
Predicting the Performance of Wide Area Data Transfers

Sudharshan Vazhkudai 1,2 Jennifer M. Schopf 1,3 Ian Foster 1,4

{vazhkuda, jms, foster}@mcs.anl.gov

1 Mathematics and Computer Sciences Division, Argonne National Laboratory
2 Department of Computer and Information Sciences, The University of Mississippi

3 Computer Science Department, Northwestern University

4 Department of Computer Science, The University of Chicago

Abstract

As Data Grids become more commonplace, large
data sets are being replicated and distributed to multiple sites,
leading to the problem of determining which replica can be
accessed most efficiently. The answer to this question can
depend on many factors, including physical characteristics of
the resources and the load behavior on the CPUs, networks,
and storage devices that are part of the end-to-end path
linking possible sources and sinks.

We develop a predictive framework that combines (1)
integrated instrumentation that collects information about the
end-to-end performance of past transfers, (2) predictors to
estimate future transfer times, and (3) a data delivery
infrastructure that provides users with access to both the raw
data and our predictions. We evaluate the performance of our
predictors by applying them to log data collected from a wide
area testbed. These preliminary results provide insights into
the effectiveness of using predictors in this situation.

Keywords: Grids, data transfer prediction, replica selection,
information services.

1. Introduction

As the coordinated use of distributed resources, or
Grid computing, becomes more commonplace, basic resource
usage is changing. Many recent applications use Grid systems
as distributed data stores [10, 18, 21, 26, 28, 31, 38] where
pieces of large data sets are replicated over several sites. For
example, several high-energy physics experiments have agreed
on a tiered Data Grid architecture [23, 24] in which all data
(approximately 20 petabytes by 2006) is located at a single
Tier 0 site; various (overlapping) subsets of this data are
located at national Tier 1 sites, each with roughly one-tenth the
capacity; smaller subsets are cached at smaller regional Tier 2
regional sites; and so on. Therefore, any particular data set is
likely to have replicas located at multiple sites.

Different sites may have varying performance
characteristics because of diverse storage system architectures,
network connectivity features, or load characteristics. Thus,
users (or brokers acting on their behalf) may want to be able to

determine the site from which particular data sets can be
retrieved most efficiently, especially as data sets of interest
tend to be large (1–1000 MB). It is this replica selection
problem that we address in this paper.

Since large file transfers can be costly, there is a
significant benefit in selecting the most appropriate replica for
a given set of constraints [6, 41]. One way a more intelligent
replica selection can be achieved is by having replica locations
expose performance information about past data transfers. This
information can, in theory, provide a reasonable approximation
of the end-to-end throughput for a particular transfer. It can
then be used to make predictions about the future behavior
between the sites involved.

We develop a predictive framework that combines
three elements: (1) an integrated instrumentation of a high-
performance data server (the Globus GridFTP [2] file transfer
service) to record performance information for each file
transfer that it performs, (2) predictors to estimate future
transfer times, and (3) a data delivery infrastructure building
off of the Globus Metacomputing Directory Service (MDS) [9]
to provide users with access to both the raw data and our
predictions. In the remainder of this paper, we describe these
three aspects of our system and then present the results of
experimental studies in which we evaluate the effectiveness of
using predictors in this situation. We conclude with a
discussion of future work.

2. Related Work

The goal of this work is to be able to obtain an
accurate prediction of the time required to transfer a large file
(10MB to 1GB) between a storage system and a client.
Achieving this goal can be challenging since numerous devices
are involved in the end-to-end path between the source and the
client, and the performance of each (shared) device along the
end-to-end path may vary in unpredictable ways.

One approach to replica selection is to construct
performance models for each system component (CPUs at the
level of cache hits and disk access, networks at the level of the
individual routers, etc.) and then use these models to determine
a schedule for all data transfers [35]. This approach is widely
used in classical scheduling, where the resources are typically

CPUs, not network components, and the action is running a
task, not transferring a file [1, 7, 8, 27, 29, 34, 37, 44]. In
practice, however, system components are neither dedicated to
our use nor under our full control. Hence, their behavior can
vary in unpredictable ways as a result of competing traffic and
load, unmodeled interactions, or the lack of available data [33].

A promising alternative to system characterization is
to use observations of past application performance of the
entire system, not on a component-by-component level, to
construct predictions of future performance. The use of whole-
system observation has three relevant properties for our
purposes. First, we can construct such predictions without
detailed knowledge of the underlying physical devices.
Second, these predictions can, in principle, capture both
evolution in system configuration and temporal patterns in
load. Third, such predictions are for end-to-end behavior,
which is typically what is of interest to the user. This
technique is used by the Network Weather Service (NWS) [42]
and by NetLogger [30] to predict network (for small file
transfers) or CPU behavior, and by Downey [12] and Smith
[36] to predict queue wait times.

We analyzed using NWS data for our own
predictions. However, since the NWS was intended as a
lightweight infrastructure and to have very little overhead, it
generally uses small file sizes (the default is 64 KB with
standard TCP buffer sizes) to determine network performance.
In many cases this can be predictive of larger file transfers, but
not for the setting we are examining with the large file sizes
and possible parallelism associated with typical Grid data
transfers.

Figures 1 and 2 illustrate the differences in
performance that can arise between a small NWS probe and an
actual file transfer using GridFTP, the file transfer service of
the Globus Toolkit™ These two figures plot (in logarithmic
scale) the performance measured in a set of controlled
experiments with NWS probes and GridFTP transfers over a
two-week period between two pairs of sites. Each figure
shows approximately 1,500 NWS probes, conducted every five
minutes, and approximately 400 GridFTP transfers at irregular
intervals. This data is available at [15].

The NWS measurements indicate network bandwidth
to be less than 0.3 MB/sec, while end-to-end GridFTP had a
significantly higher transfer rate. More problematic, however,
we see considerably greater variability in the GridFTP
measurements, ranging from 1.5 to 10.2 MB/sec in both cases,
showing that simple data transformations will not improve its
predictive merits for this application. The NWS measurements
are not the right tool to use, quantitatively or qualitatively, for
accurate estimates of GridFTP costs.

3. Monitoring GridFTP Performance

As stated earlier, the end-to-end data path consists of

several shared devices, including networks, CPUs, and storage
systems. However, using predictive techniques on large file
transfers can be complicated by the fact that often storage
systems are less amenable to “law of large numbers”
arguments than are wide area networks or CPUs, for example.
No longer does one additional flow or task have an
insignificant effect on overall performance.

Because of this, we need to measure the entire
transfer function, not just the transport as in other work. To
this end, we instrumented the Globus Toolkit™ GridFTP
server [6] to record the performance achieved for every data
transfer in an end-to-end way. This information, along with
metadata indicating the nature of the transfer, serves as the
input to our predictors.

Figure 2: LBL-ANL GridFTP end-to-end
bandwidth and NWS probe bandwidth

The use of actual data transfers to collect performance
information, rather than synthetic probes, gives us more
accurate data for the full function and imposes no additional
probing overhead. The downside is that we have no control
over the intervals at which data is collected. This situation can
limit the predictive techniques that apply to the data, as
detailed in Section 4. In principle, our system could be
extended to perform file transfer probes at regular intervals for
the sake of gathering data about the performance, and not for
transferring useful data, but we do not consider that approach
here.

Figure 1: ISI-ANL GridFTP end-to-end bandwidth
and NWS probe bandwidth

GridFTP [3] is part of the Globus Toolkit™ [14] and
is widely used as a secure, high-performance data transfer
protocol [3, 6, 10, 18, 32]. It extends standard FTP
implementations with several features needed in Grid
environments, such as security on control and data channels,
multiple data channels for parallel transfers, partial file
transfers, and third party transfers. GridFTP consists of two
modules: the control, or server, module and the client module.
The server module manages connection, authentication,
creation of control and data channels (separate control and data
channels facilitate parallel transfers), and reading and writing
data The client module is responsible for higher-level
operations such as file get and put operations or partial
transfers.

We instrumented the GridFTP server by adding
mechanisms to log performance information for every file
transfer, and this is available a service to any user of the
Globus Toolkit™ 2.0 beta version. We added no new
capabilities to GridFTP itself; we merely record the data and
time the transfer operation. Log entries include source address,
file name, file size, number of parallel streams, TCP buffer
size for the transfer, start and end timestamps, total time
consumed by the transfer, aggregate bandwidth achieved for
the transfer, nature of the operation (read or write), and logical
volume to and from which file was transferred. A sample log
is shown in Figure 3.

The monitoring code is nonintrusive, major overhead
being in timing routines, with a smaller percentage spent
gathering the information mentioned above and performing a
write operation. The entire logging process consumes on
average approximately 25 milliseconds per transfer, which is
insignificant compared with the total transfer time.

We log data to a standard location in the file system
hierarchy and use a single log file for all transfers made to and
from the server. Entries are logged in the Universal Logging
Format (ULM) “Keyword=Value” format [40]. Each log entry
is well under 512 bytes. Transfer logs can grow quickly in size
at a busy site. Since old data has less relevance to predictions,
we can trim logs based on a running window, as is done in the
NWS. An alternative strategy used by NetLogger is to flush
the logs to persistent storage (either disk or network) and
restart logging. We are exploring these strategies for future
GridFTP logs.

4. Prediction Techniques

Source IP File Name File Size
(Bytes)

Volume StartTime
(Timestamp)

EndTime
(Timestamp)

TotalTime
(Seconds)

Bandwidth
(KB/Sec)

Read/Write Streams TCP-
Buffer

140.221.65.69 /home/ftp/vazhkuda/10 MB 10240000 /home/ftp 998988165 998988169 4 2560 Read 8 1000000
140.221.65.69 /home/ftp/vazhkuda/25 MB 25600000 /home/ftp 998988172 998988176 4 6400 Read 8 1000000
140.221.65.69 /home/ftp/vazhkuda/50 MB 51200000 /home/ftp 998988181 998988190 9 5688 Read 8 1000000
140.221.65.69 /home/ftp/vazhkuda/100 MB 102400000 /home/ftp 998988199 998988221 22 4654 Read 8 1000000
140.221.65.69 /home/ftp/vazhkuda/250 MB 256000000 /home/ftp 998988224 998988256 33 8000 Read 8 1000000
140.221.65.69 /home/ftp/vazhkuda/500 MB 512000000 /home/ftp 998988258 998988335 67 7641 Read 8 1000000
140.221.65.69 /home/ftp/vazhkuda/750 MB 768000000 /home/ftp 998988338 998988425 97 7917 Read 8 1000000
140.221.65.69 /home/ftp/vazhkuda/1 GB 1024000000 /home/ftp 998988428 998988554 126 8126 Read 8 1000000

Figure 3: Sample set from a log of file transfers between Argonne and Lawrence Berkeley National
Laboratories. The bandwidth values logged are sustained measures through the transfer. The end-
to-end GridFTP bandwidth is obtained by the formula BW = File size / Transfer Time.

Simply collecting the data from the GridFTP monitor

is not sufficient to make a replica selection decision. In most
cases, a prediction of future behavior is needed, not just a
recitation of past behavior. In this section we briefly describe
some of the predictors we developed, categorize possible
approaches by basic mathematical techniques, context-
insensitive filtering (using only the last five measurements, for
example), and context-sensitive filtering (for example
choosing only to use data for similarly sized file transfers). We
detail the pros and cons of each technique and then describe
the set of predictors we use for our data.

4.1. Basic Mathematical Functions

Mathematical functions for predictions are generally
grouped into three categories: mean-based, median-based, and
auto-regression model techniques. We use several variations of
all of these models in our experiments.

Mean-based, or averaging, techniques are a standard
class of predictors that use arithmetic averaging (as an estimate
of the mean value) over some portion of the measurement
history to estimate future behavior. The general formula for
these techniques is the sum of the previous n values over the
number of measurements. Mean-based predictors vary with the
amount of history information used in their calculations and
the amount of weight put on each value. For example, a total
average uses the entire set of history data with each value
weighted equally, but if more recent behavior has better
predictive value, then a subset of the data is used. We discuss
these variations in the subsequent section.

A second class of standard predictors is based on
evaluating the median of a set of values. Given an ordered list
of t values, if t is odd, the median is the (t+1)/2 value; if t is
even, the median is half of the t/2 value added with the (t+1)/2
value. Median-based predictors are particularly useful if the
measurements contain randomly occurring asymmetric outliers
that are rejected. However, they lack some of the smoothing
that occurs with a mean-based method, possibly resulting in
forecasts with a considerable amount of jitter [20].

A third class of common predictors is auto-regressive
models [17, 20, 42]. We use an Auto-regressive Integrated
Moving Average (ARIMA) model technique that is
constructed using the equation:

Yt = a + bYt-1,
where Yt is the prediction for time, t, Yt-1 is the previous data
occurrence and a and b are the regression coefficients that are
computed based on past occurrences of Y. The standard
equation includes a shock term, which is not needed in this
case.

 This approach is most appropriate when there are at
least 50 measurements and the data is measured with equally
spaced time intervals, which we obviously do not have but we
still examine this common technique. The main advantage of
using an ARIMA model is that it gives a weighted average of
the past values of the series thereby possibly giving a more
accurate prediction. However it needs a larger data set than the
previous techniques to achieve a statistically significant result,
and can have a much greater computational cost.

4.2. Context-Insensitive Factors

More recent values are often better predictors of
future behavior than an entire data set, no matter which
mathematical technique is used to calculate a prediction.
Hence, there are many different variants in selecting a set of
recent measurements to use in a prediction calculation.

The fixed-length, or sliding window, average is
calculated by using only a set number of previous
measurements to calculate the average. The number of
measurements can be chosen statically or dynamically
depending on the system. We use only static selection
techniques in this work. Options for dynamically selecting
window size are discussed in [42].

The degenerative case of this strategy involves using
only the last measurement to predict the future behavior. Work
by Downey and Harchol-Balter [22] shows that this is a useful
predictor for CPU resources, for example.
Instead of selecting the number of recent measurements to use
in a prediction, we also consider using only a set of
measurements from a previous window of time. Unlike other
systems where measurements are taken at regular intervals [11,
42], our measurements can be spaced irregularly in time. Using
temporal-windows for irregular samples can reflect trends
more accurately than selecting a specific number of previous
measurements because they capture recent fluctuations,
thereby helping to ensure that recent (and, one hopes, more
predictive) data is used. Much as the number of measurements
included in a prediction can be selected dynamically, the
window of time used can be decided dynamically.

As shown in Figure 4, we use fixed-length sets of the
last 1 (last value), 5, 15, and 25 measurements. We use
temporal-window sets of data of the last 5 hours, 15 hours, 25
hours, 5 days, and 10 days. We consider both mean-based and
median-based predictors over previous n measurements; mean-
based predictors over the previous 5, 15, and 25 hours; and an

ARIMA model technique over the previous 5 and 10 days,
since this function requires a much larger data set to produce
accurate predictions than our other techniques.

4.3. Context-Sensitive Factors

Filtering a data set to eliminate unrelated values often
results in a more accurate prediction. For example, a prediction
of salary is more accurate when factors such as previous
training, education, and years at the position are used to limit
the data set of interest.

With the GridFTP monitoring data, initial results
showed that file transfer rates had a strong correlation with file
size. Studies of Internet traffic have also revealed that small
files achieve low bandwidths whereas larger files tend to have
high bandwidths [4, 5, 19]. This difference is thought to be
primarily due to the startup overhead associated with the TCP
start mechanism that probes the bandwidth at connection
startup. Recent work has focused on class-based isolation of
TCP flows [43] and on startup optimizations [45, 46] to
mitigate this problem. As a proof of concept, we found 5–10
percent improvement on average when using file-size
classification instead of the entire history file to calculate a
prediction. This is shown in Figures 12 and 13, and discussed
in Section 6.

For our GridFTP transfer data we ran a series of tests
between our testbed sites to categorize the data sizes into a
small number of classes. We categorized our data into four
sets: 0–50 MB, 50–250 MB, 250–750 MB and more than 750
MB based on the achievable bandwidth. We note that these
classes apply to the set of hosts for our testbed only; further
work is needed to generalize this notion.

4

u
e
f
d
in
p
p
a
th
 Average based Median based ARIMA model
All data AVG MED AR
Last 1 Value LV
Last 5 Values AVG5 MED5
Last 15 Values AVG15 MED15
Last 25 Values AVG25 MED25
Last 5 Hours AVG5hr
Last 15 Hours AVG15hr
Last 25 Hours AVG25hr
Last 5 Days AR5d
Last 10 Days AR10d

Figure 4: Context-Insensitive Predictors Used
.4. Predictors Used

In our initial experiments presented in Section 6 we
sed a set of 30 predictors over our data sets: 15 predictors
ach over the entire data set ignoring the context-sensitive
actor of data-transfer size, and the same 15 using previous
ata partitioned by file size. These predictors are summarized
 Figure 4. Of course, many other variants for predictors are

ossible [11, 36, 42]. Also, rather than choosing just a single
rediction technique, we could also evaluate a number of them
nd choose the most appropriate one on the fly, as is done by
e NWS.

5. Delivery Infrastructure

Gathering the data is just the first step in building a
service to provide predictions for replica selection. The second
step, discussed in Section 4, is predicting future behavior
based on past information. The third step, described in this
section, is defining object classes, integrating this information
with a resource provider, and then allowing this information to
be discovered in the context of an information service.
Within the Globus Toolkit, the information infrastructure is
handled by MDS-2 [9]. This service provides a configurable
information provider component called a Grid Resource
Information Service (GRIS) and a configurable aggregate
directory component called a Grid Index Information Service
(GIIS). These components interact with each other and higher-
level services (or users) using two basic protocols: a soft-state
registration protocol for identifying entities participating in the
information service, and an inquiry protocol for retrieval of
information about those entities. In brief, a GRIS uses the
registration protocol to notify a GIIS (or other higher-level
service) of its existence; a GIIS uses the inquiry protocol to
obtain information from the known to that provider, which it
merges into an aggregate view. This is shown in Figure 5.

Any information provided by a sensor, or information
provider, can be used as part of this framework by
communicating to a GRIS using a well-defined API. The
GRIS and GIIS use the Lightweight Directory Access Protocol
(LDAP) [25]. They publish information in LDIF and
categorize it under different object classes (comprising
multiple attributes and their associated values) as part of the
defined schema.

II
Inquiry

Registration

R R R

Figure 5: Depicts index servers, GIIS (I), with
registered resources, GRIS (R). GRIS, R consists of
various information providers (such as the GridFTP
performance information provider) registered with it.
Depicts user inquiries to GIIS on performance
information.

GridFTP Information Provider Output
dn:"140.221.65.69,
hostname=dpsslx04.lbl.gov,dc=lbl,dc=gov,o=grid"
cn:"140.221.65.69"
hostname:"dpsslx04.lbl.gov"
gridftpurl:"gsiftp://dpsslx04.lbl.gov:61000"
minrdbandwidth:1462K
maxrdbandwidth:12800K
avgrdbandwidth:6062K
avgrdbandwidthtenmbrange:5714K
………………………………

5.1. GridFTP Information Provider

For the GridFTP monitoring data, we built an
information provider that accesses the log data to advertise a
set of recent measurements as well as some summary statistic
data. To generate statistical information on transfers, we
developed LDAP shell-backend scripts to filter the information
in the logs. In addition, we developed schemas [16] for this
data.

Figure 6 presents a fragment of the output from a
GridFTP information provider (details include: prediction
information, GridFTP server and port information, etc.).
Combined, these enable a GridFTP performance information
provider to process logs by building schemas and scripts to
publish statistical information. Replica locations (sites running
GridFTP servers) publish such performance information using
GRIS servers.

From our preliminary experiments, a log of
approximately 100 KB, around 700 log entries, took the
information provider approximately 1 to 2 seconds to filter,
classify the entries into object classes, and compute
predictions.

6. Experimental Results

Figure 6: A fragment of the output from the GridFTP
performance information provider registered with the
GRIS at LBL.

We evaluated the thirty predictors (described in

Section 4) on log files obtained from GridFTP transfers on a
testbed of three sites: Argonne National Laboratory (ANL), the
University of Southern California Information Sciences
Institute (ISI), and Lawrence Berkeley National Laboratory
(LBL). The results are presented in this section.

6.1. Log files Generation and Preprocessing

The datasets are derived from two GridFTP log files,
each containing transfer data collected over a two-week period,
one during August and the other during December 2001. Each
data set examined transfers over two wide area links: LBL to
ANL and ISI to ANL. Each log file contains approximately
350 to 450 transfers. Logs were generated using controlled
GridFTP experiments that were performed daily from 6 pm to
8 am CDT, selecting a random file size from the set {1M, 2M,
5M, 10M, 25M, 50M, 100M, 150M, 250M, 400M, 500M,
750M, 1G} and randomly sleeping from 1 minute to 10 hours
between file transfers. Figure 7 show how many values were

obtained for each file classification size (as discussed in
Section 4.3). Traces of log data can be obtained from [15].

Each data transfer was performed by using tuned TCP
buffer settings and with parallel streams. GridFTP provides
mechanisms to set TCP buffer sizes for transfers. In general,
good buffer sizes can be calculated using the formula:

RTT * "bottleneck bandwidth in the link"
 with RTT values obtained from ping, and bottleneck
bandwidth obtained using a tool such as iperf [39]. For our
experiments, we used a buffer size of 1MB and eight parallel
flows.

For each data set and predictor, we used a 15-value
training set; that is, we assumed that at the start of a predictive
technique there were at least 15 values in the log file. This
number does not imply, in the case of using context-sensitive
information, that there were 15 relevant values, only that there
were 15 values in the logs to begin to work with.

6.2. S

I
computin
and actua
with refe
without
significan
results u
graphs, p
and Dece

W
percentag

((|M
Figures 8
error for
ISI-ANL
the graph
datasets.

T
simple te
respectab
specifical

when we sort the data by file size and use a file of at least 100
MB. Figures 12 and 13 compare error rates of predictors in the
context-sensitive and context-insensitive cases. In general,
large file transfers seem to be more predictable than smaller
file transfers.

We also measured the relative performance of these
15 predictors by computing the best and worst predictor for
each data transfer. Figures 14 through 21 illustrate these
results. On average, predictors that had high best percentage
also performed poorly more often, thus nullifying any
improvement, although median-based predictors seemed to
vary more. Of note is the fact that the ARIMA models do not
see improved performance for our data, although they are
significantly more expensive. This is likely due to the irregular
nature of our data. In addition, for our data sets, we did not see
a noticeable advantage in limiting either average or median
techniques by sliding window or time frames. This result,
however, is likely due to the controlled experimental nature of
our data.

Figu
trans
Aug

 August December
All LBL 450 365
 ISI 432 334
10 MB LBL 168 134
 ISI 162 94
100 MB LBL 112 82
 ISI 108 87
500 MB LBL 112 82
 ISI 108 87
1 GB LBL 58 67
 ISI 54 66

re 7: Total GridFTP transfers and
fers in terms of file size classification for

ust and December 2001 datasets.
ummary of Results

n this section, we analyze our predictions by
g absolute percentage error (difference in predicted
l measured value), relative performance of predictors
rence to one another and compare error rates with and
file classification. Since there was no statistical
ce between the two data sets, we illustrate all our

sing the August 2001 datasets. A complete set of
ercentage error tables, and logs, for both the August
mber 2001 datasets can be found at [15].

e calculate the prediction accuracy using the
e error calculation:
easuredBW – PredictedBW|)/MeasuredBW) *100

 through 11 show bar charts of percentage absolute
our 15 predictors for transfers between LBL-ANL and
 with various file-size groupings. For each predictor
 depicts the corresponding error in both LBL and ISI

he major result from these predictions is that even
chniques are “at worst”, off by about 25%, quite
le for pragmatic prediction systems. More
ly, we see a marked improvement in predictions

Figure 8: Percent error rates of predictors for
LBL-ANL and ISI-ANL 10MB ranges.

 Figure 9: Percent error rates of predictors for

LBL-ANL and ISI-ANL 100MB ranges.

Figure 10: Percent error rates of predictors for
LBL-ANL and ISI-ANL 500MB ranges.

Figure 11: Percent error rates of predictors for
LBL-ANL and ISI-ANL 1GB ranges.

 Figure 12: Impact of classification and the
reduction in percent error rates for LBL-ANL.

Figure 13: Impact of classification and the
reduction in percent error rates for ISI-ANL.

Figure 14: Relative performance of predictors
for ISI-ANL 10MB ranges.

Figure 15: Relative performance of predictors
for ISI-ANL 100MB ranges.

Figure 16: Relative performance of predictors
for ISI-ANL 500MB ranges.

Figure 19: Relative performance of predictors
for LBL-ANL 100MB ranges.

Figure 17: Relative performance of predictors
for ISI-ANL 1GB ranges.

Figure 20: Relative performance of predictors
for LBL-ANL 500MB ranges.

 Figure 18: Relative performance of predictors

for LBL-ANL 10MB ranges.

Figure 21: Relative performance of predictors
for LBL-ANL 1GB ranges.

7. Conclusions and Future Work

In this paper we have described a technique that takes
a step toward resolving the file replica selection problem. We
detailed a monitor for GridFTP file transfer behavior,
discussed several possible predictive techniques, and showed
how data related to this is made accessible as part of the
Globus Toolkit information service MDS by means of an
information provider that uses GRIS/GIIS components.

Since our work with predictions was inconclusive, our
future work will include using additional prediction
techniques, as well as the possibility of using the NWS
dynamic selection techniques. In addition, we plan to
investigate using both basic predictions on the sporadic data
combined with more regular NWS measurements and
predictions for small regular data movement to overcome the
drawbacks of each approach in isolation. Further, to extend the
usability of these approaches, we plan to experiment with
techniques that will let us extrapolate data when there is no
previous transfer data between two sites [13], or to leverage off
of other available data in these settings.

Acknowledgments

Many thanks to the Globus Project™ team, especially
Bill Allcock. This work was supported in part by the
Mathematical Information and Computational Sciences
Division Subprogram of the Office of Advanced Scientific
Computing Research, U.S. Department of Energy, under
contract W-31-109-Eng-38, and by NSF Awards ACI-
00933000 and PACI#763-04/ACI-9619019.

References

[1] V.S. Adve, Analyzing the Behavior and Performance of Parallel
Programs, PhD Thesis, Technical Report TR1201, Department of
Computer Science, University of Wisconsin, December 1993.

[2] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C.
Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke,
Secure, Efficient Data Transport and Replica Management for High-
Performance Data-Intensive Computing, IEEE Mass Storage
Conference, 2001.

[3] W. Allcock, I. Foster, V. Nefedova, A. Chevrenak, E. Deelman, C.
Kesselman, A. Sim, A. Shoshani, B. Drach, and D. Williams, High-
Performance Remote Access to Climate Simulation Data: A
Challenge Problem for Data Grid Technologies, Proceedings of
Supercomputing (SC’01), November, 2001.

[4] S. Basu, A. Mukherjee, and S. Kilvansky, Time Series Models for
Internet Traffic, Technical report GIT-CC-95-27, Georgia Institute of
Technology, 1996.

[5] N. Cardwell, S. Savage, and T. Anderson, Modeling the
Performance of Short TCP Connections, Technical report, Computer
Science Department, Washington University, November 1998.

[6] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S.
Tuecke, The Data Grid: Towards an Architecture for the Distributed
Management and Analysis of Large Scientific Datasets, Journal of
Network and Computer Applications, 23:187-200, 2001.

[7] M. Cole, Algorithmic Skeletons: Structured Management of
Parallel Computation, Pitman/MIT Press, 1989.

[8] M.E. Crovella, Performance prediction and tuning of parallel
programs, PhD Thesis, University of Rochester, 1999.

[9] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, Grid
Information Services for Distributed Resource Sharing, Proceedings
of the Tenth IEEE International Symposium on High-Performance
Distributed Computing (HPDC-10), IEEE Press, August 2001.

[10] The Data Grid Project, http://www.eu-datagrid.org.

[11] P. Dinda and D. O'Hallaron, Host Load Prediction Using Linear
Models, Cluster Computing, Volume 3, no. 4, 2000.

[12] A. Downey, Queue Times on Space-Sharing Parallel Computers,
Proceedings of the 11th International Parallel Processing Symposium,
1997.

[13] M. Faerman Alan Su, Rich Wolski, and Francine Berman,
Adaptive Performance Prediction for Distributed Data-Intensive
Applications, Proceedings of the ACM/IEEE SC99 Conference on
High Performance Networking and Computing, Portland, Oregon,
November 1999.

[14] I. Foster and C. Kesselman, The Globus Project: A Status Report,
Proceedings of IPPS/SPDP '98 Heterogeneous Computing Workshop,
pp. 4–18, 1998.

[15] GridFTP predictor Trace Data,
http://www.mcs.anl.gov/~vazhkuda/Traces.

[16] GridFTP Information Provider Schema,
http://www.mcs.anl.gov/~vazhkuda/Schema.

[17] N. Groschwitz and G. Polyzos, A Time Series Model of Long-
Term Traffic on the NSFnet Backbone, Proceedings of the IEEE
Conference on Communications (ICC’94), May 1994.

[18] The GriPhyN Project, http://www.griphyn.org.

[19] L. Guo and I. Matta, The War between Mice and Elephants,
Technical report BU-CS-2001-005, Computer Science Department,
Boston University, May 2001.

[20] R. Haddad and T. Parsons, Digital Signal Processing: Theory,
Applications, and Hardware, Computer Science Press, 1991.

[21] M. Hafeez, A. Samar, and H. Stockinger, A Data Grid Prototype
for Distributed Data Production in CMS, 7th International
Workshop on Advanced Computing and Analysis Techniques
in Physics Research (ACAT2000), October 2000.

[22] M. Harchol-balter and A. Downey, Exploiting Process Lifetime
Distributions for Dynamic Load Balancing, Proceedings of the 1996

http://www.eu-datagrid.org/
http://www.mcs.anl.gov/~vazhkuda/Traces
http://www.mcs.anl.gov/~vazhkuda/Schema
http://www.griphyn.org/

Sigmetrics Conference on Measurement and Modeling of Computer
Systems, 1996.

[23] K. Holtman, Object Level Replication for Physics, Proceedings
of 4th Annual Globus Retreat, Pittsburgh, July 2000.

[24] W. Hoschek, J. Jaen-Martinez, A. Samar, and H. Stockinger,
Data Management in an International Grid Project, 2000 International
Workshop on Grid Computing (GRID 2000), Bangalore, India,
December 2000.

[25] T.A. Howes and M.C. Smith, LDAP Programming Directory-
Enabled Application with Lightweight Directory Access Protocol.
Technology Series, Macmillan, 1997.

[26] The LIGO Experiment, http://www.ligo.caltech.edu/.

[27] V. W. Mak and S. F. Lundstrom, Predicting the Performance of
Parallel Computations, IEEE Transactions on Parallel and Distributed
Systems, pp. 106–113, IEEE Computer Society Press, July, 1990.

[28] D. Malon, E. May, S. Resconi, J. Shank, A. Vaniachine, T.
Wenaus, and S. Youssef, Grid-enabled Data Access in the ATLAS
Athena Framework, Proceedings of Computing and High Energy
Physics 2001 (CHEP’01) Conference, 2001.

[29] Mark J. Clement and Michael J. Quinn, Analytical Performance
Prediction on Multicomputers, Proceedings of SuperComputing '93,
1993.

[30] NetLogger: A Methodology for Monitoring and Analysis of
Distributed Systems, http://www-didc.lbl.gov/NetLogger.

[31] H. Newman and R. Mount, The Particle Physics Data Grid,
www.cacr.caltech.edu/ppdg.

[32] A. Samar and H. Stockinger, Grid Data Management Pilot
(GDMP): A Tool for Wide Area Replication, IASTED International
Conference on Applied Informatics (AI2001), Innsbruck, Austria,
February 2001.

[33] J. M. Schopf and F. Berman, Performance Prediction in
Production Environments, Proceedings of IPPS/SPDP '98, 1998.

[34] J.M. Schopf, Structural Prediction Models for High Performance
Distributed Applications, Proceedings of the Cluster Computing
Conference (CCC '97), March 1997.

[35] X. Shen and A. Choudhary, A Multi-Storage Resource
Architecture and I/O, Performance Prediction for Scientific
Computing, Proceedings of the 9th IEEE Symposium on High
Performance Distributed Computing, pp. 21–30. IEEE-Press, 2000.

[36] W. Smith, I. Foster, and V. Taylor, Predicting Application Run
Times Using Historical Information, Proceedings of the IPPS/SPDP
'98 Workshop on Job Scheduling Strategies for Parallel Processing,
1998.

[37] A. Thomasian and P. F. Bay, Analysis Queuing Network Models
for Parallel Processing of Task Systems, IEEE Transactions on
Computers c-35 12, December 1986.

[38] I. Terekhov, R. Pordes, V. White, L. Lueking, L. Carpenter, H.
Schellman, J. Trumbo, S. Veseli, and M. Vranicar, Distributed Data
Access and Resource Management in the D0 SAM System,
Proceedings of HPDC 2000, San Francisco, August 2000.

[39] A. Tirumala, J. Ferguson, Iperf 1.2 – The TCP/UDP Bandwidth
Measurement Tool, http://dast.nlanr.net/Projects/Iperf/, May 2001.

[40] Universal Format for Logger Messages, http://www-
didc.lbl.gov/NetLogger/draft-abela-ulm-05.txt.

[41] S. Vazhkudai, S. Tuecke, and I. Foster, Replica Selection in the
Globus Data Grid, Proceedings of the First IEEE/ACM International
Conference on Cluster Computing and the Grid (CCGRID 2001), pp.
106–113, IEEE Computer Society Press, May 2001.

[42] R. Wolski, Dynamically Forecasting Network Performance
Using the Network Weather Service, Journal of Cluster Computing,
Volume 1, pp. 119-132, January, 1998.

[43] S. Yilmaz and I. Matta, On Class-based Isolation of UDP, Short-
lived and Long-lived TCP Flows, Technical report BU-CS-2001-011,
Computer Science Department, Boston University, June 2001.

[44] M.J. Zaki, W. Li, and S. Parthasarathy, Customized Dynamic
Load Balancing for Network of Workstations, Proceedings of
HPDC’96, 1996.

[45] Y. Zhang, L. Qiu, and S. Keshav, Speeding Up Short Data
Transfers: Theory, Architecture Support, and Simulation Results,
Proceedings of NOSSDAV 2000, Chapel Hill, N.C., June 2000.

 [46] Y. Zhang. L. Qiu, and S. Keshav, Optimizing {TCP} Start-up
Performance, Technical report TR99-1731, Department of Computer
Science, Cornell University, 1999.

http://www.ligo.caltech.edu/
http://www-didc.lbl.gov/NetLogger
http://www.cacr.caltech.edu/ppdg
http://dast.nlanr.net/Projects/Iperf/
http://www-didc.lbl.gov/NetLogger/draft-abela-ulm-05.txt
http://www-didc.lbl.gov/NetLogger/draft-abela-ulm-05.txt

