resource utilization. However,

I/O-aware scheduling requires detailed information on

application I/O characteristics. In this paper, we explore

the techniques needed to capture such information in an

automatic and non-intrusive way.

Cross-layer communication regarding I/O characteris-

tics, requirements or system status has remained a chal-

lenge. Traditionally, these I/O characteristics have been

captured using client-side tracing tools [5, 7], running on

the compute nodes. Unfortunately, the information pro-

vided by client-side tracing is not enough for inter-job

coordination due to the following reasons.

First, client-side tracing requires the use of I/O tracing

libraries and/or application code instrumentation, often

requiring non-trivial development/porting effort. Sec-

ond, such tracing effort is entirely elective, rendering any

job coordination ineffective when only a small portion

of jobs perform (and release) I/O characteristics. Third,

many users who do enable I/O tracing choose to turn it

on for shorter debug runs and off for production runs,

due to the considerable performance overhead (typically

between 2% and 8% [44]). Fourth, different jobs may

use different tracing tools, generating traces with differ-

ent formats and content, requiring tremendous knowl-

edge and integration. Finally, unique to I/O performance

analysis, detailed tracing often generates large trace files

themselves, creating additional I/O activities that per-

turb the file system and distort the original application

I/O behavior. Even with reduced compute overhead and

minimal information collection, in a system like Titan,

collecting traces for individual applications from over

18,000 compute nodes will significantly stress the in-

terconnect and I/O subsystems. These factors limit the

usage of client-side tracing tools for development pur-

poses [26, 37], as opposed to routine adoption in pro-

duction runs or for daily operations.

Similarly, very limited server-side I/O tracing can be

performed on large-scale systems, where the bookkeep-

ing overhead may bring even more visible performance

degradations. Centers usually deploy only rudimentary

monitoring schemes that collect aggregate workload in-

formation regarding combined I/O traffic from concur-

rently running applications.

In this paper, we present IOSI (I/O Signature Identi-

fier), a novel approach to characterizing per-application

I/O behavior from noisy, zero-overhead server-side I/O

throughput logs, collected without interfering with the

target application’s execution. IOSI leverages the exist-

ing infrastructure in HPC centers for periodically log-

ging high-level, server-side I/O throughput. E.g., the

throughput on the I/O controllers of Titan’s Spider file

system [48] is recorded once every 2 seconds. Collect-

ing this information has no performance impact on the

compute nodes, does not require any user effort, and has

minimal overhead on the storage servers. Further, the

log collection traffic flows through the storage servers’

Ethernet management network, without interfering with

the application I/O. Hence, we refer to our log collection

as zero-overhead.

Figure 1 shows sample server-side log data from a

typical day on Spider. The logs are composite data, re-

flecting multiple applications’ I/O workload. Each in-

stance of an application’s execution will be recorded in

the server-side I/O throughput log (referred to as a sam-

ple in the rest of this paper). Often, an I/O-intensive ap-

plication’s samples show certain repeated I/O patterns,

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 23:59
0

5

10

15

20

Time

W
rit

e G
B/

s

Figure 1: Average server-side, write throughput on Titan’s

Spider storage (a day in November 2011).

as can be seen from Figure 1. Therefore, the main idea

of this work is to collect and correlate multiple samples,

filter out the “background noise”, and finally identify

the target application’s native I/O traffic common across

them. Here, “background noise” refers to the traffic

generated by other concurrent applications and system

maintenance tasks. Note that IOSI is not intended to

record fine-grained, per-application I/O operations. In-

stead, it derives an estimate of their bandwidth needs

along the execution timeline to support future I/O-aware

smart decision systems.

Contributions: (1) We propose to extract per-

application I/O workload information from existing,

zero-overhead, server-side I/O measurements and job

scheduling history. Further, we obtain such knowl-

edge of a target application without interfering with

its computation/communication, or requiring develop-

ers/users’ intervention. (2) We have implemented a suite

of techniques to identify an application’s I/O signature,

from noisy server-side throughput measurements. These

include i) data preprocessing, ii) per-sample wavelet

transform (WT) for isolating I/O bursts, and iii) cross-

sample I/O burst identification. (3) We evaluated IOSI

with real-world server-side I/O throughput logs from

the Spider storage system at the Oak Ridge Leadership

Computing Facility (OLCF). Our experiments used sev-

eral pseudo-applications, constructed with the expres-

sive IOR benchmarking tool [1], and S3D [56], a large-

scale turbulent combustion code. Our results show that

IOSI effectively extracts an application’s I/O signature

despite significant server-side noise.

2 Background

We first describe the features of typical I/O-intensive

parallel applications and the existing server-side moni-

toring infrastructure on supercomputers – two enabling

trends for IOSI. Next, we define the per-application I/O

signature extraction problem.

2.1 I/O Patterns of Parallel Applications

The majority of applications on today’s supercomput-

ers are parallel numerical simulations that perform iter-

ative, timestep-based computations. These applications

are write-heavy, periodically writing out intermediate re-

2

sults and checkpoints for analysis and resilience, respec-

tively. For instance, applications compute for a fixed

number of timesteps and then perform I/O, repeating this

sequence multiple times. This process creates regular,

predictable I/O patterns, as noted by many existing stud-

ies [25, 49, 61]. More specifically, parallel applications’

dominant I/O behavior exhibits several distinct features

that enable I/O signature extraction:

User1 User2 User3 User4 User5 User6 User7
0

50

100

150

200

250

22

72

122

10
19

26 29
118

21

58
45

96

48

13 8

33

6

55

219

12

Users

Nu
m

 o
f r

un
s

Configuration 1
Configuration 2
Configuration 3

Figure 2: Example of the repeatability of runs on Titan, showing

the number of runs using identical job configurations for seven users

issuing the largest jobs, between July and September 2013.

Burstiness: Scientific applications have distinct com-

pute and I/O phases. Most applications are designed to

perform I/O in short bursts [61], as seen in Figure 1.

Periodicity: Most I/O-intensive applications write data

periodically, often in a highly regular manner [25, 49]

(both in terms of interval between bursts and the output

volume per burst). Such regularity and burstiness sug-

gests the existence of steady, wavelike I/O signatures.

Note that although a number of studies have been pro-

posed to optimize the checkpoint interval/volume [19,

20, 39], regular, content-oblivious checkpointing is still

the standard practice in large-scale applications [51, 66].

IOSI does not depend on such periodic I/O patterns and

handles irregular patterns, as long as the application I/O

behavior stays consistent across multiple job runs.

Repeatability: Applications on extreme-scale systems

typically run many times. Driven by their science needs,

users run the same application with different input data

sets and model parameters, which results in repeti-

tive compute and I/O behavior. Therefore, applications

tend to have a consistent, identifiable workload signa-

ture [16]. To substantiate our claim, we have studied

three years worth of Spider server-side I/O throughput

logs and Titan job traces for the same time period, and

verified that applications have a recurring I/O pattern in

terms of frequency and I/O volume. Figure 2 plots statis-

tics of per-user jobs using identical job configurations,

which is highly indicative of executions of the same ap-

plication. We see that certain users, especially those is-

suing large-scale runs, tend to reuse the same job con-

figuration for many executions.

Overall, the above supercomputing I/O features moti-

vate IOSI to find commonality between multiple noisy

server-side log samples. Each sample documents the

server-side aggregate I/O traffic during an execution of

the same target application, containing different and un-

known noise signals. The intuition is that with a reason-

able number of samples, the invariant behavior is likely

to belong to the target application.

Figure 3: Spider storage system architecture at OLCF.

2.2 Titan’s Spider Storage Infrastructure

Our prototype development and evaluation use the

storage server statistics collected from the Spider center-

wide storage system [55] at OLCF, a Lustre-based par-

allel file system. Spider currently serves the world’s No.

2 machine, the 27 petaflop Titan, in addition to other

smaller development and visualization clusters. Fig-

ure 3 shows the Spider architecture, which comprises of

96 Data Direct Networks (DDN) S2A9900 RAID con-

trollers, with an aggregate bandwidth of 240 GB/s and

over 10 PBs of storage from 13,440 1-TB SATA drives.

Access is through the object storage servers (OSSs),

connected to the RAID controllers in a fail-over con-

figuration. The compute platforms connect to the stor-

age infrastructure over a multistage InfiniBand network,

SION (Scalable I/O Network). Spider has four parti-

tions, widow[0 − 3], with identical setup and capacity.

Users can choose any partition(s) for their jobs.

Spider has been collecting server-side I/O statistics

from the DDN RAID controllers since 2009. These con-

trollers provide a custom API for querying performance

and status information over the management Ethernet

network. A custom daemon utility [43] polls the con-

trollers for bandwidth and IOPS at 2-second intervals

and stores the results in a MySQL database. Bandwidth

data are automatically reported from individual DDN

RAID controllers and aggregated across all widow par-

titions to obtain the overall file system bandwidth usage.

2.3 Problem Definition: Parallel Applica-

tion I/O Signature Identification

As mentioned earlier, IOSI aims to identify the I/O

signature of a parallel application, from zero-overhead,

aggregate, server-side I/O throughput logs that are al-

3

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

W
rit

e
 (G

B/
s)

(a) IORA target signature

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

W
rit

e
 (G

B/
s)

(b) Sample IORAS1

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

W
rit

e
 (G

B/
s)

(c) Sample IORAS6

Figure 4: I/O signature of IORA and two samples

ready being collected. IOSI’s input includes (1) the start

and end times of the target application’s multiple execu-

tions in the past, and (2) server-side logs that contain the

I/O throughput generated by those runs (as well as un-

known I/O loads from concurrent activities). The output

is the extracted I/O signature of the target application.

We define an application’s I/O signature as the I/O

throughput it generates at the server-side storage of a

given parallel platform, for the duration of its execu-

tion. In other words, if this application runs alone on

the target platform without any noise from other con-

current jobs or interactive/maintenance workloads, the

server-side throughput log during its execution will be

its signature. It is virtually impossible to find such

“quiet time” once a supercomputer enters the produc-

tion phase. Therefore, IOSI needs to “mine” the true

signature of the application from server-side throughput

logs, collected from its multiple executions. Each ex-

ecution instance, however, will likely contain different

noise signals. We refer to each segment of such a noisy

server-side throughput log, punctuated by the start and

end times of the execution instance, a “sample”. Based

on our experience, generally 5 to 10 samples are required

for getting the expected results. Note that there are long-

running applications (potentially several days for each

execution). It is possible for IOSI to extract a signature

from even partial samples (e.g., from one tenth of an ex-

ecution time period), considering the self-repetitive I/O

behavior of large-scale simulations.

Figure 4 illustrates the signature extraction prob-

lem using a pseudo-application, IORA, generated by

IOR [1], a widely used benchmark for parallel I/O per-

formance evaluation. IOR supports most major HPC I/O

interfaces (e.g., POSIX, MPIIO, HDF5), provides a rich

set of user-specified parameters for I/O operations (e.g.,

file size, file sharing setting, I/O request size), and allows

users to configure iterative I/O cycles. IORA exhibits

a periodic I/O pattern typical in scientific applications,

with 5 distinct I/O bursts. Figure 4(a) shows its I/O sig-

nature, obtained from a quiet Spider storage system par-

tition during Titan’s maintenance window. Figures 4(b)

and 4(c) show its two server-side I/O log samples when

executed alongside other real applications and interac-

tive I/O activities. These samples clearly demonstrate

the existence of varying levels of noise. Thus, IOSI’s

purpose is to find the common features from multiple

samples (e.g., Figures 4(b) and 4(c)), to obtain an I/O

signature that approximates the original (Figure 4(a)).

3 Related Work

I/O Access Patterns and I/O Signatures: Miller and

Katz observed that scientific I/O has highly sequential

and regular accesses, with a period of CPU processing

followed by an intense, bursty I/O phase [25]. Carns

et al. noted that HPC I/O patterns tend to be repetitive

across different runs, suggesting that I/O logs from prior

runs can be a useful resource for predicting future I/O

behavior [16]. Similar claims have been made by other

studies on the I/O access patterns of scientific applica-

tions [28, 47, 53]. Such studies strongly motivate IOSI’s

attempt to identify common and distinct I/O bursts of an

application from multiple noisy, server-side logs.

Prior work has also examined the identification and

use of I/O signatures. For example, the aforemen-

tioned work by Carns et al. proposed a methodology

for continuous and scalable characterization of I/O ac-

tivities [16]. Byna and Chen also proposed an I/O

prefetching method with runtime and post-run analysis

of applications’ I/O signatures [15]. A significant dif-

ference is that IOSI is designed to automatically extract

I/O signatures from existing coarse-grained server-side

logs, while prior approaches for HPC rely on client-

side tracing (such as MPI-IO instrumentation). For

more generic application workload characterization, a

few studies [52, 57, 64] have successfully extracted sig-

natures from various server-side logs.

Client-side I/O Tracing Tools: A number of tools

have been developed for general-purpose client-side in-

strumentation, profiling, and tracing of generic MPI

and CPU activity, such as mpiP [60], LANL-Trace [2],

HPCT-IO [54], and TRACE [42]. The most closely re-

lated to IOSI is probably Darshan [17]. It performs low-

overhead, detailed I/O tracing and provides powerful

post-processing of log files. It outputs a large collection

of aggregate I/O characteristics such as operation counts

and request size histograms. However, existing client-

side tracing approaches suffer from the limitations men-

tioned in Section 1, such as installation/linking require-

4

0 200 400 600 800 1000 1200 1400
0

0.5

1

1.5

2

2.5

3

Time (s)

W
rit

e
 (G

B
/s

)

Sample 1
Sample 2

Figure 5: Drift and scaling of I/O bursts across samples

ments, voluntary participation, and producing additional

client I/O traffic. IOSI’s server-side approach allows it

to handle applications using any I/O interface.

Time-series Data Alignment There have been many

studies in this area [6, 9, 10, 27, 38, 46]. Among

them, dynamic time warping (DTW) [10, 46] is a well-

known approach for comparing and averaging a set of

sequences. Originally, this technique was widely used in

the speech recognition community for automatic speech

pattern matching [23]. Recently, it has been successfully

adopted in other areas, such as data mining and informa-

tion retrieval, for automatically addressing time defor-

mations and aligning time-series data [18, 30, 33, 67].

Due to its maturity and existing adoption, we choose

DTW for comparison against the IOSI algorithms.

4 Approach Overview

Thematic to IOSI is the realization that the noisy,

server-side samples contain common, periodic I/O bursts

of the target application. It exploits this fact to extract

the I/O signature, using a rich set of statistical tech-

niques. Simply correlating the samples is not effective

in extracting per-application I/O signatures, due to a set

of challenges detailed below.

First, the server-side logs do not distinguish between

different workloads. They contain I/O traffic generated

by many parallel jobs that run concurrently, as well as in-

teractive I/O activities (e.g., migrating data to and from

remote sites using tools like FTP). Second, I/O con-

tention not only generates “noise” that is superimposed

on the true I/O throughput generated by the target ap-

plication, but also distorts it by slowing down its I/O

operations. In particular, I/O contention produces drift

and scaling effects on the target application’s I/O bursts.

The degree of drift and scaling varies from one sample to

another. Figure 5 illustrates this effect by showing two

samples (solid and dashed) of a target application per-

forming periodic writes. It shows that I/O contention can

cause shifts in I/O burst timing (particularly with the last

two bursts in this case), as well as changes in burst du-

ration (first burst, marked with oval). Finally, the noise

level and the runtime variance caused by background I/O

further create the following dilemma in processing the

I/O signals: IOSI has to rely on the application’s I/O

bursts to properly align the noisy samples as they are

Figure 6: IOSI overview

the only common features; at the same time, it needs the

samples to be reasonably aligned to identify the common

I/O bursts as belonging to the target application.

Recognizing these challenges, IOSI leverages an ar-

ray of signal processing and data mining tools to dis-

cover the target application’s I/O signature using a

black-box approach, unlike prior work based on white-

box models [17, 59]. Recall that IOSI’s purpose is to

render a reliable estimate of user-applications’ band-

width needs, instead of to optimize individual applica-

tions’ I/O operations. Black-box analysis is better suited

here for generic and non-intrusive pattern collection.

The overall context and architecture of IOSI are illus-

trated in Figure 6. Given a target application, multiple

samples from prior runs are collected from the server-

side logs. Using such a sample set as input, IOSI outputs

the extracted I/O signature by mining the common char-

acteristics hidden in the sample set. Our design com-

prises of three phases:

1. Data preprocessing: This phase consists of four

key steps: outlier elimination, sample granularity

refinement, runtime correction, and noise reduc-

tion. The purpose is to prepare the samples for

alignment and I/O burst identification.

2. Per-sample wavelet transform: To utilize “I/O

bursts” as common features, we employ wavelet

transform to distinguish and isolate individual

bursts from the noisy background.

3. Cross-sample I/O burst identification: This

phase identifies the common bursts from multiple

samples, using a grid-based clustering algorithm.

5 IOSI Design and Algorithms

In this section, we describe IOSI’s workflow, step

by step, using the aforementioned IORA pseudo-

application (Figure 4) as a running example.

5

1000 1200 1400 1600 1800 2000 2200
0

500

1000

1500

2000

2500

3000

3500

4000

Time (s)

I/O
 v

ol
um

e
(G

B)

Normal sample
Outlier sample

Figure 7: Example of outlier elimination

5.1 Data Preprocessing

Given a target application, we first compare the job

log with the I/O throughput log, to obtain I/O samples

from the application’s multiple executions, particularly

by the same user and with the same job size (in term of

node counts). As described in Section 2, HPC users tend

to run their applications repeatedly.

From this set, we then eliminate outliers – samples

with significantly heavier noise signals or longer/shorter

execution time.1 Our observation from Spider is that de-

spite unpredictable noise, the majority of the samples

(from the same application) bear considerable similarity.

Intuitively, including the samples that are apparently sig-

nificantly skewed by heavy noise is counter-productive.

We perform outlier elimination by examining (1) the ap-

plication execution time and (2) the volume of data writ-

ten within the sample (the “area” under the server-side

throughput curve). Within this 2-D space, we apply the

Local Outlier Factor (LOF) algorithm [12], which iden-

tifies observations beyond certain threshold as outliers.

Here we set the threshold µ as the mean of the sam-

ple set. Figure 7 illustrates the distribution of execution

times and I/O volumes among 10 IORA samples col-

lected on Spider, where two of the samples (dots within

the circle) are identified by LOF as outliers.

Next, we perform sample granularity refinement, by

decreasing the data point interval from 2 seconds to 1

using simple linear interpolation [22]. Thus, we insert

an extra data point between two adjacent ones, which

turns out to be quite helpful in identifying short bursts

that last for only a few seconds. The value of each extra

data point is the average value of its adjacent data points.

It is particularly effective in retaining the amplitude of

narrow bursts during the subsequent WT stage.

In the third step, we perform duration correction on

the remaining sample data set. This is based on the ob-

servation that noise can only prolong application exe-

cution, hence the sample with the shortest duration re-

ceived the least interference, and is consequently closest

in duration to the target signature. We apply a simple

trimming process to correct the drift effect mentioned in

Section 4, preparing the samples for subsequent correla-

tion and alignment. This procedure discards data points

1Note that shorter execution time can happen with restart runs re-

suming from a prior checkpoint.

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

W
ri

te

(G
B

/s
)

(a) Before noise reduction

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

W
ri

te

(G
B

/s
)

(b) After noise reduction

Figure 8: IORA samples after noise reduction

at regular intervals to shrink each longer sample to match

the shortest one. For example, if a sample is 4% longer

than the shortest one, then we remove from it the 1st,

26th, 51st, ..., data points. We found that after outlier

elimination, the deviation in sample duration is typically

less than 10%. Therefore such trimming is not expected

to significantly affect the sample data quality.

Finally, we perform preliminary noise reduction to re-

move background noise. While I/O-intensive applica-

tions produce heavy I/O bursts, the server-side log also

reports I/O traffic from interactive user activities and

maintenance tasks (such as disk rebuilds or data scrub-

bing by the RAID controllers). Removing this type of

persistent background noise significantly helps signature

extraction. In addition, although such noise does not

significantly distort the shape of application I/O bursts,

having it embedded (and duplicated) in multiple appli-

cation’s I/O signatures will cause inaccuracies in I/O-

aware job scheduling. To remove background noise,

IOSI (1) aggregates data points from all samples, (2)

collects those with a value lower than the overall aver-

age throughput, (3) calculates the average background

noise level as the mean throughput from these selected

data points, and (4) lowers each sample data point by

this average background noise level, producing zero if

the result is negative. Figure 8(b) shows the result of

such preprocessing, and compared to the original sample

in Figure 8(a), the I/O bursts are more pronounced. The

I/O volume of IORAS1 was trimmed by 26%, while the

background noise level was measured at 0.11 GB/s.

5.2 Per-Sample Wavelet Transform

As stated earlier, scientific applications tend to have a

bursty I/O behavior, justifying the use of I/O burst as the

basic unit of signature identification. An I/O burst indi-

cates a phase of high I/O activity, distinguishable from

the background noise over a certain duration.

With less noisy samples, the burst boundaries can be

easily found using simple methods such as first differ-

ence [50] or moving average [62]. However, with noisy

samples identifying such bursts becomes challenging, as

there are too many ups and downs close to each other.

In particular, it is difficult to do so without knowing the

cutoff threshold for a “bump” to be considered a candi-

date I/O burst. Having too many or too few candidates

6

0 200 400 600 800
0

0.5

1

1.5

2

2.5

3

Time (s)

W
ri

te
 (

G
B

/s
)

(a) Preprocessed IORAS6 segment

0 200 400 600 800

0

0.5

1

1.5

2

2.5

3

Time (s)

W
ri

te
 (

G
B

/s
)

(b) After WT (Decomposition level 1)

0 200 400 600 800

0

0.5

1

1.5

2

2.5

3

Time (s)

W
ri

te
 (

G
B

/s
)

(c) After WT (Decomposition level 2)

0 200 400 600 800

0

0.5

1

1.5

2

2.5

3

Time (s)

W
ri

te
 (

G
B

/s
)

(d) After WT (Decomposition level 3)

Figure 9: dmey WT results on a segment of IORAS6

can severely hurt our sample alignment in the next step.

To this end, we use a WT [21, 41, 63] to smooth sam-

ples. WT has been widely applied to problems such

as filter design [14], noise reduction [35], and pattern

recognition [24]. With WT, a time-domain signal can

be decomposed into low-frequency and high-frequency

components. The approximation information remains in

the low-frequency component, while the detail informa-

tion remains in the high-frequency one. By carefully

selecting the wavelet function and decomposition level

we can observe the major bursts from the low-frequency

component. They contain the most energy of the signal

and are isolated from the background noise.

By retaining the temporal characteristics of the time-

series data, WT brings an important feature not offered

by widely-used alternative techniques such as Fourier

transform [11]. We use WT to clarify individual bursts

from their surrounding data, without losing the temporal

characteristics of the time-series sample.

WT can use quite a few wavelet families [4, 45], such

as Haar, Daubechies, and Coiflets. Each provides a

transform highlighting different frequency and tempo-

ral characteristics. For IOSI, we choose discrete Meyer

(dmey) [40] as the mother wavelet. Due to its smooth

profile, the approximation part of the resulting signal

consists of a series of smooth waves. Its output consists

of a series of waves where the center of the wave troughs

can be easily identified as wave boundaries.

Figures 9(a) and Figures 9(b), 9(c), 9(d) illustrate a

segment of IORAS6 and its dmey WT results, respec-

tively. With a WT, the high-frequency signals in the

input sample are smoothed, producing low-frequency

components that correlate better with the target appli-

cation’s periodic I/O. However, here the waves cannot

be directly identified as I/O bursts, as a single I/O burst

from the application’s point of view may appear to have

many “sub-crests”, separated by minor troughs. This is

due to throughput variance caused by either application

behavior (such as adjacent I/O calls separated by short

computation/communication) or noise, or both. To pre-

vent creating many such “sub-bursts”, we use the mean

height of all wave crests for filtering – only the troughs

lower than this threshold are used for separating bursts.

Another WT parameter to consider is the decompo-

sition level, which determines the level of detailed in-

formation in the results. The higher the decomposition

level, the fewer details are shown in the low-frequency

component, as can be seen from Figures 9(b), 9(c) and

9(d). With a decomposition level of 1 (e.g. Figures 9(b)),

the wavelet smoothing is not sufficient for isolating burst

boundaries. With a higher decomposition level of 3 the

narrow bursts fade out rapidly, potentially missing target

bursts. IOSI uses a decomposition level of 2 to better

retain the bursty nature of the I/O signature.

5.3 Cross-Sample I/O Burst Identification

Next, IOSI correlates all the pre-processed, and

wavelet transformed samples to identify common I/O

bursts. To address the circular dependency chal-

lenge mentioned earlier between alignment and com-

mon feature identification, we adapt a grid-based clus-

tering approach called CLIQUE [8]. It performs multi-

dimensional data clustering by identifying grids (called

units) where there is higher density (number of data

points within the unit). CLIQUE treats each such dense

unit as a “seed cluster” and grows it by including neigh-

boring dense units.

CLIQUE brings several advantages to IOSI. First, its

model fits well with our context: an I/O burst from a

given sample is mapped to a 2-D data point, based on

its time and shape attributes. Therefore, data points

from different samples close to each other in the 2-D

space naturally indicate common I/O bursts. Second,

with controllable grid width and height, IOSI can bet-

ter handle burst drifts (more details given below). Third,

CLIQUE performs well for scenarios with far-apart clus-

ters, where inter-cluster distances significantly exceed

those between points within a cluster. As parallel ap-

plications typically limit their “I/O budget” (fraction of

runtime allowed for periodic I/O) to 5%-10%, individual

I/O bursts normally last seconds to minutes, with dozens

of minutes between adjacent bursts. Therefore, CLIQUE

is not only effective for IOSI, but also efficient, as we do

not need to examine too far around the burst-intensive ar-

eas. Our results (Section 6) show that it outperforms the

widely used DTW time-series alignment algorithm [10],

while incurring significantly lower overhead.

We make two adjustments to the original CLIQUE

7

Figure 10: Mapping IORA I/O bursts to 2-D points

algorithm. Considering the I/O bursts are sufficiently

spaced from each other in a target application’s execu-

tion, we limit the growth of the cluster to the immediate

neighborhood of a dense unit: the units that are adjacent

to it. Also, we have modified the density calculation to

focus not on the sheer number of data points in a unit,

but on the number of different samples with bursts there.

The intuition is that a common burst from the target ap-

plication should have most (if not all) samples agree on

its existence. Below, we illustrate with IORA the pro-

cess of IOSI’s common burst identification.

Figure 11: CLIQUE 2-D grid containing IORA bursts

To use our adapted CLIQUE, we need to first dis-

cretize every sample si into a group of 2-D points, each

representing one I/O burst identified after a WT. Given

its jth I/O burst bi,j , we map it to point 〈ti,j , ci,j〉. Here

ti,j is the time of the wave crest of bi,j , obtained after a

WT, while ci,j is the correlation coefficient between bi,j
and a reference burst. To retain the details describing

the shape of the I/O burst, we choose to use the pre-WT

burst in calculating ci,j , though the burst itself was iden-

tified using a WT. Note that we rely on the transitive na-

ture of correlation (“bursts with similar correlation coef-

ficient to the common reference burst tend to be similar

to each other”), so the reference burst selection does not

have a significant impact on common burst identifica-

tion. In our implementation, we use the “average burst”

identified by WT across all samples.

Figure 10 shows how we mapped 4 I/O bursts, each

from a different IORA sample. Recall that WT identi-

fies each burst’s start, peak, and end points. The x co-

ordinate for each burst shows “when it peaked,” derived

using the post-WT wave (dotted line). The y coordinate

shows “how similar it is to a reference burst shape,” cal-

culated using the pre-WT sample (solid lines).

Therefore, our CLIQUE 2-D data space has an x

range of [0, t] (where t is the adjusted sample duration

after preprocessing) and a y range of [0, 1]. It is par-

titioned into uniform 2-D grids (units). Defining the

unit width and height is critical for CLIQUE, as overly

small or large grids will obviously render the density in-

dex less useful. Moreover, even with carefully selected

width and height values, there is still a chance that a clus-

ter of nodes are separated into different grids, causing

CLIQUE to miss a dense unit.

To this end, instead of using only one pair of width-

height values, IOSI tries out multiple grid size configura-

tions, each producing an extracted signature. For width,

it sets the lower bound as the average I/O burst duration

across all samples and upper bound as the average time

distance between bursts. For a unit height, it empirically

adopts the range between 0.05 and 0.25. Considering the

low cost of CLIQUE processing with our sample sets,

IOSI uniformly samples this 2-D parameter space (e.g.,

with 3-5 settings per dimension), and takes the result that

identified the most data points as belonging to common

I/O bursts. Due to the strict requirement of identifying

common bursts, we have found in our experiments that

missing target bursts is much more likely to happen than

including fake bursts in the output signature. Figure 11

shows the resulting 2-D grid, containing points mapped

from bursts in four IORA samples.

We have modified the original dense unit definition as

follows. Given s samples, we calculate the density of a

unit as “the number of samples that have points within

this unit”. If a unit meets a certain density threshold

⌈γ ∗ s⌉, where γ is a controllable parameter between 0

and 1, the unit is considered dense. Our experiments

used a γ value of 0.5, requiring each dense unit to have

points from at least 2 out of the 4 samples. All dense

units are marked with a dark shade in Figure 11.

Due to the time drift and shape distortion caused by

noise, nodes from different samples representing the

same I/O burst could be partitioned by grid lines. As

mentioned earlier, for each dense unit, we only check

its immediate neighborhood (shown in a lighter shade in

Figure 11) for data points potentially from a common

burst. We identify dense neighborhoods (including the

central dense unit) as those meeting a density threshold

of ⌈κ ∗ s⌉, where κ is another configurable parameter

with value larger than γ (e.g., 0.9).

Note that it is possible for the neighborhood (or even

a single dense unit) to contain multiple points from the

same sample. IOSI further identifies points from the

common I/O burst using a voting scheme. It allows up

to one point to be included from each sample, based on

the total normalized Euclidean distance from a candi-

date point to peers within the neighborhood. From each

sample, the data point with the lowest total distance is

8

selected. In Figure 11, the neighborhood of dense unit

5 contains two bursts from IORAS3 (represented by

dots). The burst in the neighborhood unit (identified by

the circle) is discarded using our voting algorithm. As

the only “redundant point” within the neighborhood, it

is highly likely to be a “fake burst” from other concur-

rently running I/O-intensive applications. This can be

confirmed by viewing the original sample IORAS3 in

Figure12(b), where a tall spike not from IORA shows

up around the 1200th second.

5.4 I/O Signature Generation

Given the common bursts from dense neighborhoods,

we proceed to sample alignment. This is done by align-

ing all the data points in a common burst to the aver-

age of their x coordinate values. Thereafter, we generate

the actual I/O signature by sweeping along the x (time)

dimension of the CLIQUE 2-D grid. For each dense

neighborhood identified, we generate a corresponding

I/O burst at the aligned time interval, by averaging the

bursts mapped to the selected data points in this neigh-

borhood. Here we used the bursts after preprocessing,

but before WT.

6 Experimental Evaluation

We have implemented the proof-of-concept IOSI pro-

totype using Matlab and Python. To validate IOSI, we

used IOR to generate multiple pseudo-applications with

different I/O write patterns, emulating write-intensive

scientific applications. In addition, we used S3D [31,

56], a massively parallel direct numerical simulation

solver developed at Sandia National Laboratory for

studying turbulent reacting flows.

Figure 13(a), 13(e) and 13(i) are the true I/O sig-

natures of the three IOR pseudo-applications, IORA,

IORB , and IORC . These pseudo-applications were

run on the Smoky cluster using 256 processes, writing

to the Spider center-wide parallel file system. Each pro-

cess was configured to write sequentially to a separate

file (stripe size of 1MB, stripe count of 4) using MPI-

IO. We were able to obtain “clean” signatures (with little

noise) for these applications by running our jobs when

Titan was not in production use (under maintenance) and

one of the file system partitions was idle. Among them,

IORA represents simple periodic checkpointing, writ-

ing the same volume of data at regular intervals (128GB

every 300s). IORB also writes periodically, but alter-

nates between two levels of output volume (64GB and

16GB every 120s), which is typical of applications with

different frequencies in checkpointing and results writ-

ing (e.g., writing intermediate results every 10 minutes

but checkpointing every 30 minutes). IORC has more

complex I/O patterns, with three different write cycles

repeated periodically (one output phase every 120s, with

output size cycling through 64GB, 32GB, and 16GB).

6.1 IOR Pseudo-Application Results

To validate IOSI, the IOR pseudo-applications were

were run at different times of the day, over a two-week

period. Each application was run at least 10 times. Dur-

ing this period, the file system was actively used by Titan

and other clusters. The I/O activity captured during this

time is the noisy server-side throughput logs. From the

scheduler’s log, we identified the execution time inter-

vals for the IOR runs, which were then intersected with

the I/O throughput log to obtain per-application samples.

It is worth noting that the I/O throughput range of all

of the IOR test cases is designed to be 2-3GB/s. Af-

ter analyzing several months of Spider log data, we ob-

served that it is this low-bandwidth range that is highly

impacted by background noise. If the bandwidth of the

application is much higher (say 20GB/s), the problem

becomes much easier, since there is less background

noise that can achieve that bandwidth level to interfere.

Due to the space limit, we only show four samples for

each pseudo-app in Figure 12. We observe that most of

them show human-visible repeated patterns that overlap

with the target signatures. There is, however, significant

difference between the target signature and any individ-

ual sample. The samples show a non-trivial amount of

“random” noise, sometimes (e.g., IORAS1) with dis-

tinct “foreign” repetitive pattern, most likely from an-

other application’s periodic I/O. Finally, a small number

of samples are noisy enough to make the target signa-

ture appear overwhelmed (which should be identified as

outliers and discarded from signature extraction).

Figure 13 presents the original signatures and the ex-

tracted signatures using three approaches: IOSI with and

w/o data preprocessing, plus DTW with data preprocess-

ing. As introduced in Section 3, DTW is a widely used

approach for finding the similarity between two data

sequences. In our problem setting, similarity means a

match in I/O bursts from two samples. We used sample

preprocessing to make a fair comparison between DTW

and IOSI. Note that IOSI without data preprocessing uti-

lizes samples after granularity refinement, to obtain ex-

tracted I/O signatures with similar length across all three

methods tested.

Since DTW performs pair-wise alignment, it is un-

able to perform effective global data alignment across

multiple samples. In our evaluation, we apply DTW as

follows. We initially assign a pair of samples as input

to DTW, and feed the result along with another sample

to DTW again. This process is repeated until all sam-

ples are exhausted. We have verified that this approach

performs better (in terms of both alignment accuracy

and processing overhead) than the alternative of averag-

ing all pair-wise DTW results, since it implicitly carries

9

0 400 800 1200 1600 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (s)

W
ri

te
 (G

B
/s

)

(a) IORAS1

0 400 800 1200 1600 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (s)

W
ri

te
 (G

B
/s

)

(b) IORAS2

0 400 800 1200 1600 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (s)

W
ri

te
 (G

B
/s

)

(c) IORAS3

0 400 800 1200 1600 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (s)

W
ri

te
 (G

B
/s

)

(d) IORAS4

0 200 400 600 800 1000 1200
0

1

2

3

4

5

Time (s)

W
ri

te
 (G

B
/s

)

(e) IORBS1

0 200 400 600 800 1000 1200
0

1

2

3

4

5

Time (s)

W
ri

te
 (G

B
/s

)

(f) IORBS2

0 200 400 600 800 1000 1200
0

1

2

3

4

5

Time (s)

W
ri

te
 (G

B
/s

)

(g) IORBS3

0 200 400 600 800 1000 1200
0

1

2

3

4

5

Time (s)

W
ri

te
 (G

B
/s

)

(h) IORBS4

0 400 800 1200 1600 2000
0

1

2

3

4

5

6

Time (s)

W
rit

e
(G

B
/s

)

(i) IORCS1

0 400 800 1200 1600 2000
0

1

2

3

4

5

6

Time (s)

W
rit

e
(G

B
/s

)

(j) IORCS2

0 400 800 1200 1600 2000
0

1

2

3

4

5

6

Time (s)

W
rit

e
(G

B
/s

)

(k) IORCS3

0 400 800 1200 1600 2000
0

1

2

3

4

5

6

Time (s)

W
rit

e
(G

B
/s

)

(l) IORCS4

Figure 12: Samples from IOR test cases

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

Time (s)

W
ri

te
 (

G
B

/s
)

(a) IORA target signature

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

Time (s)

W
ri

te
 (

G
B

/s
)

(b) IOSI w/o data preprocessing

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

Time (s)

W
ri

te
 (

G
B

/s
)

(c) IOSI with data preprocessing

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

Time (s)

W
ri

te
 (

G
B

/s
)

(d) DTW with data preprocessing

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

W
ri

te
 (

G
B

/s
)

(e) IORB target signature

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

Time (s)

W
ri

te
 (

G
B

/s
)

(f) IOSI w/o data preprocessing

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

Time (s)

W
ri

te
 (

G
B

/s
)

(g) IOSI with data preprocessing

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

Time (s)

W
ri

te
 (

G
B

/s
)

(h) DTW with data preprocessing

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

W
ri

te
 (

G
B

/s
)

(i) IORC target signature

0 500 1000 1500
0

1

2

3

4

Time (s)

W
ri

te
 (G

B
/s

)

(j) IOSI w/o data preprocessing

0 500 1000 1500
0

1

2

3

4

Time (s)

W
ri

te
 (G

B
/s

)

(k) IOSI with data preprocessing

0 500 1000 1500
0

1

2

3

4

Time (s)

W
ri

te
 (G

B
/s

)

(l) DTW with data preprocessing

Figure 13: Target and extracted I/O signatures of IOR test cases

10

0 800 1600 2400
0

2

4

6

8

10

12

14

Time (s)

W
rit

e
(G

B
/s

)

(a) S3D S1

0 800 1600 2400
0

2

4

6

8

10

12

14

Time (s)

W
rit

e
(G

B
/s

)

(b) S3D S2

0 800 1600 2400
0

2

4

6

8

10

12

14

Time (s)

W
rit

e
(G

B
/s

)

(c) S3D S3

0 800 1600 2400
0

2

4

6

8

10

12

14

Time (s)

W
rit

e
(G

B
/s

)

(d) S3D S4

Figure 14: S3D samples

0 1000 2000 3000
0

2

4

6

8

10

Time (s)

W
ri

te
 (

G
B

/s
)

(a) S3D target I/O signature

0 1000 2000 3000
0

2

4

6

8

10

Time (s)

W
ri

te
 (

G
B

/s
)

(b) IOSI w/o data preprocessing

0 1000 2000 3000
0

2

4

6

8

10

Time (s)

W
ri

te
 (

G
B

/s
)

(c) IOSI with data preprocessing

0 1000 2000 3000
0

2

4

6

8

10

Time (s)

W
ri

te
 (

G
B

/s
)

(d) DTW with data preprocessing

Figure 15: S3D target I/O signature and extracted I/O signature by IOSI and DTW

out global data alignment. Still, DTW generated sig-

nificantly lower-quality signatures, especially with more

complex I/O patterns, due to its inability to reduce noise.

For example, DTW’s IORC (Figure 13(l)) signature ap-

pears to be dominated by noise.

In contrast, IOSI (with or w/o data preprocessing)

generated output signatures with much higher fidelity.

In both cases, IOSI is highly successful in capturing I/O

bursts in the time dimension (with small, yet visible er-

rors in the vertical height of the bursts). Without prepro-

cessing, IOSI missed 3 out of the 25 I/O bursts from all

pseudo-applications. With preprocessing, however, the

symptom is much improved (no burst missed).

6.2 S3D Results

Next, we present results with the aforementioned

large-scale scientific application, S3D. S3D was run on

Titan and the Spider file system. S3D performs periodic

checkpointing I/O, with each process generating 3.4 MB

of data. Figure 14 shows selected samples from mul-

tiple S3D runs, where we see a lot of I/O interference

since both Titan and Spider were being used in produc-

tion mode. Unlike IOR, we were not able to run S3D

on a quiescent Spider file system partition to obtain its

“clean” signature to validate IOSI. Instead, we had to use

client-side I/O tracing, to produce the target I/O signa-

ture (Figure 15(a)). The I/O signature also displays vari-

ance in peak bandwidth, common in real-world, large

job runs. Again, we extracted the I/O signature from the

samples using IOSI (with and without data preprocess-

ing), plus DTW with preprocessing (Figure 15).

As in the case of IOR, IOSI with data preprocessing

performs better than IOSI without data preprocessing

and DTW. This result suggests that IOSI is able to the ex-

tract I/O signatures of real-world scientific applications

from noisy throughput logs, collected from a very busy

supercomputing center. While both versions of IOSI

missed an I/O burst, the data preprocessing helps deliver

better alignment accuracy (discussed in Figures 16(a)

and 16(b)). The presence of heavy noise in the samples

likely caused DTW’s poor performance.

6.3 Accuracy and Efficiency Analysis

We quantitatively compare the accuracy of IOSI and

DTW using two commonly used similarity metrics,

cross correlation (Figure 16(a)) and correlation coeffi-

cient (Figure 16(b)). Correlation coefficient measures

the strength of the linear relationship between two sam-

ples. Cross correlation [65] is a similarity measurement

that factors in the drift in a time series data set. Figure 16

portraits these two metrics, as well as the total I/O vol-

ume comparison, between the extracted and the original

application signature.

Note that correlation coefficient is inadequate to char-

acterize the relationship between the two time series

when they are not properly aligned. For example, with

IORB , the number of bursts in the extracted signa-

tures by IOSI with and without data preprocessing is

very close. However, the one without preprocessing suf-

fers more burst drift compared to the original signature.

Cross correlation appears more tolerant to IOSI without

preprocessing compared to correlation coefficient. Also,

IOSI significantly outperforms DTW (both with prepro-

cessing), by a factor of 2.1-2.6 in cross correlation, and

4.8-66.0 in correlation coefficient.

Note that the DTW correlation coefficient for S3D is

too small to show. Overall, IOSI with preprocessing

achieves a cross correlation between 0.72 and 0.95, and

11

0

0.2

0.4

0.6

0.8

1 0.940.95

0.35

0.87

0.52

0.38

0.8

0.34
0.38

0.72

0.39

0.28

Test case

C
ro

ss
 C

or
re

la
tio

n

IOR
A

IOR
B

IOR
C

S3D

IOSI w data preprocessing
IOSI w/o data preprocessing
DTW with data preprocessing

(a) Cross correlation

0

0.2

0.4

0.6

0.8

1 0.94 0.95

0.15

0.69

0.16
0.15

0.75

0.13
0.1

0.66

0.12

0

Test case

C
or

re
la

tio
n

co
ef

fic
ie

nt

IOR
A

IOR
B

IOR
C

S3D

IOSI w data preprocessing
IOSI w/o data preprocessing
DTW with data preprocessing

(b) Correlation coefficient

0

200

400

600

800

1000

1200

352
396

668

510

157
127

287

196

406
408

770

516
384

370
454

389

Test case

To
ta

l I
/O

 V
ol

um
e

(G
B

)

IOR
A

IOR
B IOR

C
S3D

IOSI w data preprocessing
IOSI w/o data preprocessing
DTW with data preprocessing
Target signature

(c) Total I/O volume

Figure 16: Result I/O signature accuracy evaluation

0

0.5

1

1.5

0.9
0.94

0.9
0.82 0.85 0.87

0.7 0.77
0.8

0.78
0.63

0.72 0.69
0.67

Test case

C
ro

s
s

 c
o

e
ff

ic
ie

n
t

IOR
A

IOR
B

IOR
C

S3D

WT decomposition level 1
WT decomposition level 2
WT decomposition level 3
WT decomposition level 4

(a) Cross correlation

0

0.2

0.4

0.6

0.8

1

1.2

0.89
0.94

0.8
0.82

0.68
0.69

0.68
0.57

0.740.75
0.73

0.620.64
0.66

0.64

0.36

Test case

C
o

rr
e

la
ti

o
n

 c
o

e
ff

ic
ie

n
t

IOR
A IOR

B
IOR

C
S3D

WT decomposition level 1
WT decomposition level 2
WT decomposition level 3
WT decomposition level 4

(b) Correlation coefficient

Figure 17: IOSI - WT sensitivity analysis

0

0.2

0.4

0.6

0.8

1

0.76 0.78

0.63
0.55

0.59

0.56

0.61 0.6 0.580.48

Test case

C
o

rr
e

la
ti

o
n

 c
o

e
ff

ic
ie

n
t

IOR
C

S3D

DT 0.3
DT 0.4
DT 0.5
DT 0.6
DT 0.7
DT 0.8
DT 0.9

(a) Density threshold (DT)

0

0.2

0.4

0.6

0.8

1

1.2

0.69 0.71
0.75

0.7

0.53
0.52

0.66
0.61

Test case

C
o

rr
e

la
ti

o
n

 c
o

e
ff

ic
ie

n
t

IOR
C S3D

NDT 0.7
NDT 0.8
NDT 0.9
NDT 1.0

(b) Neighborhood density thresh-

old (NDT)

Figure 18: IOSI - Clustering sensitivity analysis

a correlation coefficient between 0.66 and 0.94.

We also compared the total volume of I/O traffic (i.e.,

the “total area” below the signature curve), shown in Fig-

ure 16(c). IOSI generates I/O signatures with a total

I/O volume closer to the original signature than DTW

does. It is interesting that without exception, IOSI and

DTW err on the lower and higher side, respectively. The

reason is that DTW tends to include foreign I/O bursts,

while IOSI’s WT process may “trim” the I/O bursts in

its threshold-based burst boundary identification.

Next, we performed sensitivity analysis on the tunable

parameters of IOSI, namely the WT decomposition level,

and density threshold/neighborhood density threshold in

CLIQUE clustering. As discussed in Section 5, we used

a WT decomposition level of 2 in IOSI. In Figures 17(a)

and 17(b), we compare the impact of WT decomposition

levels using both cross correlation and correlation coef-

ficient. Figure 17(a) shows that IOSI does better with a

decomposition level of 2, compared to levels 1, 3 and 4.

Similarly, Figure 17(b) shows that the correlation coeffi-

cient is the best at the WT decomposition level of 2.

In Figure 18(a), we tested IOSI with different density

thresholds ⌈γ ∗ s⌉ in CLIQUE clustering, where γ is the

controllable factor and s is the number of samples. In

IOSI, the default γ value is 50%. From Figure 18(a)

we noticed a peak correlation coefficient at γ value of

around 50%. There is significant performance degrada-

tion at over 70%, as adjacent bursts may be grouped to

form a single burst. In Figure 18(b), we tested IOSI with

different neighborhood density thresholds ⌈κ∗s⌉, where

κ is another configurable factor with value larger than γ.

IOSI used 90% as the default value of κ. Figure 18(b)

suggests that lower thresholds perform poorly, as more

neighboring data points deteriorates the quality of iden-

tified I/O bursts. With a threshold of 100%, we expect

bursts from all samples to be closely aligned, which is

impractical.

3 4 5 6 7 8
0

1

2

3

4

5

6

7

of samples

P
ro

ce
ss

in
g

ti
m

e
(s

)

DTW
IOSI with 100 parameter combinations
IOSI with 40 parameter combinations
IOSI with 1 parameter combination

(a) Scalability in # of samples

1000 2000 3000 4000 5000 6000
0

20

40

60

80

100

Length of samples (s)

P
ro

ce
ss

in
g

ti
m

e
(s

)

DTW
IOSI with 100 parameter combinations
IOSI with 40 parameter combinations
IOSI with 1 parameter combination

(b) Scalability in sample duration

Figure 19: Processing time analysis

Finally, we analyze the processing time overhead of

these methods. IOSI involves mainly two computation

tasks: wavelet transform and CLIQUE clustering. The

complexity of WT (discrete) is O(n) [29] and CLIQUE

clustering is O(Ck + nk) [32], where k is the highest

dimensionality, n the number of input points, and C the

number of clusters. In our CLIQUE implementation, k

is set to 2 and C is also a small number. Therefore we as-

sume Ck as a constant, resulting in a complexity of O(n),

leading to the overall linear complexity of IOSI. DTW,

on the other hand, has a complexity of O(mn) [34],

where m and n are the lengths of the two input arrays.

Experimental results confirm the above analysis. In

Figure 19(a), we measure the processing time with dif-

ferent sample set sizes (each sample containing around

2000 data points). For IOSI, the processing time appears

to stay flat as more samples are used. This is because the

CLIQUE clustering time, which is rather independent of

the number of samples and depends more on the number

12

0 1000 2000 3000
0

10

20

30

40

50

Time (s)

W
rit

e
(G

B
/s

)

(a) 160-node job

0 1000 2000 3000
0

10

20

30

40

50

Time (s)

W
rit

e
(G

B
/s

)

(b) 320-node job

0 1000 2000 3000
0

10

20

30

40

50

Time (s)

W
rit

e
(G

B
/s

)

(c) 640-node job

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

Time (s)

W
rit

e
(G

B
/s

)

(d) IOSI Result

Figure 20: Weak scaling sample and IOSI extracted I/O signature

of grids, dominates IOSI’s overhead. Even with 100 2-

D IOSI parameter settings (for the CLIQUE grid size),

DTW’s cost catches up with 5 samples and grows much

faster beyond this point. Figure 19(b) shows results with

8 samples, at varied sample lengths. We see that IOSI

processing time increases linearly while DTW displays

a much faster growth. To give an idea of its feasibil-

ity, IOSI finishes processing three months of Spider logs

(containing 80,815 job entries) in 72 minutes.

6.4 Discussion

I/O signatures and application configurations Scien-

tific users tend to have a pattern of I/O behavior. How-

ever, they do scale applications with respect to the num-

ber of nodes, resulting in similar I/O characteristics. In

Figure 20, we show the I/O pattern of a real Titan user,

running jobs with three different node counts (160, 320,

and 640). From Figures 20(a)-20(c), we observe that the

total I/O volume increases linearly with the node count

(weak scaling), but the peak bandwidth remains almost

constant. As a result, the time spent on I/O also increases

linearly. IOSI can discern such patterns and extract the

I/O signature, as shown in Figure 20(d). As described

earlier, in the data preprocessing step we perform run-

time correction and the samples are normalized to the

sample with the shortest runtime. In this case, IOSI nor-

malizes the data sets to that of the shortest job (i.e., the

job with the smallest node count), and provides the I/O

signature of the application for the smallest job size.

Identifying different user workloads Our tests used

a predominant scientific I/O pattern, where applications

perform periodic I/O. However, as long as an applica-

tion exhibits similar I/O behavior across multiple runs,

the common I/O pattern can be captured by IOSI as its

algorithms make no assumption on periodic behavior.

False-positives and missing bursts False-positives are

highly unlikely as it is very difficult to have highly cor-

related noise behavior across multiple samples. IOSI

could miscalculate small-scale I/O bursts if they happen

to be dominated by noise in most samples. Increasing

the number of samples can help here.

IOSI for resource allocation and scheduling The IOSI

generated signature can be used to influence both re-

source allocation as well as scheduling. Large-scale file

systems are typically made available as multiple parti-

tions, with users choosing one or more for their runs. A

simple partition allocation strategy would be to let the

users choose a set of under-utilized partitions. However,

when all partitions are being actively used by multiple

users, the challenge is in identifying a set of partitions

that will have the least interference on the target appli-

cation. The IOSI extracted signature can be correlated

with the I/O logs of the partitions to identify those that

will have a minimal impact on the application. If we are

unable to find an optimal partition for an application, the

scheduler can even stagger such jobs, preferring others

in the queue. The premise here is that finding a partition

that better suits the job’s I/O needs can help amortize

the I/O costs over the entire run. These benefits could

outweigh the cost of waiting longer in the queue.

7 Conclusion

We have presented IOSI, a zero-overhead scheme

for automatically identifying the I/O signature of data-

intensive parallel applications. IOSI utilizes existing

throughput logs on the storage servers to identify the sig-

nature. It uses a suite of statistical techniques to extract

the I/O signature from noisy throughput measurements.

Our results show that an entirely data-driven approach,

exploring existing monitoring and job scheduling history

can extract substantial application behavior, potentially

useful for resource management optimization. In par-

ticular, such information gathering does not require any

developer effort or internal application knowledge. Such

a black-box method may be even more appealing as sys-

tems/applications grow larger and more complex.

Acknowledgement

We thank the reviewers and our shepherd, Kimberly

Keeton, for constructive comments that have signifi-

cantly improved the paper. This work was supported in

part by the Oak Ridge Leadership Computing Facility

at the Oak Ridge National Laboratory, which is man-

aged by UT Battelle, LLC for the U.S. DOE (under the

contract No. DE-AC05-00OR22725). This work was

also supported in part by the NSF grants CCF-0937690,

CCF-0937908, and a NetApp Faculty Fellowship.

13

References

[1] IOR HPC Benchmark, https://asc.llnl.

gov/sequoia/benchmarks/#ior.

[2] Los Alamos National Laboratory open-source

LANL-Trace, http://institute.lanl.

gov/data/tdata.

[3] Titan, http://www.olcf.ornl.gov/

titan/.

[4] Wavelet, http://users.rowan.edu/

˜polikar/WAVELETS/WTtutorial.html.

[5] Using Cray Performance Analysis Tools. Docu-

ment S-2474-51, Cray User Documents, http:

//docs.cray.com, 2009.

[6] J. Aach and G. M. Church. Aligning gene ex-

pression time series with time warping algorithms.

Bioinformatics, 17:495–508, 2001.

[7] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel,

G. Marin, J. Mellor-Crummey, and N. R. Tallent.

Hpctoolkit: Tools for performance analysis of op-

timized parallel programs. Concurrency and Com-

putation: Practice and Experience, 22(6):685–

701, 2010.

[8] R. Agrawal, J. Gehrke, D. Gunopulos, and

P. Raghavan. Automatic subspace clustering of

high dimensional data for data mining applications.

In Proceedings of the ACM SIGMOD International

Conference on Management of Data (SIGMOD

’98), 1998.

[9] L. Bergroth, H. Hakonen, and T. Raita. A sur-

vey of longest common subsequence algorithms.

In Proceedings of the 7th International Symposium

on String Processing and Information Retrieval

(SPIRE’00), 2000.

[10] D. J. Berndt and J. Clifford. Using dynamic time

warping to find patterns in time series. In Working

Notes of the Knowledge Discovery in Databases

Workshop, 1994.

[11] R. N. Bracewell. The Fourier transform and its

applications. McGraw-Hill New York, 1986.

[12] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and

J. Sander. LOF: identifying density-based local

outliers. In Proceedings of the ACM SIGMOD

International Conference on Management of Data

(SIGMOD ’00), 2000.

[13] S. Bruenn, A. Mezzacappa, W. Hix, J. Blondin,

P. Marronetti, O. Messer, C. Dirk, and S. Yoshida.

2d and 3d core-collapse supernovae simulation re-

sults obtained with the chimera code. Journal

of Physics: Conference Series, 180(2009)012018,

2009.

[14] C. S. Burrus, R. A. Gopinath, H. Guo, J. E. Ode-

gard, and I. W. Selesnick. Introduction to wavelets

and wavelet transforms: a primer, volume 23.

Prentice Hall Upper Saddle River, 1998.

[15] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and

W. Gropp. Parallel I/O prefetching using MPI

file caching and I/O signatures. In Proceedings

of the ACM/IEEE Conference on Supercomputing

(SC ’08), 2008.

[16] P. Carns, K. Harms, W. Allcock, C. Bacon,

S. Lang, R. Latham, and R. Ross. Understanding

and improving computational science storage ac-

cess through continuous characterization. In Pro-

ceedings of the IEEE 27th Symposium on Mass

Storage Systems and Technologies (MSST’11),

2011.

[17] P. H. Carns, R. Latham, R. B. Ross, K. Iskra,

S. Lang, and K. Riley. 24/7 Characterization of

petascale I/O workloads. In Proceedings of the

First Workshop on Interfaces and Abstractions for

Scientic Data Storage (IASDS’09), 2009.

[18] S. Chu, E. J. Keogh, D. Hart, and M. J. Pazzani.

Iterative Deepening Dynamic Time Warping for

Time Series. In Proceedings of the 2nd SIAM In-

ternational Conference on Data Mining (SDM’02),

2002.

[19] J. Daly. A model for predicting the optimum

checkpoint interval for restart dumps. In Proceed-

ings of the 1st International Conference on Com-

putational Science (ICCS’03), 2003.

[20] J. T. Daly. A higher order estimate of the optimum

checkpoint interval for restart dumps. Future Gen-

eration Computer Systems, 22(3):303–312, 2006.

[21] I. Daubechies. Orthonormal bases of compactly

supported wavelets II: Variations on a theme. SIAM

Journal on Mathematical Analysis, 24:499–519,

1993.

[22] C. de Boor. A practical guide to splines. Springer-

Verlag New York, 1978.

[23] J. R. Deller, J. G. Proakis, and J. H. Hansen.

Discrete-time processing of speech signals. IEEE

New York, NY, USA, 2000.

[24] P. Du, W. A. Kibbe, and S. M. Lin. Improved peak

detection in mass spectrum by incorporating con-

tinuous wavelet transform-based pattern matching.

Bioinformatics, 22(17):2059–2065, 2006.

[25] E.L.Miller and R.H.Katz. Input/output behavior

of supercomputing applications. In Proceedings

of the ACM/IEEE Conference on Supercomputing

(SC’91), 1991.

14

[26] G. R. Ganger. Generating Representative Synthetic

Workloads: An Unsolved Problem. In Proceedings

of the Computer Measurement Group (CMG’95),

1995.

[27] Z. Gong and X. Gu. PAC: Pattern-driven Appli-

cation Consolidation for Efficient Cloud Comput-

ing. In Proceedings of the 18th IEEE/ACM Inter-

national Symposium on Modeling, Analysis, and

Simulation of Computer Telecommunications Sys-

tems (MASCOTS’10), 2010.

[28] R. Gunasekaran, D. Dillow, G. Shipman, R. Vuduc,

and E. Chow. Characterizing Application Run-

time Behavior from System Logs and Metrics. In

Proceedings of the Characterizing Applications for

Heterogeneous Exascale Systems (CACHES’11),

2011.

[29] H. Guo and C. S. Burrus. Fast approximate Fourier

transform via wavelets transform. In Proceedings

of the International Symposium on Optical Sci-

ence, Engineering, and Instrumentation, 1996.

[30] M. Hauswirth, A. Diwan, P. F. Sweeney, and M. C.

Mozer. Automating vertical profiling. In Proceed-

ings of the 20th Annual ACM SIGPLAN Confer-

ence on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA’05), 2005.

[31] E. R. Hawkes, R. Sankaran, J. C. Sutherland, and

J. H. Chen. Direct numerical simulation of tur-

bulent combustion: fundamental insights towards

predictive models. Journal of Physics: Conference

Series, 16(1):65, 2005.

[32] M. Ilango and V. Mohan. A Survey of Grid Based

Clustering Algorithms. International Journal of

Engineering Science and Technology, 2(8):3441–

3446, 2010.

[33] E. Keogh and C. A. Ratanamahatana. Exact in-

dexing of dynamic time warping. Knowledge and

Information Systems, 7(3):358–386, 2005.

[34] E. J. Keogh and M. J. Pazzani. Scaling up dy-

namic time warping for datamining applications.

In Proceedings of the 6th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and

Data Dining, 2000.

[35] N. G. Kingsbury. The dual-tree complex wavelet

transform: a new technique for shift invariance and

directional filters. In Proceedings of the 8th IEEE

Digital Signal Processing (DSP) Workshop, 1998.

[36] D. Kothe and R. Kendall. Computational science

requirements for leadership computing. Oak Ridge

National Laboratory, Technical Report, 2007.

[37] Z. Kurmas and K. Keeton. Synthesizing Repre-

sentative I/O Workloads Using Iterative Distilla-

tion. In Proceedings of the 11th IEEE/ACM In-

ternational Symposium on Modeling, Analysis, and

Simulation of Computer Telecommunications Sys-

tems (MASCOTS’03), 2003.

[38] C. Lipowsky, E. Dranischnikow, H. Göttler, T. Got-

tron, M. Kemeter, and E. Schömer. Alignment of

noisy and uniformly scaled time series. In Pro-

ceedings of the Database and Expert Systems Ap-

plications (DEXA’09), 2009.

[39] Y. Liu, R. Nassar, C. Leangsuksun, N. Naksineha-

boon, M. Paun, and S. L. Scott. An optimal check-

point/restart model for a large scale high perfor-

mance computing system. In Proceedings of the

International Parallel Distributed Processing Sym-

posium (IPDPS’08), 2008.

[40] Y. Long, L. Gang, and G. Jun. Selection of the best

wavelet base for speech signal. In Proceedings of

the International Symposium on Intelligent Multi-

media, Video and Speech Processing, 2004.

[41] S. Mallat. A theory for multiresolution signal de-

composition: the wavelet representation. Pattern

Analysis and Machine Intelligence, 11(7):674–

693, 1989.

[42] M. P. Mesnier, M. Wachs, R. R. Simbasivan,

J. Lopez, J. Hendricks, G. R. Ganger, and D. R.

O’Hallaron. //trace: Parallel trace replay with ap-

proximate causal events. In Proceedings of the

5th USENIX Conference on File and Storage Tech-

nologies (FAST’07), 2007.

[43] R. Miller, J. Hill, D. A. Dillow, R. Gunasekaran,

S. Galen, and D. Maxwell. Monitoring Tools For

Large Scale Systems. In Proceedings of the Cray

User Group (CUG’10), 2010.

[44] K. Mohror and K. L. Karavanic. An Investigation

of Tracing Overheads on High End Systems. Tech-

nical report, PSU, 2006.

[45] W. G. Morsi and M. El-Hawary. The most suitable

mother wavelet for steady-state power system dis-

torted waveforms. In Proceedings of the Canadian

Conference on Electrical and Computer Engineer-

ing, 2008.

[46] M. Müller. Dynamic time warping. Informa-

tion Retrieval for Music and Motion, pages 69–84,

2007.

[47] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Sclat-

ter Ellis, and M. Best. File-access characteristics of

parallel scientific workloads. IEEE Transactions

on Parallel and Distributed Systems, 7(10):1075–

1089, 1996.

[48] S. Oral, F. Wang, D. Dillow, G. Shipman, R. Miller,

and O. Drokin. Efficient object storage journaling

15

in a distributed parallel file system. In Proceedings

of the 8th USENIX Conference on File and Storage

Technologies (FAST’10), 2010.

[49] B. Pasquale and G. Polyzos. A static anal-

ysis of I/O characteristics of scientific applica-

tions in a production workload. In Proceedings

of the ACM/IEEE Conference on Supercomputing

(SC’93), 1993.

[50] T. C. Peterson, T. R. Karl, P. F. Jamason, R. Knight,

and D. R. Easterling. First difference method:

Maximizing station density for the calculation of

long-term global temperature change. Journal of

Geophysical Research: Atmospheres (1984–2012),

103(D20):25967–25974, 1998.

[51] J. S. Plank and M. G. Thomason. Processor allo-

cation and checkpoint interval selection in cluster

computing systems. Journal of Parallel and dis-

tributed Computing, 61(11):1570–1590, 2001.

[52] A. Povzner, K. Keeton, A. Merchant, C. B. Mor-

rey III, M. Uysal, and M. K. Aguilera. Auto-

graph: automatically extracting workflow file sig-

natures. ACM SIGOPS Operating Systems Review,

43(1):76–83, 2009.

[53] P. C. Roth. Characterizing the I/O behavior of sci-

entific applications on the Cray XT. In Proceed-

ings of the 2nd International Workshop on Petas-

cale Data Storage: held in conjunction with SC’07,

2007.

[54] S. Seelam, I.-H. Chung, D.-Y. Hong, H.-F. Wen,

and H. Yu. Early experiences in application level

I/O tracing on Blue Gene systems. In Proceedings

of the International Parallel Distributed Process-

ing Symposium (IPDPS’08), 2008.

[55] G. Shipman, D. Dillow, S. Oral, and F. Wang. The

Spider Center Wide File System: From Concept to

Reality. In Proceedings of the Cray User Group

(CUG’09), 2009.

[56] K. Spafford, J. Meredith, J. Vetter, J. Chen,

R. Grout, and R. Sankaran. Accelerating S3D: a

GPGPU case study. In Euro-Par 2009 Parallel

Processing Workshops, 2010.

[57] V. Tarasov, S. Kumar, J. Ma, D. Hildebrand,

A. Povzner, G. Kuenning, and E. Zadok. Extract-

ing flexible, replayable models from large block

traces. In Proceedings of the 10th USENIX Confer-

ence on File and Storage Technologies (FAST’12),

2012.

[58] TOP500 Supercomputer Sites, http://www.

top500.org/.

[59] A. Uselton, M. Howison, N. Wright, D. Skinner,

N. Keen, J. Shalf, K. Karavanic, and L. Oliker. Par-

allel I/O performance: From events to ensembles.

In Proceedings of the International Parallel Dis-

tributed Processing Symposium (IPDPS’10), 2010.

[60] J. S. Vetter and M. O. McCracken. Statistical

scalability analysis of communication operations

in distributed applications. In Proceedings of the

8th ACM SIGPLAN symposium on Principles and

Practices of Parallel Programming (PPoPP’01),

2001.

[61] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L.

Miller, D. D. E. Long, and T. T. Mclarty. File

system workload analysis for large scale scien-

tific computing applications. In Proceedings of the

IEEE 21th Symposium on Mass Storage Systems

and Technologies (MSST’04), 2004.

[62] W. W.-S. Wei. Time series analysis. Addison-

Wesley Redwood City, California, 1994.

[63] Y. Xu, J. B. Weaver, D. M. Healy, and J. Lu.

Wavelet transform domain filters: a spatially selec-

tive noise filtration technique. IEEE Transactions

on Image Processing, 3(6):747–758, 1994.

[64] N. J. Yadwadkar, C. Bhattacharyya, K. Gopinath,

T. Niranjan, and S. Susarla. Discovery of applica-

tion workloads from network file traces. In Pro-

ceedings of the 8th USENIX Conference on File

and Storage Technologies (FAST’10), 2010.

[65] J.-C. Yoo and T. H. Han. Fast normalized cross-

correlation. Circuits, Systems and Signal Process-

ing, 28(6):819–843, 2009.

[66] J. W. Young. A first order approximation to the

optimum checkpoint interval. Communications of

the ACM, 17(9):530–531, 1974.

[67] D. Yu, X. Yu, Q. Hu, J. Liu, and A. Wu. Dynamic

time warping constraint learning for large margin

nearest neighbor classification. Information Sci-

ences, 181(13):2787–2796, 2011.

16

