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Abstract—Job placement plays a pivotal role in application
performance on supercomputers. We present a multi-faceted
exploration to influence placement in extreme-scale systems, to
improve network performance and decrease variability. In our
first exploration, Scores, we developed a machine learning model
that extracts features from a job’s node-allocation and grades
performance. This identified several important node-metrics that
led to Dual-Ended scheduling, a means of reducing network
contention without impacting utilization. In evaluations on the
Titan supercomputer, we observed reductions in average hop-
count by up to 50%. We also developed an improved node-layout
strategy that targets a better balance between network latency
and bandwidth, replacing the default ALPS layout on Titan
that resulted in an average of 10% runtime improvement. Both
of these efforts underscore the importance of a job placement
strategy that is cognizant of workload mixture and network
topology.

I. INTRODUCTION

The Oak Ridge Leadership Computing Facility (OLCF)
operates Titan, the No. 2 machine on the Top500 [1] list and
the largest open science supercomputer in the world. Titan
is a Cray XK-7 with 18,688 compute nodes, each of which
provides 16 CPUs and a GPU. The nodes are connected via
Cray’s Gemini interconnect, using a 3D torus topology. Titan
serves a variety of users from the U.S. Department of Energy
(DOE) labs, academia, and even private industry. User jobs
range from small jobs using a handful of nodes to capability
jobs using a large portion, if not all, of the machine.

The mixture of the workload and the manner in which jobs
are placed in the system can impact job performance resulting
in runtime variability. For capability jobs, this manifests when
having to allocate resources for the job from an already busy
machine. When the job is scheduled, the system must use the
nodes of jobs that previously finished, to fit the requesting job.
It is often the case that incoming capability jobs will be broken
into many fragments and spread throughout the machine to
facilitate its reservation. Additionally, even if the job results
in a single contiguous allocation, the placement of the job
upon the Gemini topology may impede the performance of
the network communication of the job due to the internal
communication requirements.

There are many strategies for achieving high-performance
allocations in extreme-scale computing. These generally come

at the cost of system utilization as they are achieved by
holding jobs until a suitable allocation becomes available or
through over-provisioning. These solutions are not suitable
for Titan because of the requirement for running large jobs
and maintaining high utilization. The DOE requires OLCF to
ensure that a significant portion of Titan’s compute hours are
consumed by capability jobs, which are defined as using 20%
or more of Titan’s nodes. Also, a major measure of Titan’s
effectiveness is the utilization, which is the ratio of consumed
compute hours to available compute hours. Titan averages a
high utilization above 90%.

Contributions: In this paper, we present our efforts to
improve performance without impacting utilization or capa-
bility metrics. Using visual analysis and machine learning we
evaluated several features of job placement. During this study,
we identified a set of primary job node-allocation features that
correlate to performance. In one outcome, we found that high
hop-count jobs were often highly fragmented. Much of this
fragmentation is caused by gaps in the resource list during
scheduling. Using this knowledge, we developed a mechanism
called Dual-Ended scheduling. This strategy targets a reduc-
tion of runtime variability for large jobs. It achieves this by
scheduling large and small jobs from opposite ends of the
resource lists, thereby reducing the number of partitions or
fragments for a large job. Applying this technique, we have
seen consistently reduced hop-counts, a strong indicator for
network performance. In evaluations on Titan, we observed
reductions in average hop-count, for common job sizes, up to
50% in relation to the measured job-size minimum. In another
approach, we used this analysis to identify potential pitfalls
with the default placement of jobs on Titan, and developed
new techniques for improving the node-layout generated by
the Application Layout Placement Scheduler (ALPS). One
particular layout targeting a better balance of latency and
bandwidth on the Gemini network resulted in an average of
10% runtime improvement in our evaluation.

In section II, we discuss in more detail the issues with
scheduling on a 3D torus and their impacts on variability.
We then discuss how visual analysis led us to understand the
scheduling impacts in section III. In section IV, we discuss
how we identified the characteristics that impact performance
the most on Titan. Using these results, in section V, we
propose a modification to the scheduling algorithm to amelio-SC16; Salt Lake City, Utah, USA; November 2016
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rate job fragmentation’s impact on variability and we review
the impacts on the actual system over several months. In
section VI, we dive into the details of how the scheduler
views the node ordering and how altering the ordering can
improve performance without negatively impacting utilization.
In section VII, we discuss related work in scheduling. We
summarize and conclude our effort in section VIII.

II. BACKGROUND AND MOTIVATION

Performance variability of user jobs on Titan resulted in
an investigation of the scheduling stack. It was during this
investigation that it became apparent that job placement can
significantly impact its network performance. Resource allo-
cation is the final step in scheduling a job. It is during this
step that the set of physical resources, compute nodes that a
job will use, are determined. Since compute nodes are bound
to specific network locations within the supercomputer, it is
apparent that the characteristic of the resources selected will
play a role in the network performance of that job.

To understand how placement can influence network per-
formance on Titan, we must first understand the high-
performance Gemini [2] network. Titan’s Gemini network is
a 3D torus with XYZ dimensions of 25x16x24. Bandwidth on
the network is dimensionally anisotropic, the Z-dimension is
generally composed of in-rack backplane providing up to 15
GB/s, every 8th connection is a copper cable link between
racks providing 9.36 GB/s. The X-dimension is composed
entirely of copper cable and performing at 9.36 GB/s. The
Y-dimension alternates between mezzanine and cable. The Y-
dimension differs from the other two dimensions in that cables
are only trunked in groups of 4 instead of 8. This leads 1/2
of the Y hops performing at 9.36 GB/s and 1/2 performing at
4.68 GB/s. Gemini, being a 3D torus network is a high hop-
count network. It is composed of 9,600 Gemini routers, each
connecting two nodes to the network. This creates a total of
19,200 nodes, with 18,688 compute and 512 service nodes.
The property of high-dimensionality in 3D torus networks
means that they are composed of many small routing devices.
This generally is favorable economically, maintaining high-
bisection bandwidth with many routing decisions possible due
to the high router count. This also comes at a cost of the worst-
case distance a message will have to travel. For instance, on a
3-level fat-tree, messages exchanged through core-routers will
have a bounded hop-distance of 5 hops. On a torus with Titan’s
dimensions, worst case messages could experience 12 hops in
the X-dimension, 8 hops in the Y-dimension, and 12 hops in
the Z-dimension for a total of 32 hops for the worst possible
case routing. This adds significant latency and exposes the
message to multiple points of geometric digression which
significantly limits bandwidth. Geometric digression is a result
of the local fairness properties used in Gemini Routers. When
flows converge on a router, message arbitration effectively
subdivides each competing flow. The more hops/routers a
message has to travel the more potential digression the flow
could potentially experience. This digression causes reduced
bandwidths along contended paths.

III. VISUAL ANALYSIS

Based on the above analysis and understanding of the
Gemini network, it is clear that placement will have an impact
on the application network performance. However, the manner
in which jobs are placed in Titan was obfuscated within
complex log entries. Resource log entries containing node
mappings are often several megabytes in size. Even knowing
the nodes of a job was not enough to understand the mapping
of the coordinates into the 3D torus. Many impacts of node
allocation were not clear until we engaged in visual analysis.
To understand the impact of job placement on Titan we
developed a model based on TorusVis [3], that enabled us
to extract job information from MOAB [4] logs pushed into
Splunk [5]. This model represents the 9,600 Gemini routers
used in Titan. Each node maps to a set of coordinates in the 3D
space. Using this mapping we are able to map the placement
of the job to the physical set of resources within the 3D torus
network. From studying many jobs over the course of several
months, we were able to identify troubling outcomes directly
caused by resource allocation.

A. Ordering

Figure 1 shows the manner in which jobs are mapped to
resources on Titan. In this example, we see the first job being
mapped to Titan during a test-shot, meaning the system is
empty. This allocation represents the ideal situation for the
scheduler in that the first set of resources checked for this
job, were the first set of resources received. However, the
way this job is mapped to Titan from a network perspective
seems counter-intuitive. The allocation appears to favor the
Z-dimension, Y-dimension, and then the X-dimension. While
prioritizing the Z-dimension makes sense, as the Z links
have both high-bandwidth and low-latency, however, the Y-
dimension contains the lowest bandwidth links in the entire
system. This would indicate that any communication traveling
in the Y-dimension would be subjected to both geometric
performance digression due to the large Y-distance within
the job, as well as bandwidth degradation from crossing over
reduced bandwidth links.

B. Fragmentation

A second concern observed from a visual analysis of Titan
scheduling is that many jobs end up being scheduled with
fragmented node allocations. Figure 2 shows the layout of
a single job extracted from MOAB log data. As can be
seen, this job has been fragmented into several discrete node
groups. Considering the manner in which the job is distributed
throughout Titan, communication in this job could potentially
suffer increased latency due to larger hop-counts between
nodes and potentially decreased bandwidth from increased
exposure to geometric digression. The consequences of ge-
ometric digression on this job may be worse than in a case
of a contiguous job allocation, due to the potential of having
to communicate across links and routers used by other jobs.
In a highly fragmented job as this, it is highly likely that
communication will run between the various partitions of the



Fig. 1. Default Alps layout of a job on Titan. Dimension build priority: Z,Y,X.
Increased height in the Y-dimension exposes the intra-job communication to
reduced bandwidth.

Fig. 2. Default Alps layout of a job on Titan. Highly fragmented allocation
leads to increased runtime variability

job, and will have to contend with the communication of other
jobs along those links.

Using visual analysis of the mapping of jobs to the system,
we were able to observe several patterns that could negatively
impact a job. This lead to the development of Scores that
enabled us to devise a set metrics to quantify the layout of a
job in the system, and then using machine learning techniques
determine which of these features were strong predictors of
job performance.

IV. SCORES

In this section, we show how the density of the allocation
affects the performance of our benchmark applications, and
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Fig. 3. IS.D.256: Average Communication time vs. Number of Partitions

what characteristics are desired in an allocation on Titan to
obtain higher performance. We describe our data collection
methodology, benchmark selection, machine learning based
analysis, correlation results, and insights.

A. Benchmarks and Methodology

We choose the NAS benchmarks [6] for our experiments
because they are well studied and show different commu-
nication patterns (all-to-all, neighbor exchange etc.). Table I
describes the configuration used and the key properties of these
benchmarks [7] we used in our study. In our experiments, we
conduct several runs of each application on Titan in different
locations (as allocated by the scheduler). The application run-
time, communication time, and nodes used by the application
are recorded for the analysis.

B. Regression Analysis

In our first steps, we analyzed the correlation between
the observed communication times of our benchmarks with
various properties of their node allocation such as average
hop-count and number of partitions. This analysis drives the
feature selection for our machine learning based analysis and
results. In Figures 3, 4, and 5 we show scatter plots of the
average communication time of benchmarks IS and MG with
respect to the number of partitions and the average hop-count.
The number of partitions shows the number of disconnected
partitions within an allocation. Here, a partition is defined as
a group of nodes such that each node is connected to at least
one node among the remaining nodes, with a hop-distance of
one. Average hop-count, a measure of intra-job hop-distance,
is calculated assuming an all to all communication pattern.
Although there exists significant variation in communication
time for a given number of partitions or average hop-count, the
overall trend shows that a high number of partitions and a high
average hop-count results in increased communication times.
A similar effect is visible for several benchmarks that show
their sensitivity to their placement in the 3D torus (results not
presented here due to space constraint).
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Fig. 4. MG.D.256: Average Communication time vs. Number of Partitions
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TABLE I
NAS BENCHMARKS USED IN THIS STUDY.

Benchmark Configuration Communication Pattern
IS 256 nodes Collective (AlltoAll/AlltoAllv)
CG 256, 1024 nodes Partitioned Group Exchanges
FT 256 nodes AlltoAll and Neighbor Exchanges
MG 256 nodes 2D Neighbor Communication
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Fig. 6. Machine learning based prediction results

C. Machine Learning based Analysis

We also utilize machine learning to understand how dif-
ferent features of the allocation contribute towards the per-
formance of the application. Using these techniques we try
to predict the performance of each benchmark based on its
allocation. The performance prediction does not involve pre-
dicting the exact execution time but instead attempts to predict
the bucket in which the application performance is likely to
be in. We use five grade buckets, A-F, based on mean and
standard deviation. We use and compare two machine learning
techniques, Support Vector Machines (SVM) [8] and Random
Forest [9], both selected for their strength in categorization
selection. It should be noted that our aim here is not to
predict the performance, but to understand which features of
the allocation affect performance significantly.

Figure 6 shows the results for FT and CG benchmarks. We
divide the data into training and testing sets, and report the
results of the testing set. The average hop-count and the num-
ber of partitions features are able to predict the performance
bucket with 70-80% accuracy. For CG, SVM does not show
good prediction accuracy while RandomForest captures the
relationship better. When we combine the two features we do
not obtain any significant improvement in accuracy. This is
expected because the average hop-count is highly correlated
with the number of partitions (as the allocation is divided
into several partitions, the all to all communication hop-count
increases).

Moreover, we also investigated instantaneous congestion on
the Gemini routers that connect the compute nodes to the 3D
torus. In our experiments, we saw no benefit in prediction
accuracy when using features based on instantaneous conges-
tion. Therefore, we conclude that average hop-count and the
number of partitions should be the primary focus for higher
performance. Overall, the key takeaway is that improving the
packing of the job allocation on the 3D torus is an effective
way of improving the application’s performance. This has also
been observed by some previous studies such as [10][11].

V. DUAL-ENDED SCHEDULING

In section III-B, we discussed job fragmentation as a cause
of increased communication distances, resulting from the
increase in the internal hop-count for communication within
the job. We then demonstrated in Section IV that an increase
in the average hop-count within the job strongly correlates to
reduced performance. In this section, we seek to ameliorate
some of this impact. As mentioned previously, strategies to
completely mitigate fragmentation have not been adopted
on our systems due to negative impacts on utilization. So
any solution identified has to decrease fragmentation without
significant impact on system utilization.

First, we seek to understand the scheduler mechanisms that
lead to fragmentation. As mentioned in the previous section,
ALPS is responsible for generating a list of nodes from which
MOAB reserves resources during the end of job scheduling.
On Titan, we reserve nodes for the two highest priority jobs
on the idle queue unless a job requested specific nodes. Node



reservations are generally applied in two manners. If the
system has sufficient free nodes, it will engage in a simple
reservation strategy. This is a top-down traversal of the ordered
ALPS list, assigning free resources to the job being scheduled
on a first-come, first-serve basis.

The second manner occurs when the top priority job cannot
immediately reserve nodes. In order to reserve nodes for
this job, currently running allocations are analyzed for “time-
remaining,” which is essentially the measure of the wall-clock
time requested minus the elapsed running time of the job. By
evaluating time-remaining, the scheduler is able to determine
the worst-case time that a set of resources will become
available. In doing this, it pre-reserves a set of nodes that will
be available to the job at a future time. This set of nodes
represents a backfill window. As jobs within this window
become available, if the scheduler were to leave them unused,
it could significantly degrade system utilization as backfill
windows can take hours to days to become fully available
for large jobs. Instead, a secondary scheduler mechanism
evaluates jobs having both high-priority and requested wall-
clock times that fit within the window and will not delay
the primary job’s start time. This will allow the backfilled
job to run, while the primary job is waiting. Thereafter, the
set of backfill nodes are presented as a list, ordered in the
same manner that ALPS orders nodes, and the resources are
allocated in a first-come, first-serve fashion.

Where these scheduling mechanisms contribute to fragmen-
tation is a coupling of the sequential node-selection with a
workload that is mixed between long and short-lived jobs.
In such an environment, small, short-lived jobs are often
scheduled through backfill on any available node in the backfill
nodes-list, resulting in gaps between nodes used in larger,
long-lived jobs. Essentially, we view one contributing factor
of fragmentation as a result of using the same starting point
to look for free nodes from the node list. This results in
higher use of nodes at the front of the list. This is shown
in Figure 7 from an analysis of where node seconds are used
on Titan. In this figure, the NodeIndex is the location of
a particular node in the ordered list. As shown here, nodes
at the head of the list tend to be scheduled the most and
nodes at the tail of the list are used significantly less. In an
effort to ameliorate some of this effect, we designed a new
scheduling mechanism called Dual-Ended Scheduling. In this
approach, we essentially change the ends from which large,
long-lived jobs and small, short-lived jobs are scheduled from.
Thus, large, long-lived jobs are scheduled from the front of the
list and small, short-lived jobs are scheduled from the tail of
the list. Ideally, this should create more entropy at the tail-end
of the list, increasing gaps but doing so to smaller jobs which
tend to be less impacted by fragmentation.

The question then becomes, what is the appropriate criteria
for which to enable dual-ended scheduling? In our efforts,
we evaluated several different demarcation points generally
based on job size and requested wall-clock time. To evaluate
various criteria we utilized the MOAB simulator to replay real
job traces from Titan, and reschedule the jobs as they would
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under dual-ended scheduling. Due to simulator constraints,
our preliminary evaluation only included a single day of job
data, comprising of 900 jobs. Figure 8 shows this preliminary
evaluation. We ran 5 simulations, using default layout, and
demarcation points of 8, 16, 32 and 125 nodes. The 125
node demarcation point was selected because of existing policy
within the scheduler of limiting any job less than 125 nodes
to 2 hours of wall-clock time. From this preliminary analysis,
we inferred that the 16 and 125 node demarcation points had
the most potential. At some higher-node counts, we did see
increases in average hop-count but the sample size was very
limited at these ranges due to the short evaluation period.

Based on the positive results from the simulation data, it
was decided to evaluate dual-ended scheduling on Titan. We
began a production evaluation of the 16 node demarcation
point, followed by an evaluation of the 125 node demarcation.
The results in Figure 9 show the average hop-count of common
job-sizes from the two months of data from the production
evalutions. This data is compared against the first six months
of the 2015 calendar year. As shown in the results, the trends
are indicating that both the 16 and 125 node demarcation
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Fig. 9. Average hop-count of all jobs of specified size from production Titan.
These values are compared with the single minimum hop job that occured
within the evaluation logs.

strategies are resulting in reduced hop-counts for common job-
sizes over the basic layout strategy on MOAB. We include the
minimum job hop-count that existed in all of this data set in
each of the comparison points for a frame of reference. In both
large and small job sizes, the average across the entire range is
moved between 40-50% closer to the observed minimum hop-
count. The 16 node demarcation point scheduling strategy has
remained in production on Titan.

VI. ALPS ORDER

An observation made during the initial investigation, using
visual analysis, was the dimension prioritization of job place-
ment. More specifically, jobs were stacked with prioritization
in the Y-dimension over the X-dimension, as previously shown
in Figure 1. From a bandwidth performance perspective, this
was troubling.

The role of laying out nodes on Titan falls upon the
Application Layout Placement Scheduler (ALPS). ALPS is
responsible for enumerating the set of nodes in the system and
generating an ordered list from which the resource manager
MOAB will schedule.

The designers of ALPS use a node enumeration strategy
that is both network and somewhat communication pattern
aware [12]. They describe the ordering of the system as
a repetition of a shape they call a “basic building block”.
Building blocks used this way allow sequences of nodes to
be chained together (i.e., follow one after another) while
integrating various techniques to optimize grouping without
having to develop strategies for node packing that would be
full system aware and difficult algorithmically to achieve for
systems the scale of Titan.

On close examination, the building blocks enumerated on
Titan are a modified form of Hilbert curves. Beginning with
groupings of 2x2x2, these cubic groupings of nodes are
traversed with Hilbert curves that are then connected together

Start Node

End Node

Fig. 10. Titan default basic building block and orientation. Blocks are chained
together in the Z-dimension, Y-dimension, and X-dimension until the machine
is fully populated. Blocks improve neighbor communication by using space-
filling curves.

(i.e., followed in sequence) to form the ALPS basic building
block. Figure 10 shows an example of the most common block
used on Titan. These blocks are 4x2x4, with the start and
end-points being in the same dimension to make it possible
to chain blocks easily in the Z-dimension. Since there are 2
compute nodes per Gemini router, this enables, 16 compute
nodes to be within 1 hop of each other within each 2x2x2
grouping. This packing density works well for 2D nearest
neighbor communication patterns.

Basic building blocks are laid out in a Z-Y-X priority on
Titan. The selection of the Z-dimension from a bandwidth
and latency perspective makes sense, in that the Z-dimension
is generally composed of backplane cabling with a maximum
bandwidth of 15GB/s. The selection of the Y-dimension as the
second dimension of priority may stem from previous attempts
at improving ALPS layout strategies through maximization
of the minimum dimension first, MDF. MDF strategies, in a
non-anisotropic network, make sense in that an application
populating the full dimension would be able to use the
torus wraparound links to reduce the hop count for average
communication. On Gemini, which is anisotropic, this decision
forces more traffic through reduced bandwidth links, which
may reduce any benefits gained from early wraparound. Stated
another way, any intra-job communication on Titan having to
traverse more than two hops in the Y-dimension will have its
bandwidth reduced to 4.6GB/s due to the guarantee of a cable
link. Jobs traversing the same distance in the X or Z dimension
may suffer geometric digression only if there is a competing
flow.

A. Bandwidth Layout

Given this manner in which ALPS orders the layout out of
the machine, we consider if general applications’ workloads
are better off with layouts that maximize bandwidth, latency,
or a bit of both. To address this we modify the manner that
ALPS places basic building blocks to evaluate different layout
strategies, and study their impact on the jobs Titan runs. The
first layout we considered is very similar to the 2X layout
developed at NCSA [10], wherein the developers worked with
Cray to modify the ordering on the Blue Waters supercomputer
to prioritize Z-X-Y. The authors determined that this layout
would provide more bandwidth to applications on the system.
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Fig. 11. ZXY Bandwidth Layout: Basic Block Placement. Block placement
prioritizes X over Y dimension, leading to increased intra-job bandwidth.

Blue Waters ultimately abandoned this approach in-lieu of an
approach using isolated geometries to improve application per-
formance. While isolated geometries offer great performance
improvement, the associated utilization degradation is not
acceptable for OLCF resources. Similar to the NCSA effort,
our first approach was to lay the machine out prioritizing the X
dimension over the Y dimension. Additionally, we developed
a series of transitions on the start and end-points of the basic
building blocks to reduce the transition costs when growing in
the X or Y dimensions. Transition costs are usually measured
in terms of additional hops added to neighbor communication.
The block in Figure 10 has its start and end points in the
Z-dimension when these blocks are fully placed across the
full Z-dimension; ALPS will place the next block in the next
level of the Y-dimension, wrapping around the Z-torus. This
creates a transition cost of 2Y for neighbor communication.
Additionally, when block placement grows in the X-dimension
the cost is 2 Y-hops and 4 X-hops.

In an effort to reduce these transition costs and improve
packing density for traditional communication patterns, we
evaluated using re-organized basic building blocks where the
start and end points could be modified. As it turned out, there
were several ways of re-organizing the layout of the 2x2x2
Hilbert curves within a basic block that enabled rotations of
the blocks to better suit our needs. Figure 11 shows several of
these rotated blocks and our organization of them in a ZxX
plane. In this more bandwidth-centric layout, we use the same
starting position for the block but use a rotated version of the
block. As we grow in the X-dimension, instead of wrapping
around the Torus to start the next row, we simply build in
the opposite direction using a block rotation that achieves a
zero cost transition. From this figure, it is evident that we can
fill out the entire ZX plane without incurring any multi-hop
transition costs between blocks. The only cost incurred in this
layout is when building in the Y-dimension, which incurs a
2 Y-hop cost. Since Titan is 16 high in the Y-dimension we
experience only 8 of these transitions.

Z

X

Y

Build 
Direction

Start

Fig. 12. Balanced Layout: Block placement alternates between Y and X
dimension priority. This layout results in improved bandwidth and lower
average hop-count over default placement for most large job-sizes.

B. Balanced Layout

Prioritizing the Y-dimension over the X-dimension in layout
tends to result in allocations favoring latency above bandwidth.
The same is true for favoring X-dimension over the Y-
dimension for bandwidth over latency. A third option would
be a layout strategy targeting a balance between latency and
bandwidth. In an attempt to achieve this for our common larger
job sizes we developed a balanced layout strategy. The goal
of this strategy is to alternate between secondary dimensional
priorities. The Z dimension remains the basic build priority,
but upon every Z-transition, we alternate between growth in
the X-dimension and growth in the Y-dimension. Figure 12
shows our basic approach to this new ordering. Using the
balanced approach common large job sizes on the system are
provided with allocations that have better internal bandwidth
than traditionally ordered ALPS layouts and improved packing
densities over ZXY layouts.

C. Job Placement Simulator

Evaluation of various ordering techniques on Titan is
difficult due to high resource demand. To enable a larger
evaluation, we first developed node-placement simulations that
would allow us to develop an understanding of the impact
to the scheduling features (e.g., average hop-count) derived
from the Scores effort (Section IV). For this, we developed
a parallel placement simulation that would enumerate every
possible contiguous job allocation on Titan and calculate the
average hop-count and isolated bandwidth for job placements
at common job sizes. Using parallel simulations on Titan, we
were able to quickly evaluate every possible placement option
for jobs to allow us to predict how the lists may perform
against more practical benchmarks. We additionally enabled
the simulation to consider more common communication
paradigms while calculating the primary metrics, e.g. Avg-
hop-count under the CG communication pattern. Using this,
we could infer how a particular application may run across
the updated orderings.
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Fig. 13. All to All: Average Hop-Count
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D. Placement Simulation Results

The results in Figure 13 show a comparison of the average
hop-count for an all-to-all communication pattern when sim-
ulated for every-location within Titan. From these results, it
is clear that the layout in the ZXY ordering strategy has an
impact on the packing density of the jobs. As discussed in
the Scores section, packing density was a strong indicator of
performance for many applications. The results here show that
both orderings have an impact on packing density, however, in
the balanced ordering the impact is generally small. However,
the trade-off is shown in Figure 14.

While the all-to-all communication pattern has shown
heuristically to be a good indicator of performance, we
were interested in understanding the hop-counts that would
be associated with a more common communication pattern,
particularly at scale. All-to-all patterns can grow in network
expense as the node-count used for the application increases.
A common pattern seen in several applications even within
our own acceptance harnesses are the 3D 6-point stencil
exchanges. S3D, a combustion application regularly run on
Titan engages in such a communication pattern. The results
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Fig. 15. 3D Exchange: Average Hop-Count

in Figure 15 show that when using a more common com-
munication pattern the hop-counts between communicating
pairs generally track better in both the ZXY and the Balanced
orderings. In fact in 5 of the 8 test-cases the Balanced ordering
results in a tighter packing characteristic. However, starting
around 5K nodes through 12K nodes there seems to be a local-
minimum that is achieved by the traditional ALPS ordering
that provides it with a significant advantage in hop-counts
compared with the other lists. This is particularly troubling
because, at these job sizes, the node-counts reach what we
deem to be leadership quality jobs. This range of node-counts
reflects our most visible job-sizes, and a negative impact due
to layout would not be appropriate. After analysis of the
issue, it became apparent that this artifact was created through
irregularities imposed by the transition reducing wrapping built
into our new lists. Essentially by not building back to front
at each X and Y transition we created an artifact that leads
to higher hop-counts for 3D exchanges within an important
job size scope. To remedy this, we simply created two altered
lists, 3D-Bal and 3D-ZXY. The results of these are shown in
Figure 15 and Figure 16. While isolated bandwidth remains
largely the same, the average hop-count impacts are largely
reduced.

E. Titan Results

Testing on Titan required multiple phases, as taking down
the machine and swapping ordering lists requires draining
the machine and taking exclusive access. Due to these re-
quirements, our testing has been scheduled during machine
outages as it should not interfere with the primary science
jobs being run. The infrequency of these outages has led to
an extended testing duration. To date, we have performed
two of three planned full system evaluations. In our first
phase evaluation, we utilized a placement test-harness that
would release jobs in a common ordering but not specify
placement to avoid giving any of the orderings an advantage.
This test harness allows us to deploy several simultaneous
jobs on a quiet Titan system and automatically extract relevant
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performance metrics. We evaluated job sizes up to 2,048
nodes. We used several applications from the Titan accep-
tance harness, such as LAMMPS (molecular dynamics), S3D
(combustion), and CESM (climate). Additionally, we ran a
few benchmark applications that were known to be placement
sensitive such as the NVIDIA placement application and the
Ziz (Chimera astrophysics) mini-app [13]. In our first test-
phase, we had not yet identified a solution to the 3D stencil
problem, and as a result, only tested using our Balanced and
ZXY lists. The results in Figure 17 show the application
performance improvements as a speedup over the equivalent
MOAB-ordered test case. During this test-phase every sin-
gle application experienced performance improvements when
running against the Balanced ordering. The ZXY layout also
performed well but had several instances where performance
degraded, however, the ZXY layout experienced the single
greatest improvement when running CESM (a Climate code)
at 1,200 nodes, with an improvement of 24%. Overall, both
layout changes showed improvement over the default layout
for our smaller job measurements. It is important to note
that during this test-phase we ran several smaller jobs, but
since layout changes generally require a job to consume more
than a full Z-dimension of basic blocks, there were virtually
no measured difference between these jobs, and they are not
reported.

In our second test shot, we focused primarily on larger jobs,
ranging between 4,000 and 8,000 nodes. It was during this
test-shot that we were able to perform tests against our newly
added 3D-Balanced wraparound list. Unfortunately due to the
time-demands of each test-case we were unable to evaluate
the ZXY-3D list. For this evaluation, we ran the series of
benchmarks from our acceptance harness that could scale to
these sizes. The results show the promise of the 3D-balanced
layout particularly as we grow towards 8K. At the 8K example,
the balanced 3D list significantly outperforms the balanced list.
We believe this is due to the reduction in hop-counts at this
size for jobs engaging in 3D communication. Additionally,
the 3D balanced layout achieved almost a 36% performance
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improvement in the NVIDIA placement benchmark. These
results indicate that the redesigned layouts can achieve per-
formance improvements at large-scale. We expect that as job-
sizes trend toward full-machine sizes, the layout differences
will converge and performance will be equivalent.

We have one more future test-shot planned to run the full
acceptance harness against the MOAB, 3D-Bal, and 3D-ZXY
lists. During these evaluations, we will test jobs up to the full
machine size to quantify the impacts of the layouts. If the
performance improvement trends continue, we will trial the
lists for a set period of time on Titan, and inject known-jobs
over a longer period of time to quantify the loaded system
impact from layout improvements.

VII. RELATED WORK

Researchers have looked at understanding application place-
ment and its impact on performance extensively in past.
Early work, focusing on the BlueGene/L system, by Krevat
et al. [14], assumed that nodes allocated for a toroidal sys-
tem “must be rectangular and contiguous”. However, systems
that implement such approaches either suffer potentially low



utilization or pay the high cost of process migration between
nodes in order to rearrange work in contiguous blocks.

Lo et al. [15] demonstrate that better throughput can be
achieved with non-contiguous allocation. They make their
placements, though, in 2n size blocks, trying to allocate the
largest block possible. For them the allocation of single nodes
is the degenerate case of 20 size blocks. An improved alloca-
tion in non-contiguous chunks was the MC1x1 approach [16],
but it required extensive calculations to evaluate numerous
possible allocations.

Another approach is to accept any given allocation and
attempt to map the application’s task topology (communication
patterns) onto the actual underlying hardware topology using
embedding techniques like folding [17], [18], [19]. Such an
approach typically involves requiring users to have explicit
knowledge of, or have prior application runs to detect com-
munication patterns.

More recently, Tuncer et al. [20] combine node selection
with task mapping. This combined approach takes into account
an application’s communication pattern as well as topology
when selecting the nodes. Using a clustering approach to
allocation, it requires more computation to select nodes and
relies on information not always readily available (communi-
cation patterns). The authors themselves note the limitation in
applying their work [20] saying “..real HPC machines do not
have the infrastructure to support combined allocation and
task mapping..”

Leung et al. [21] showed that one-dimensional allocation
strategies could be effective for massively parallel supercom-
puters. They proposed Hilbert curves [22] in two dimen-
sions for assigning node ordering. Various other curves were
evaluated by Albing et al. [23], [12] and optimal orderings
were shown to be dependent on the dimensions of the torus
interconnect [24]. These linear approaches have the advantage
of extremely low-cost (i.e., rapid) allocations from their list of
free nodes.

Some of the chunk allocations keep lists of different size
free chunks and thus have more than one list to check. Only
in [25] have we found any use of both ends of a single
(ordered) list.

VIII. CONCLUSION

In this work, we have presented our efforts to decrease
runtime variability and improve performance for medium to
large sized jobs on Titan. Titan uses a common HPC topology,
3D torus, and a widely-used scheduling tool, MOAB. We
demonstrate through the use of visual analytics and ma-
chine learning, the identification of problems and features
that are traditionally obfuscated by the complexity and scope
of extreme-scale resource allocation. During this effort, we
discovered a common scheduling technique that due to the
workload of large and small jobs, resulted in unnecessary
and additional fragmentation to larger, long-lived jobs. We
presented our effort to ameliorate this impact by separating
large, long-lived jobs from small, short-lived jobs. In doing
so, we were quickly able to reduce the average-hop-count

of several major job sizes during our evaluation on Titan. In
evaluations on Titan, we observed reductions in average hop-
count, for common job sizes, up to 50% in relation to the
measured job-size minimum.

In a second study, we demonstrate an average of 10% per-
formance improvement across several real-applications com-
monly run on Titan, and used as a part of the Titan acceptance
testing. This effort was the result of identifying that the default
layout on Titan results in reduced intra-job bandwidth due to
the anisotropic layout of the Gemini network. In our effort
to improve it we designed and implemented both a layout
targeting maximum bandwidth for applications and a layout
designed to provide a better balance between latency within
allocations.

Both of the allocation efforts presented in this work are
operationally viable. Operating an extreme-scale and open-
science supercomputer requires pragmatic approaches to re-
duce the potential negative outcomes associated with over-
optimizing for a single goal. In the approaches presented in
this work, there are no negative outcomes associated with 1)
The utilization of the machine, a metric that largely forces
scheduling to allocate jobs without delay and 2) the schedul-
ing mechanisms, prioritizing capability jobs or the ability to
schedule capability jobs into the machine.

The general insights from this work apply irrespective of
topology or scheduling software. Managing a large-scale, open
science cluster will result in a workload that is a mixture
of small, medium, and large jobs that will vary from very
short to long runtimes. Job placement that is not sensitive to
the workload mixture can result in suboptimal performance.
Further, resource allocation must be designed in a network
topology-aware fashion. Our efforts demonstrate that the target
application workloads faired better when resource allocation
balanced a mixture of latency and bandwidth.
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