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I. RELATED WORK

In this section, we categorize and discuss several related
works on HPC data management.

A. Current HPC Data Management

Typical HPC users either perform out-of-band manual stag-
ing that lacks coordination with job start-up, or include the
staging commands in the job scripts which causes expensive
stalls while waiting for data to be brought in. In either case,
point-to-point data movement tools, e.g., scp, GridFTP [1],
hsi [2], are used to move data. In contrast, the focus of Just in
Time (JIT) staging is to orchestrate data staging to complete
just when the computation is to begin, which has not been
considered in prior works.

B. HPC Data Scheduling and Coordination

HPC job schedulers such as PBS Pro [3] and Moab [4]
support data staging based on a computation schedule. How-
ever, these solutions do not adapt the data staging to changes
in job startup times. There is no way to expedite the transfer
as they only support point-to-point transfer protocols. Con-
sequently, these solutions cannot address network volatility
either. Stork [5] can handle network vagaries. However, Stork
is designed for grid environments, and while complementary,
does not directly address HPC data management design-space
that is the focus of this paper.

Moreover, BAD-FS [6] coordinates input data and computa-
tion by exposing distributed file system decisions to an external
workload-aware scheduler. While we have the same common
goal as this work, our approach aims to inherently improve
the job workflow without creating a new file system.

Finally, we have also examined different aspects of data
scheduling and coordination in our prior work: decoupling the
staging of a job’s data from its execution by creating separate
data and batch queues [7]; and treating the HPC center’s
scratch space as an integrated cache [8]. However, what is still
needed is the ability to bring the data into the HPC center’s
scratch space in a timely fashion, which we build in this work.

C. HPC Data Movement

DMOVER [9] tool is used for moving data in the Tera-
Grid [10] by aggregating data transfer commands in a script
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and scheduling them using a separate queue. However, in con-
trast to our decentralized JIT staging DMOVER only addresses
point-to-point data transfers using GridFTP. Kangaroo [11]
employs intermediate storage to provide reliability against
transient resource availability in grid environments. However,
it simply provides a staged transfer mechanism and does not
handle network dynamicity.

IBP [12] offers a data distribution infrastructure with a
set of strategically placed “storage depots.” In contrast, we
combine both a staged and decentralized data delivery. The
induction of user-specified or cloud storage nodes allows us
to optimize the staging on a per-user basis, which is not
possible with IBP. Further, our approach is unique as we
strive to meet a potentially volatile job start up time, despite
network variability. IBP has been extended [13] with strategies
to reconcile the rate of data production with that of available
network resources. This is complementary to our work.

The GridFTP overlay network service [14] implements a
specialized data storage interface (DSI) to achieve split-TCP
functionality. In [15], the authors have extended this effort to
use previous transfers as a measure of when to use a particular
node in the transfer overlay. Our work differs as it delivers
data on a deadline (job start time) and further uses dynamic
measurements to adapt and adjust the fan-in of transfers.

The approach of downloading large files from several mirror
sites has been validated by its wide-spread use in BitTor-
rent [16], and many other protocols have been proposed [17],
[18], [19]. These works are complementary, and we build on
their principles, especially BitTorrent.

Finally, the Network Weather Service (NWS) [20] provides
a powerful framework that allows the resources of distributed
computers to be monitored. We use NWS measurements to
determine a path within a network of nodes and dynamically
adjust it based on bandwidth degradation.

II. ADDITIONAL DESIGN CONCERNS

In this section, we provide additional discussion regarding
the end-users’ motivation for participating in the collaborative
staging process and also present some alternative design
considerations.

1) Motivation for Collaboration: In today’s HPC environ-
ment, supercomputing jobs are almost always collaborative
in nature. In fact, a quick survey of jobs awarded compute
time on the ORNL NLCEF, through the DOE’s INCITE [21]
program, suggests that these jobs involve multiple users from
multiple institutions. This collaborative property is even more
true in TeraGrid [10], where jobs are usually from a virtual



organization, which is a set of geographically dispersed users
from different sites, coming together to solve a problem of
mutual interest for a certain duration. A example of this use-
case is the Earth System Grid [22], where it is not uncommon
for different research groups to voluntarily replicate climate
model data. In such cases, it is clear that many users, from
different sites will be interested in seeing the job run to
completion, with as little delay as possible. This emerging
property of collaborative science can be exploited to perform
a collaborative staging of job input data. We therefore argue
that there exists a natural incentive to provide resources for
the JIT staging process, and that such resources are essential
to the application itself and should not be construed as an
“extra” component needed solely for JIT staging.

2) Impact on Infrastructure Costs: We reiterate that our
design does not require the explicit setup and management of
cloud, landmark, and intermediate nodes. Instead, it leverages
and “piggybacks” on existing infrastructure. Several national
testbeds, e.g., TeraGrid [10], REDDNET [23], etc., are already
in production and can act as such nodes, without incurring
any additional costs such as electricity, manpower, and man-
agement costs. Moreover, intermediate nodes use resources
that are already part of the “collaborative” job. We also do
not require extra provisioning of network bandwidth, rather
employ the residual bandwidth that would have otherwise
gone unused. Nonetheless, extra usage, if necessary, can be
construed as necessary for completing of the collaborative
job, and the burden can be shared by all the collaborators,
not unlike when researchers have to utilize extra resources
individually to support a demanding job. Overall, our design
also achieves better utilization of resources and possibly a
higher system-wide efficiency.

3) Alternative Data Staging Designs: There are several
possible alternative solutions for the HPC staging problem,
namely, adding more scratch space, streaming data directly
and not using the scratch space, and moving computations
closer to data. In the following, we discuss why we did not
adopt these options in our design.

First, we reiterate that simply adding more scratch is not
practical (Section I in the main paper), as scratch is a pre-
cious commodity and provisioning more scratch means taking
dollars away from buying FLOPS, and more FLOPS are how
most HPC acquisition proposals are won.

Second, streaming data online and bypassing scratch to
support HPC applications is not viable and sustainable (based
on Top500 supercomputers). Additionally, distributed filesys-
tems or middleware are seldom an option for extreme-scale,
leadership class machines. The scratch space is a parallel
file system that is made available at a mount point, to the
hundreds of thousands of compute cores where the parallel
job’s processes run. Serving the hundreds of thousands of
compute processes of a currently running job through remote
/0 to a distributed file system that is geographically dispersed
is a significantly expensive option, and an impractical one.
Furthermore, streaming mechanisms cannot match the 1/O
rates required to keep such large systems busy, e.g., Jaguar [24]
scratch offers I/O rates of 256 GB/s.

Third, moving computation closer to data is a compelling
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Fig. 1. Implementation architecture for timely staging.

idea, but there are numerous HPC applications, e.g., DOE
supercomputer and NSF TeraGrid applications, which cannot
be sustained on users’ local clusters where data may be
available. Our design takes all these factors into consideration
for realizing a practical solution to the staging problem.

III. IMPLEMENTATION

We have implemented the JIT staging manager using about
3500 lines of C code. Figure 1 shows the overall architecture
as well as the interactions between the manager components.

a) Integration with Job Submission: To facilitate easy
adoption of our scheme by the community, we have integrated
it with the widely-used PBS [25] job submission system.
Specifically, we have instrumented the job submission scripts
to let users specify intermediate nodes and deadlines. An
example instrumented PBS script is shown in Figure 2, where
the user specifies intermediate nodes and deadlines as well as
details such as available storage capacities. The nodes listed in
the script are just a suggestion, and the actual runtime queries
these nodes directly for availability as needed.

The annotated script is submitted to the staging manager on
the center, which filters out the staging-specific directives and
forwards the remaining script to the standard batch queue, but
with a dependency on the staging task. We extend our earlier
works [7], [8] on instrumenting the job submission system for
this purpose.

b) Integration with BitTorrent and NWS: We exploit Bit-
Torrent’s [16] scatter-gather protocol for transferring data by
extending the protocol to use NWS bandwidth measurements.
The NWS measurements are integrated with BitTorrent to
dynamically select fast locations where a particular dataset
can be retrieved, and adapt to changing network behavior by
adjusting fan-in to enable staging of data in time.

Since our system uses BitTorrent, the source only needs to
send one copy of the data to the intermediate nodes. Once

#PBS —N myjob

#PBS —1 nodes=128, walltime =12:00

mpirun —np 128 “/MyComputation

#Stage file://SubmissionSite :/home/user/inputl
file : ///home/scratch/user/inputl

#Stage wget://WebRepo:/input2
file:///home/scratch/user/input2

#InterNode nodel . Sitel :49665:50GB

#InterNode nodeN. SiteN:49665:30GB

#JobStartDeadline 11/14/2011:12:00

Fig. 2. An instrumented PBS script for timely staging.



complete, if bandwidth is a consideration the source can stop
“seeding”, and the intermediate nodes will propagate data
among themselves. However, if the source stays online after
the “client offload” completes, the transfer could be quicker.
Additionally, the HPC center will only need to pull one copy
of the data to complete the staging process.

c) Center-wide Global Staging Considerations: Since we
anticipate that all jobs, along with their staging needs, will be
submitted through the staging manager, we have instrumented
into the manager certain global optimizations that can be
performed across all jobs. (1) All jobs that desire a staging
to the Level-N, i.e., one hop away from the center, can be
started immediately. Since these staging operations do not use
any center resources — neither occupying scratch space nor
consuming bandwidth — the data can be brought closer to the
center and pulled in much faster when needed. (2) A job whose
startup deadline tightens during the course of a previously
initiated staging will be given higher priority if it is determined
that the staging may not complete in time. For instance, this
could mean providing more flows to maximize the last leg of
the transfer, using more of the center’s in-coming bandwidth.

d) Ensuring Data Reliability: To ensure that data is
reliably staged on the center, we employ replication of data
by sending out chunks to more than a single location. This
is a tunable parameter in our implementation and users can
specify the minimum number of replicas that should be created
for a given dataset. If necessary, more space-efficient erasure
codes can be used. The erasure code that we have used
in our implementation is Reed-Solomon [26] in 4:5 coding
configuration, i.e., four input chunks are coded to produce five
output chunks, with a redundancy of 25%. The chunk-size is
also a tunable parameter which can be set based on the size
of the datasets being transferred.

e) Multi-Input Staging: Our implementation is capable
of retrieving data from more than a single source, directly
as well as incorporating it into the decentralized transfer. The
data sources are provided as links in the job-submission script.
If the external data source runs an instance of our software,
the staging manager can simply use the NWS information to
decide between direct or decentralized staging. However, if the
external source does not support NWS (e.g., the cloud), the
staging manager uses small scale tests, e.g., a partial download
from a web repository, to determine expected transfer times
and make staging decisions. In this case, the goal of the staging
manager is to ensure staging of all input data from all sources
before the predicted job startup time.

IV. SIMULATING HPC DATA STAGING PROCESS

To systematically study the staging process in detail, we
have developed a realistic simulator, simStagein, which models
both job execution and data staging.

a) Job scheduling: In simStagein, jobs are scheduled
using a First-Come First-Served (FCFS) policy with back-
filling that is common in HPC centers [24]. The goal of this
scheduler is to strike a balance between potential idle cores
and the HPC center’s desire to cater to “hero apps” that could
take up an entire supercomputer.
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Fig. 3. Control flow in simStagein.

b) Job traces: simStagein utilizes a number of different
traces to provide an accurate model of the system. The job
traces were obtained from ORNL’s Jaguar supercomputer [24]
and represent nearly three years of job execution [8]. These
traces provide for each job: arrival time, start time, total
job execution time, and the compute and memory resources
used. This information is used to estimate the amount of data
consumed by a job [27]. Each job in the trace corresponds to
a job staging-in and executing in our simulator.

¢) Bandwidth traces: We model the intermediate nodes
by using NWS pairwise bandwidth measurements from 50
different sites on PlanetLab [28] collected over a duration
of 96 hours. Each simulated node in simStagein is assigned
a measured trace. Depending on the number of nodes and
duration of the simulation a trace may be assigned to multiple
nodes and a node may loop through its associated trace. If
a node is used for multiple stagings at the same time, the
bandwidth is equally divided between the stagings.

d) Simulator output: simStagein provides an output trace
with information about overall scratch space usage and the
time it would take to stage the required data for a given job.
This information can then further be used to determine any
delay in meeting job scheduling deadlines.

e) Flow of control in simStagein: simStagein maintains
a pool of randomly selected nodes arranged in a configurable
topology to use as intermediate nodes. Moreover, simStagein
can also capture varying storage capacities of the nodes and
can alter staging paths based on the capacities.

Figure 3 illustrates simStagein’s operation. The main driver
is a Job tracker that reads the logs, and selects an appropriate
action for the simulator to take. We have opted for using
the same time-scale as the logs. At each job arrival, the
tracker places it in a wait queue. The job input data staging
is then started. The staging process may take many simulator
ticks depending on the size of the input data, but once the
process completes the job is moved to a run queue. The
job will wait there until sufficient compute resources become
available. Once the job completes its execution, it moves to
the offload queue. If the simulator is modeling a decentralized
offload [29], intermediate nodes will be chosen and the offload
process will begin. If the standard approach is used, the data



TABLE I
THE TIME TO TRANSFER A 2 GB FILE USING STANDARD
BITTORRENT. THE EQUIVALENT PHASES FOR OUR SCHEME ARE
SHOWN IN BRACKETS.

Phase Time (s)
Send to intermediate nodes (Client Offload) 1428
Download at HPC center (Center Pull) 362

will remain on the scratch until it is purged by the center.
Finally, simStagein also provides accounting and statistics
about the offload process, such as the scratch space used and
the data read, as well as other vital statistics.

V. ADDITIONAL RESULTS

In this section, we present additional results of interest from
experiments using both our implementation and log analysis.

1) Effect of Using NWS Measurements: First, we compare
our NWS-based monitored transfer approach with a standard
BitTorrent-based data transfer. In this case, we use NWS
bandwidth measurements to greedily provision Level-2 nodes
to increase the fan-in, i.e., the number of nodes simultaneously
transferring data to the center, to utilize the maximum center
in-bound bandwidth. Table I shows the times taken to deliver
a 2.0 GB file using the standard BitTorrent protocol. Compare
these to the transfer times using our timely staging shown in
the main paper in Table II: both Client Offload and Center Pull
in our approach out-perform by 11.5% and 6.8%, respectively,
the corresponding steps in regular BitTorrent transfer. These
results show that active bandwidth monitoring serves as a good
technique to improve staging times.

2) Employing Decentralized Staging: In the experiments
presented in the main paper, the bandwidth available between
the Level-2 nodes and the center, which dictates Center Pull
times, is greater than that between the client and the center,
which dictates direct transfer time. Thus, the center always de-
cided to perform decentralized staging. In this next experiment,
we modified the setup to use a faster node as the client site,
and repeated the experiment for staging a 2 GB file. First, we
do the transfer without considering direct transfer and always
using decentralized staging. Second, we repeat the experiment
with the ability to choose between direct and decentralized
staging depending on the ability to meet a transfer deadline
(job startup). We observed that for the first case, the time to
stage and transfer the data to the center was 2867 seconds.
In contrast, for the second case the direct transfer completed
in 968 seconds, an improvement of 66.2%. This stresses the
need for the staging mechanisms to dynamically adjust to the
variations in the system behavior, and to not be hard-wired to
simply always do a staged transfer or a direct transfer.

3) Behavior Under Failures: We also examine how failure
in the scratch space affects the ability of a transfer scheme
to meet a given job deadline. Here, we capture the early-
transferring approach of users by starting the direct transfers
as early as Tjopstartup — 1 * T, with 1 < n < 10. Next,
we randomly introduce a single failure on the scratch space
between the time of starting the transfer and T'yop5¢artup, and
determine the delay in meeting the job deadline, as well as
the extra amount of data that has to be transferred. For timely
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Fig. 4. The distribution of staging delay and re-transmission overhead
for 25 transfers with one scratch space failure. n represents by how
early data staging is started before job startup, with higher n implying
an earlier start of staging process.

staging, we assume perfect prediction, so it starts staging-in
data as late as possible for a given file size. The experiment
is repeated 25 times using files of sizes from 1 GB to 5 GB,
for each studied n. Figure 4 shows the distribution of delay
in meeting a deadline and the amount of data re-transferred,
respectively. In the distributions, a higher count for a smaller
x-axis value is desirable as that implies less delay and higher
chances of meeting a deadline, and less data re-transfers. Our
timely staging shows excellent properties with 98% of the
transfers completing with no delay. In contrast, only a direct
transfer that starts as early as with n = 10 is able to come
close with 94% transfers without delay. With n = 2, only 31%
of direct transfers complete in time. The flip side is that by
staging early, the data remains exposed to the failures on the
scratch and possible re-transfers. It is observed that while over
91% of the transfers in our approach had no retransmissions
due to exposure to failures, that is only true for 36% of the
cases with direct transfers.

Note that since we introduce a single failure, the maximum
overhead is 100%. In real scenarios, multiple failures can
further exacerbate the problem, as the re-transfer may now take
much longer than the earlier transfer or failures in the system
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may prevent immediate response to a failure. This implies that
delaying staging is preferable. Thus, JIT staging is able to
withstand failures much closer to the job deadline, and the
delay if any is small, and can be mitigated by assuming a
slightly tighter deadline than actual (Section II main paper).

4) Log Analysis: We examine the accuracy of user-
estimated run-times, as many works [30] have noted that users
generally request more resources than required by their jobs.
Figure 5 (a larger version of Figure 5 from the main paper)
plots the user requested run-times with the actual run-times as
recorded in the logs, and confirms this perception. Across the
logs, the users over-estimated the requirements by 50.9 times
on average for jobs longer than 30 seconds (430 times for all
jobs), mostly due to jobs ending prematurely.
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