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Abstract—Designed for capacity and capability, HPC I/O
systems are inherently complex and shared among multiple,
concurrent jobs competing for resources. Lack of centralized
coordination and control often render the end-to-end I/O
paths vulnerable to load imbalance and contention. With the
emergence of data-intensive HPC applications, storage systems
are further contended for performance and scalability.

This paper proposes to unify two key approaches to tackle
the imbalanced use of I/O resources and to achieve an end-
to-end I/O performance improvement in the most transparent
way. First, it utilizes a topology-aware, Balanced Placement
I/O method (BPIO) for mitigating resource contention. Second,
it takes advantage of the platform-neutral ADIOS middle-
ware, which provides a flexible I/O mechanism for scientific
applications. By integrating BPIO with ADIOS, referred to
as Aequilibro, we obtain an end-to-end and per job I/O per-
formance improvement for ADIOS-enabled HPC applications
without requiring any code changes. Aequilibro can be applied
to almost any HPC platform and is mostly suitable for systems
that lack a centralized file system resource manager. We
demonstrate the effectiveness of our integration on the Titan
system at the Oak Ridge National Laboratory. Our experiments
with a synthetic benchmark and real-world HPC workload
show that, even in a noisy production environment, Aequilibro
can improve large-scale application performance significantly.

Keywords-Parallel File System, High Performance Comput-
ing, Load Balancing, Performance Evaluation

I. INTRODUCTION

Large-scale scientific applications stress the capability of
file and storage systems by producing large amounts of
data in a bursty pattern. With the advent of big data, it is
expected that future large-scale applications will generate
even more data. Parallel file systems distribute the work-
load over multiple I/O paths and components to satisfy
the I/O requirements in terms of performance, capacity,
and scalability. In large-scale high performance computing
(HPC) deployments, file systems are often shared among
applications concurrently running on a single system and
sometimes among applications running on multiple systems
(e.g., a center-wide file system). This often results in file
system and network contention. The observed I/O bandwidth
at the application level can be much lower than the the-
oretical peak bandwidth of the underlying storage system.
Bursty writes, e.g. checkpointing data, can cause resource

contention leading to hotspots which are detrimental to
parallel application performance. Hotspots lead to variations
in completion times across processes, and therefore, to a
blocking behavior and wasted computational capacity.

The balanced placement I/O (BPIO) library [1] addresses
the resource contention problem by providing a topology-
aware, balanced placement strategy that is based on a
tunable, weighted cost function of available system com-
ponents. It balances the workload by keeping track of the
usage frequency of all available file system components to
improve the overall I/O performance. BPIO is available as
an easy-to-use, user-space library. In order to increase the
application adaptability and transition, this paper proposes
Aequilibro, the transparent merging of BPIO and ADIOS
[2], [3]. ADIOS is a flexible middleware that provides an
easy mechanism to describe data elements, types, and the I/O
method. With this unification, ADIOS-enabled applications
can effortlessly take advantage of BPIO’s performance ben-
efits without any further modifications. The implementation
and evaluation are carried out on the Titan system [4] and
Spider II [5]. By repeating small-, medium- and large-
scale runs over an extended period of time in a production
environment, we demonstrate that the integration is effective
in improving application I/O independently from any node
allocation and I/O interferences. Aequilibro combines the
optimization done at the interconnect network level and the
load balancing done at the file system level by BPIO with the
benefits of an I/O framework such as ADIOS to provide near
optimal I/O methods for the user. Aequilibro can be used
with a variety of available I/O solutions, including POSIX
I/O, MPI-IO [6], HDF5 [7], netCDF, and SILO [8].

The contributions of this paper are two-fold. First, we
present Aequilibro, an unification of the topology-aware
load balancing library BPIO and the ADIOS middleware
library for two popular I/O methods, POSIX I/O and MPI-
IO. Second, we present an evaluation of Aequilibro based
on an analysis methodology that utilizes the Interleaved Or
Random (IOR) synthetic benchmark [9] and Genarray, an
HPC workload simulator. The performance is evaluated at
different scales to show how Aequilibro mitigates resource
contention and improves scientific application performance



Figure 1. ADIOS POSIX I/O with default Lustre data placement.

significantly in busy environments. The paper is organized as
follows. Section II provides the background and motivation.
Section III describes Aequilibro. In Section IV, the analysis
methodology and performance evaluation are discussed.
Section V presents related work. The paper concludes in
section VI.

II. MOTIVATION AND BACKGROUND

Resource contention adversely impacts the performance
and scalability in high-performance systems. As described
by Wang et al. [1], there exists a significant variation
in usage across system resource components. The same
behavior can be observed for applications using ADIOS for
I/O on Titan. Titan is a Cray XK7 system with 18,688
compute nodes. Its parallel file system is Spider II [5],
which is based on the Lustre technology [10] and one of
the world’s fastest and largest POSIX-compliant parallel file
systems. It is configured and deployed as two independent
and non-overlapping file systems, each with 144 Lustre
Object Storage Servers (OSSs) and 1,008 Lustre Object
Storage Targets (OSTs). Figure 1 displays a representative
example OST usage distribution out of 30 scaled runs on
Titan for ADIOS with the default Lustre data placement
strategy for a 2,016 node allocation. It can be observed that
there is a significant variation in usage across storage targets.
Parallel file systems lack advanced routing and workload
balancing mechanism. Consequently, imbalanced resource
utilization increases contention.

There are different possible approaches to address the
resource contention problem. One is the improvement of
the Lustre OST allocation scheme. This is a Lustre-specific
solution, and therefore, disregarded. Another approach is the
deployment of a centralized, system-wide I/O coordination
and control mechanism. E.g., Fastpass [11] is a data center
network framework that aims for high utilization with zero
queuing. For large-scale HPC systems, this approach is not
feasible. Multiple applications are running currently, with a
variety of different I/O patterns and workloads. A system-
wide I/O mechanism would need to stall applications to
coordinate the I/O requests in a balanced manner, leading to
a tremendous communication overhead. Instead of improv-
ing the performance, it likely would lead to a sub-optimal
utilization of the available computational resources.

The third approach is to balance the I/O workload on
an end-to-end and per job basis as done by the balanced
placement I/O library (BPIO) [1]. BPIO tackles the problem
by intelligently allocating I/O paths for a parallel file system.
The library employs a placement strategy that provides
a binding between an I/O client (compute node or MPI
process) and a storage target that aims to resolve application
level I/O contention. It utilizes the Fine-Grained Routing
(FGR) congestion avoidance method [12]. FGR organizes
I/O paths to minimize end-to-end hop counts and congestion.
This is done by pairing clients with their closest possible,
and in the case of Titan, optimal LNET router. The algorithm
behind the BPIO library uses a placement cost function that
takes a weighted average of how frequently different file
system resources have been used by previous I/O requests
issued by the same application. The most general case is
defined by

C = w1R1 + w2R2 + ...+ wnRn (1)

where C is the cost of an I/O path, Ri is a resource
component, and wi is the weight factor with

∑n
i=1 wi = 1.

For Lustre, possible resource components are logical I/O
routers (i.e., LNET), or actual file system and networking
resources (i.e., Lustre I/O routers, OSSs, and OSTs). The
algorithm loops over all reachable storage targets to choose
one with the lowest placement cost per compute node. This
is repeated for all I/O clients allotted to the application once
before the application enters the I/O write phase. An initial
performance evaluation of the library was performed on the
Titan supercomputer [4].

ADIOS [2], [3] is a flexible middleware that provides a
simple I/O application programming interface (API) with
portable, fast, scalable, metadata-rich output. One of the
salient features is that I/O methods can be changed by
modifying the configuration file without the need to modify
or recompile the application code. ADIOS has demonstrated
impressive I/O performance results on leadership class ma-
chines and clusters. There are two key ideas. First, users do
not need to be aware of the low-level layout and organiza-
tion of data. Second, application developers should not be
burdened with optimizations for each platform they use. It
is capable of I/O aggregation on behalf of the application
to increase the I/O performance and scalability. However, it
does not provide an I/O balancing mechanism. Aequilibro
provides ADIOS-users the ability to take full advantage of
the balanced data placement strategy, and therefore, to tackle
the resource contention problem on file system level.

III. AEQUILIBRO SOFTWARE
ARCHITECTURE AND IMPLEMENTATION

Aequilibro is implemented in the context of ADIOS.
Specifically, it is integrated as on optional feature in the
file creation and write phase for selected ADIOS transport
methods.



(a) POSIX (b) MPI_AGGREGATE

Application process File

Figure 2. ADIOS transport methods.

A. ADIOS Transport Methods

ADIOS provides a mechanism to externally describe an
application’s I/O requirements using an XML-based config-
uration file. This results in a runtime selectable technique
for performing basic ADIOS operations, e.g. adios open()
and adios write(). Depending on the selected transport
method, a different number of files is produced. POSIX and
MPI AGGREGATE are two examples for transport methods.

POSIX takes advantage of the concurrency of parallel file
systems. Each writing process is responsible for writing data
to its own output file, called file-per-process strategy. This is
illustrated by Figure 2 (a). One process is responsible for an
index file. The transport method results in an index file along
with a subdirectory containing all of the files written indi-
vidually by the application processes. MPI AGGREGATE is
a sophisticated, MPI-IO-based technique derived from the
MPI and MPI LUSTRE transport methods. Instead of using
the default data aggregation, it provides an optimized method
that aggregates data from multiple MPI processes into large
chunks before writing them out to the file system, as shown
in Figure 2 (b). A subset of application processes acts as an
aggregator for a subset of peers. The number of aggregators
(writers) and the number of OSTs can be specified by the
user. The method creates a collection of seperate files, with
one file corresponding to each of the aggregators. The user
is able to define Lustre-specific striping information.

B. Aequilibro

Aequilibro, our proposed integration solution, resolves
the resource contention problem. By integrating BPIO into
ADIOS, we are translating BPIO’s end-to-end and per job
I/O performance improvements directly and transparently to
the user applications. ADIOS’ software architecture consists
of several layers. The best way to integrate BPIO into
ADIOS is to select the transport methods that are suited best
to benefit from a balanced data placement and implement the
integration directly into those methods. The BPIO library
acts as a shim layer between the transport methods and the
parallel file system, as depicted by Figure 3.

The load balancing library is integrated in the POSIX
and MPI AGGREGATE transport methods offered by the
ADIOS framework. There are two reasons for this decision.
We believe that those two I/O techniques are widely used
on current HPC systems. As pointed out by a recent study
of HPC systems [13], between 50% and 95% of jobs use
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Figure 3. Aequilibro software stack with example XML-file.

the POSIX I/O library. The remaining jobs use MPI-IO
directly or libraries built atop MPI-IO. The second reason
for selecting POSIX and MPI AGGREGATE is related to
our test system. The current implementation of the BPIO
library is deployed on Titan’s Spider II file system. Spider
II is based on Lustre 2.4 and therefore, inherits its limita-
tions. Currently, BPIO only supports the file-per-process I/O
strategy. Lustre 2.4 lacks the ability to provide fine-grained
control of object placement. Lustre 2.7 and beyond offer a
new feature [14] that provides the user the ability to specify
a list of OSTs to be used for a single shared file. Future
Aequilibro versions will take advantage of this feature.

During the initialization of the ADIOS framework with
adios init(), the BPIO library is configured with system-
specific mapping files generated by the fine-grained routing
congestion avoidance method. In addition, a list of allotted
I/O clients is created. Algorithm 1 describes the details of
initializing Aequilibro. At the entry of an I/O write phase,
the BPIO library is invoked with the list of allotted I/O
clients. Depending on the transport method, this takes place
in the adios open() or adios groupsize() call. The BPIO
library returns a list with an I/O client to OST assignment
and uses the information to create the files, as described
in Algorithm 2. For POSIX I/O, a file is created with
Lustre’s llapi library. The stripe size, stripe count, and
start OST of a file are set via the logical object volume
(LOV) layer and stored in lov user md. LOV handles client
access to OSTs. With IOCTL, the striping information is
applied. For MPI-IO, the file creation is divided in two
steps. A file is pre-created as described for the POSIX
case and afterwards, it is opened with MPI File open().

Algorithm 1 Initialization
1: /* Global parameters */
2: nids* ← NULL, osts* ← NULL, my nid ← 0
3: Initialize ADIOS transport method
4: Initialize BPIO library with FGR mapping files
5: size ← Number of participating processes
6: my nid ← MPI Get processor name(...)
7: Allocate arrays nids and osts for NID to OST binding
8: nids ← List of unique node identifiers for each process



Algorithm 2 NID/OST Binding and File Creation
1: Invoke BPIO library with nids for NID/OST binding
2: osts ← List of I/O client (NID) to OST assignments
3: struct lov user md opts = { 0 };
4: /* OST OFFSET describes the number of OSTs */
5: if (osts[my rank] ≥ OST OFFSET) then
6: my ost = osts[my rank] − OST OFFSET
7: else
8: my ost = osts[my rank]
9: end if

10: opts.lmm stripe offset ← my ost
11: Open file with O LOV DELAY CREATE flag
12: Set striping information for file with IOCTL

The BPIO library is designed in a way that adds minimal
overhead. The placement algorithm is invoked only once for
every I/O write phase. The internal data structures keep the
storage overhead small. As described by Wang et al. [1], the
algorithm that is used by BPIO is sensitive to the size of the
possible resources and routing paths. When the number of
I/O requests is small and tightly packed in close proximity,
a set of less optimal OSTs might be used.

IV. DATA COLLECTION AND ANALYSIS

In this section, we first describe the evaluation methodol-
ogy. Then, we present the experimental setup, and analyze
our evaluation results both from a synthetic benchmark tool
and a real-world HPC workload.

A. Methodology

To evaluate the I/O performance, we use the Interleaved
Or Random (IOR) benchmark and Genarray, a test code that
emulates I/O patterns similar to S3D [15].

1) IOR Benchmark: We adopt the well-known IOR [9]
synthetic benchmark tool to assess the strength and weak-
ness of Aequilibro. IOR provides a flexible way of mea-
suring I/O performance under different read/write sizes,
concurrencies, file formats, and file layout strategies. It
supports different I/O interfaces ranging from traditional
POSIX to advanced parallel I/O interfaces like MPI-IO and
differentiates parallel I/O strategies between file-per-process
and single-shared-file approaches. Shan et al. [16] demon-
strated that IOR can be used to characterize and predict the
I/O performance on HPC systems at scale. We utilize IOR to
evaluate the direct use of the BPIO library in comparison to
Aequilibro handling I/O for an application. The performance
evaluation is divided into two steps. First, the BPIO library is
directly integrated into the IOR benchmark. Before creating
a file, the BPIO library is used to determine the compute
node to OST assignment. The second step is to use ADIOS
for the I/O handling in the IOR benchmark tool. All I/O
interface calls are replaced by ADIOS API calls. Essentially,
we use IOR as a workload generator to drive the ADIOS

Table I
IOR BENCHMARK VARIANTS.

Index Variant Description
(I) Default The original IOR benchmark without any mod-

ification.
(II) BPIO A modified version of the IOR tool that utilizes

the BPIO library for balanced data placement.
(III) ADIOS An IOR benchmark where all I/O calls are re-

placed with the ADIOS API for I/O handling.
(IV) Aequilibro Same code base as IOR ADIOS, but utilizes

the BPIO library for balanced data placement.

framework. Table I displays the IOR benchmark variants
that are used for the evaluation.

We compare the performance of IOR Default without any
modifications with the IOR tool that utilizes the BPIO library
for balanced data placement. Furthermore, an evaluation of
IOR using the ADIOS API for I/O handling in comparison
to IOR that uses Aequilibro is performed. We believe
that integrating BPIO with IOR provides a good way to
verify the results previously obtained with the placement I/O
benchmarking tool (PIO) [1]. Another advantage is that IOR
can be used to get initial performance results for MPI-IO.
Using ADIOS with IOR provides an easy way to stress the
file system while handling file I/O with the ADIOS API. A
side benefit is that Aequilibro can be tested without any ad-
ditional code modification. IOR just needs to be recompiled
against the Aequilibro framework. In addition, the results
obtained with IOR Default and IOR BPIO can be used as a
reference to evaluate the performance of ADIOS. The metric
of interest is the end-to-end I/O performance improvement
gained by using BPIO. It is provided in percentage and
calculated as follows:

Performance Improvement = 100∗
(

BWBPIO

BWdefault
− 1

)
(2)

2) I/O Interference: Large-scale HPC systems waste a
significant amount of computing capacity because of I/O
interferences caused by multiple running applications con-
currently accessing a shared parallel file system and its
storage resources. Lofstead et al. [17] introduced internal
and external interference to characterize the variability in
I/O performance. We use their definition to evaluate the
performance of Aequilibro in terms of I/O interference.

Internal interference: When too many write processes
from one specific application try to write to a single storage
target at the same time, internal interference can occur. Write
caches are exceeded which leads to a blocking behavior
of the application until the buffers are cleared. We utilize
the IOR benchmark to evaluate the internal interference by
writing data of different sizes to OSTs while scaling up the
number of nodes/writers. The IOR benchmark is configured
to use 1,008 OSTs and POSIX I/O.

External interference: Even if an application tries to
evenly use all available storage resources, external inter-



ference can still occur. This is caused by the fact that a
parallel file system is a shared resource where access is
shared between all compute nodes and running applications.
To demonstrate the I/O performance variability, we perform
hourly IOR tests with an 1,008 node allocation, one process
per node (one writer per node), and POSIX I/O with the file-
per-process I/O strategy. For better characterization, we use
the imbalance factor of an I/O action as defined by Lofstead
et al. [17]. It describes the ratio of the slowest (wtimemax)
vs. the fastest write (wtimemin) times across all writers:

Imbalance factor =
wtimemax

wtimemin
(3)

The imbalance factor reflects the impact of the slowest
writer on the overall performance. Therefore, the factor can
be utilized to characterize the imbalance of an application.

3) HPC Workload: S3D is a combustion code simulation
that is widely used on HPC systems. It generates a large
amount of I/O requests. Verifying the I/O performance
improvement of S3D with Aequilibro provides us with a
good indicator of the impact on other large-scale applica-
tions. Genarray is an S3D workload simulator provided by
ADIOS. In Genarray, three dimensions of a global array are
partitioned among MPI processes along X-Y-Z dimensions
in the same block-block-block fashion. Each process writes
an N3 partition. The size of each data element is 4 bytes,
leading to the total data size of N3 ∗ P ∗ 4 bytes, where P
is the number of processes. Therefore, I/O methods can be
exchanged by simply modifying the corresponding XML-
file. One key difference between the IOR benchmark tool
and Genarray is that by default Genarray utilizes all cores
present on a compute node. This improves the computational
efficiency of the simulation. On the other hand, Genarray
generates pressure on single storage targets, because each
compute node hosts its own operating system with a single
mount point per file system.

4) Selecting IOR and ADIOS Parameters: In order to
accurately model an HPC workload behavior, the bench-
mark parameters must be aligned with the desired work-
load: API, FilePerProc, WriteFile, NumTasks, BlockSize, and
TransferSize. On Titan, the memory size is 32 GB/node,
2 GB/processor. The IOR benchmark is run with a BlockSize
of 4 GB to eliminate cache effects, a TransferSize of 1 MB
and the FilePerProc mode. For POSIX I/O, the fsync and
useO DIRECT are used. O DIRECT bypasses I/O and file
system buffers. For MPI-IO, the same effect can be achieved
by enabling the direct io MPI-IO optimization hint. For each
run, the node allocation and OST distribution is tracked. For
Lustre-specific settings, each file is created with a StripeSize
of 1 MB and a StripeCount of 1. The StripeSize needs to
be aligned with the TransferSize in order to get the best
performance. StripeCount specifies the number of OSTs
where the data is striped across while StripeSize defines
the size of one stripe. The default Lustre stripe count is

Figure 4. Performance improvements for IOR large-scale runs.

4. ADIOS is a meta-data rich middleware. To get a better
insight on the raw I/O performance, the meta-data file is
disabled with have metadata file=0. The number of OSTs
has to be specified for MPI AGGREGATE.

B. Experimental Setup

All tests were performed on the Titan supercomputer.
In order to get representative results, two major issues
are addressed. First, all experiments are conducted in a
busy production environment. No tests are run during the
quiet maintenance mode. The results show that performance
gains can be achieved in an active production environment.
Second, a broad set of compute nodes are used instead of
just a certain subset of nodes. This demonstrates that inde-
pendently from any specific node set on Titan, an application
can readily benefit from the presented balancing framework.
The application level placement scheduler (ALPS) on Titan
returns a node allocation list where nodes tend to be logically
close to each other. There are two attempts to get a higher
node coverage. The first one is to submit scaling tests one
after another independently, in the hope that a different set
of compute nodes is covered with every run. The second
attempt is to submit scaling runs in parallel to occupy a
larger set of nodes. Both approaches are used to get a broader
coverage. More than 30 scaled runs were obtained for IOR
variants (I) to (IV) (see Table I), with each run ranging from
8 to 4,096 nodes. For each node allocation, three iterations
are performed to obtain the average badwidth results. All
of our experiments are conducted in a noisy, active pro-
duction environment. Therefore performance numbers may
not always be conclusive. To cope with this issue to draw
consistent observation, multiple tests are performed with at
least three repetitions per run. Iterations within the same run
get the same node allocation. Each iteration executes IOR
variants (I) to (IV). This is essential in order to average
out the variance across the same set of allocated nodes.
In addition, a large set of Titan compute nodes is covered
throughout these tests. For the internal interference, we run



Figure 5. IOR bandwidth performance for IOR (I) to (IV) with error bars.

more than 30 scaled IOR runs per node allocation. The
number of allocated nodes ranges from 16 to 1,024 with
16 MPI processes per node which corresponds to a range
from 128 to 16,384 processes in total. Each process writes
a separate file. For the external interference, more than 100
samples were obtained.

C. Synthetic Benchmark Results

Figure 4 displays the results for large-scale runs for 2,048
and 4,096 nodes. We compare the bandwidth performance
of IOR Default and IOR BPIO (denoted as Default vs.
BPIO) and IOR ADIOS and IOR Aequilibro (denoted as
ADIOS vs. Aequilibro) with the help of Equation 2. In
both cases, the integration provides significant performance
improvements. IOR BPIO provides an average improvement
of 50% for POSIX I/O with 2,048 and 4,096 nodes. For
MPI-IO, a 20–25% improvement can be achieved. Almost
identical results can be observed for IOR Aequilibro. POSIX
I/O can be improved by 43% on average while MPI-IO
shows an improvement of about 25%. Overall, the achieved
improvement for MPI-IO is slightly less than for POSIX I/O.
This is a known issue on Cray systems, refer to Lofstead
[17] for observations made on Jaguar. The reason is to be
determined, but could be related to the underlying MPI-IO
implementation. While there are variations across different
runs, it can be observed that the trend remains the same.
There are consistent performance gains across multiple runs
and iterations. Optimizing the overall I/O cost leads to a
reduced application execution time (especially for large-
scale runs) and therefore, to a reduced operational cost per
executed application.

Figure 5 displays the average bandwidth results for IOR
Default, IOR BPIO, IOR ADIOS, and IOR Aequilibro for
POSIX and MPI-IO including error bars, respectively. The

Figure 6. Scaling of aggregate write bandwidth.

error bars depict the maximum and minimum bandwidths
achieved. From the performance results, we make the fol-
lowing observations. First, for small-scale runs with less then
128 nodes, the effectiveness of our integration is relatively
small. Second, as we scale up in terms of I/O processes and
allocated nodes, POSIX and MPI-IO both benefit from the
BPIO integration in IOR. For example, large-scale runs with
a 4,096 node allocation provide an average throughput of
172.8 GB/s for POSIX using IOR BPIO. That can be trans-
lated to an improvement of 50% in comparison to the default
data placement. For MPI-IO, IOR BPIO provides an average
throughput of 140 GB/s for a 4,096 node allocation. For IOR
Aequilibro, a similar performance trend can be observed.
For POSIX, large-scale runs provide an average bandwidth
of 128.9 GB/s for a 2,048 node allocation and 158.9 GB/s
using 4,096 nodes. The performance results obtained from
runs using the MPI-IO interface show a similar trend as
IOR BPIO. For a run with a 2,048 node allocation, IOR
Aequilibro provides an average throughput of 117.4 GB/s
which translates to a performance improvement of 24%. For
4,096 nodes, an average throughput of 135.6 GB/s can be
obtained, which translates to a 25% performance improve-
ment. The difference between the average bandwidth results
of IOR BPIO and IOR Aequilibro can be explained by the
additional overhead introduced by the ADIOS framework.
The current BPIO implementation assumes that the Lustre
stripe count is set to one. This limitation is imposed by
the Lustre deployed on Spider II. Even with this restriction,
Aequilibro provides a performance improvement and a better
throughput per second.

Figure 6 presents the results of the scaled internal in-
terference tests, as introduced in Section IV-A2. The results
represent the average write bandwidth on Titan for IOR with
POSIX I/O. As we scale up the number of nodes and writers,
it can be observed that in the case of IOR Default and
IOR ADIOS the effects of internal interference consistently
decrease the average bandwidth with an increasing number
of writers. For IOR BPIO and IOR Aequilibro, the internal



Figure 7. I/O performance variability due to external interference.

interference effects can still be observed, but they have
less impact on the overall bandwidth performance due to a
balanced data distribution over all available storage targets.

Figure 7 displays the histograms of I/O bandwidth based
on the external interference tests data collected in over 100
runs. It can be seen that in busy production environments like
Titan, there is a substantial I/O variability between different
runs. Note, we utilize BPIO and Aequilibro solely for our
test runs. There are multiple other applications scheduled at
the same time. In addition, the imbalance factor is calculated
based on Equation 3. For IOR Default, the imbalance factor
is about 6.9 in average, while for IOR BPIO it ranges in
between 1.3 and 1.9 leading to an improvement by a factor
of 3.5. For both IOR ADIOS and IOR Aequilibro, the im-
balance factor ranges in between 1.1 and 1.2. ADIOS offers
synchronous write methods. The imbalance factor does not
provide any information about the overall performance.

The experimental results of our series of tests demonstrate
that a framework like ADIOS highly benefits from a balanc-
ing library like BPIO. Even though the tests were carried
out in a busy environment, Aequilibro is able to mitigate
effects of I/O interferences. Similar performance trends can
be observed for MPI-IO (not reported due to brevity), but
with inferior bandwidth performance. We conclude that
combining tools tackling different sides of the same coin
resolve I/O and resource contention even when just utilized
for specific applications.

D. HPC Application Results

We perform scaled runs with 128, 256, 512, 1,024,
2,048, and 4,096 nodes which correspond to 2,048, 4,096,
8,192, 16,384, 32,768, and 65,536 MPI processes, respec-
tively. We use weak scaling of the problem size grid such
that each process generates an 8 MB output/checkpoint
file periodically (10 checkpoints in each run). The I/O
bandwidth measurement is performed for default (ADIOS)
and balanced data placement (Aequilibro) by running three
Genarray simulations within the same allocation. Figure 8
displays the summary of the I/O bandwidth improvements
observed for Genarray. The improvements are averaged over
ten runs for each configuration. It can be observed that
smaller node count (i.e., 128 and 256) runs result in a lower
performance improvement. For large-scale runs, we observe

Figure 8. Average I/O bandwidth improvement for S3D workload.

that Aequilibro significantly improves the I/O bandwidth.
This is consistent with the IOR synthetic benchmark per-
formance results. For large node/processor counts, ADIOS-
based applications can directly benefit from the BPIO library
without any additional code changes.

V. RELATED WORK

I/O load imbalance [18] and the increasing gap between
compute capabilities of HPC systems and their I/O capa-
bilities are known problems in the HPC domain. A large
number of research efforts have been proposed to address
these problems and to provide better I/O techniques [19].

There are two distinct but related research areas for
scientific HPC. The first one focuses around the intercon-
nect network which is the backbone for message exchange
and I/O traffic. For example, Luo et al. [20] introduce a
preemptive, core stateless optimization approach based on
open loop end-point throttling. Ezell et al. [12] present a
Fine-Grained Routing (FGR) congestion avoidance method.
Li et al. [21] present ASCAR, a storage traffic management
system for improving the bandwidth utilization and fairness
of resource allocation. All I/O patterns of all enumerations
of applications have to be analyzed to generate a traffic rule
set. This is not feasible for large-scale HPC systems like
Titan. There are too many applications and the I/O patterns
change drastically depending upon the run.

The second area takes a file and storage-system centric
view. Zhu et al. [22] present CEFT-PVFS, a modification to
the PVFS file system [23] to achieve a better I/O load balanc-
ing. Singh et al. [24] address the problem of load imbalance
in the setting of cloud data centers. Congestion and load
imbalance can still occur at large scale as demonstrated by
Dillow et al. [25]. Luu et al. [13] analyze the problem of low
I/O performance on leading HPC systems. They use Darshan
[26] logs of over a million jobs representing a combined total
of six years of I/O. Even though the platforms’ file systems
have a peak throughput of hundreds of GB/s, only few
applications experience high I/O throughput. Lofstead et al.
[17] introduce Adaptive IO, a set of dynamic and proactive
methods for managing I/O interference. The methods are
bundled in a new ADIOS transport method that dynamically
shifts work from heavily used areas of the storage system to
areas that are more lightly loaded. The design is limited
on how quickly a coordinator can react to storage load



dynamics. Liu et al. [27] introduce an ADIOS transport
method that attempts to re-route I/O to less loaded storage
areas while applying a throttling technique that limits how
much data can be re-routed during writing. Gainaru et al.
[28] introduce a global scheduler that minimizes congestion
caused by I/O interference by considering the application’s
past behaviors and system characteristics when scheduling
I/O requests.

This paper complements previous work by bridging the
gap between the two introduced research ares, interconnect
level, and file and storage-system centric view. It provides
users with an easy-to-use framework that takes full advan-
tage of the optimizations done at the interconnect level, the
load balancing done at the file system level, and the benefits
of an I/O middleware library such as ADIOS.

A third area of related work is introduced by commercial
data centers where load imbalance and Quality of Service
(QoS) are also major concerns for multi-tenant systems.
Such methods and techniques are exemplified by Pulsar
[29], Baraat [30], and Corral [31]. Pulsar consists of a
logically centralized controller with full visibility of the data
center topology and a rate enforcer inside the hypervisor at
each compute node. It offers tenants their own dedicated
virtual data centers (VDC) to ensure end-to-end throughput
guarantees. Baraat is a decentralized, task-aware scheduling
system. It schedules tasks in a FIFO order, and avoids
head-of-line blocking by dynamically changing the level of
multiplexing in the network. Based on data from past data
center studies, the application behavior is characterized in
order to apply the task-aware scheduling heuristic. Corral is
based on the assumption that a large fraction of production
jobs are recurring with predictable characteristics. It uses
characteristics of future workloads to determine an offline
schedule which coordinates the placement of data and tasks.

In the scientific HPC context though, we argue that the
application requirement and expectation, the highly special-
ized workload, and the architectural design and integration
workflow present some unique challenges on leveraging
techniques developed in cloud computing and data center
settings [32]. Aequilibro and BPIO were developed for a
scientific HPC environment and tested on a system opti-
mized for large-scale simulations, and have not been able
to take advantage of these techniques yet. Many of the
assumptions made for commercial data center performance
optimizations are not applicable to large-scale scientific
simulation systems. For example, scientific HPC systems do
not have a global view on all available system resources
and allocations. Also, storage and I/O systems have been
shifting from a machine-exclusive paradigm to a data-centric
paradigm where the mixed workload becomes a norm and
much less predictable than before [33]. The scientific work-
loads itself differ from commercial workloads, e.g. search
queries, data analytics jobs, and social news-feeds. Commer-
cial and scientific applications have different requirements

[32]. While commercial codes can be classified as high-
throughput computing, scientific workloads are categorized
as latency-sensitive, large-scale, and tightly coupled compu-
tations. They assume the presence of a high-bandwidth, low-
latency interconnect, a shared parallel file system between
compute nodes, and a head node that can submit MPI jobs
to all worker nodes.

VI. CONCLUSIONS

This paper attempts to resolve I/O contention in busy
HPC environments, where multiple, concurrent applications
compete for resources. Parallel file systems provide great
performance and scalability. However, projecting these to
the user applications can be a challenge, mainly due to
load imbalances and resource contentions. Most middleware
frameworks, such as ADIOS, provide a user friendly way to
handle I/O, but they are high-level and not fully adequate
to completely translate the underlying raw I/O performance
to user applications. Balanced Placement I/O (BPIO), on
the other hand, is a user-space library that mitigates re-
source contention and load imbalance at the lowest level,
thereby improving the application level performance. We
propose Aequilibro, a transparent unification of BPIO and
ADIOS. With our effort, large-scale applications integrated
with ADIOS can directly benefit from the BPIO end-to-end
and per job I/O performance improvements. Aequilibro is
evaluated with IOR, a synthetic benchmark, for two popular
APIs, POSIX and MPI-IO. In addition, a real-world HPC
workload is used for evaluation. Our results show that
ADIOS POSIX can be improved by up to 50% on per job
basis while ADIOS MPI AGGREGATE shows performance
improvements of up to 25%. The simplicity of the integration
into a framework like ADIOS shows that BPIO is a viable
solution for improving the overall I/O performance.

Future work will cover the investigation of the optimal
number of aggregators for Aequilibro. Currently, BPIO
cannot handle single shared files. Future Lustre releases
support the placement of single data stripes. The BPIO
library needs to be enhanced by that feature. BPIO calculates
the placement based on a weighted function. The impact
of changing the weights needs more research. Although
our evaluation is centered around Titan and Spider II, load
imbalance and resource contention are a common problem in
large-scale HPC systems. We believe that Aequilibro and our
proposed techniques can be applied to HPC platforms that
lack a centralized resource manager. One possibility is the
implementation of a pre-loadable library that transparently
adds the load balancing to the application during the link
phase of MPI compiler scripts. In addition, the support of
HDF5 is planned.
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