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Abstract 
 

As Data Grids become more commonplace, large 
data sets are being replicated and distributed to multiple sites, 
leading to the problem of determining which replica can be 
accessed most efficiently.   The answer to this question can 
depend on many factors, including physical characteristics of 
the resources and the load behavior on the CPUs, networks, 
and storage devices that are part of the end-to-end path 
linking possible sources and sinks.   

We develop a predictive framework that combines (1) 
integrated instrumentation that collects information about the 
end-to-end performance of past transfers, (2) predictors to 
estimate future transfer times, and (3) a data delivery 
infrastructure that provides users with access to both the raw 
data and our predictions.  We evaluate the performance of our 
predictors by applying them to log data collected from a wide 
area testbed.  These preliminary results provide insights into 
the effectiveness of using predictors in this situation. 
 
Keywords: Grids, data transfer prediction, replica selection, 
information services. 
 
1. Introduction 
 

As the coordinated use of distributed resources, or 
Grid computing, becomes more commonplace, basic resource 
usage is changing. Many recent applications use Grid systems 
as distributed data stores [10, 18, 21, 26, 28, 31, 38] where 
pieces of large data sets are replicated over several sites.  For 
example, several high-energy physics experiments have agreed 
on a tiered Data Grid architecture [23, 24] in which all data 
(approximately 20 petabytes by 2006) is located at a single 
Tier 0 site; various (overlapping) subsets of this data are 
located at national Tier 1 sites, each with roughly one-tenth the 
capacity; smaller subsets are cached at smaller regional Tier 2 
regional sites; and so on.  Therefore, any particular data set is 
likely to have replicas located at multiple sites.  

Different sites may have varying performance 
characteristics because of diverse storage system architectures, 
network connectivity features, or load characteristics.  Thus, 
users (or brokers acting on their behalf) may want to be able to 

determine the site from which particular data sets can be 
retrieved most efficiently, especially as data sets of interest 
tend to be large (1–1000 MB).  It is this replica selection 
problem that we address in this paper. 

Since large file transfers can be costly, there is a 
significant benefit in selecting the most appropriate replica for 
a given set of constraints [6, 41]. One way a more intelligent 
replica selection can be achieved is by having replica locations 
expose performance information about past data transfers. This 
information can, in theory, provide a reasonable approximation 
of the end-to-end throughput for a particular transfer. It can 
then be used to make predictions about the future behavior 
between the sites involved. 

We develop a predictive framework that combines 
three elements: (1) an integrated instrumentation of a high-
performance data server (the Globus GridFTP [2] file transfer 
service) to record performance information for each file 
transfer that it performs, (2) predictors to estimate future 
transfer times, and (3) a data delivery infrastructure building 
off of the Globus Metacomputing Directory Service (MDS) [9] 
to provide users with access to both the raw data and our 
predictions. In the remainder of this paper, we describe these 
three aspects of our system and then present the results of 
experimental studies in which we evaluate the effectiveness of 
using predictors in this situation. We conclude with a 
discussion of future work. 
  
2. Related Work 
 

The goal of this work is to be able to obtain an 
accurate prediction of the time required to transfer a large file 
(10MB to 1GB) between a storage system and a client.  
Achieving this goal can be challenging since numerous devices 
are involved in the end-to-end path between the source and the 
client, and the performance of each (shared) device along the 
end-to-end path may vary in unpredictable ways. 

One approach to replica selection is to construct 
performance models for each system component (CPUs at the 
level of cache hits and disk access, networks at the level of the 
individual routers, etc.) and then use these models to determine 
a schedule for all data transfers [35].  This approach is widely 
used in classical scheduling, where the resources are typically 



CPUs, not network components, and the action is running a 
task, not transferring a file [1, 7, 8, 27, 29, 34, 37, 44]. In 
practice, however, system components are neither dedicated to 
our use nor under our full control. Hence, their behavior can 
vary in unpredictable ways as a result of competing traffic and 
load, unmodeled interactions, or the lack of available data [33]. 

A promising alternative to system characterization is 
to use observations of past application performance of the 
entire system, not on a component-by-component level, to 
construct predictions of future performance. The use of whole-
system observation has three relevant properties for our 
purposes.  First, we can construct such predictions without 
detailed knowledge of the underlying physical devices.  
Second, these predictions can, in principle, capture both 
evolution in system configuration and temporal patterns in 
load.  Third, such predictions are for end-to-end behavior, 
which is typically what is of interest to the user.  This 
technique is used by the Network Weather Service (NWS) [42] 
and by NetLogger [30] to predict network (for small file 
transfers) or CPU behavior, and by Downey [12] and Smith 
[36] to predict queue wait times.  

We analyzed using NWS data for our own 
predictions. However, since the NWS was intended as a 
lightweight infrastructure and to have very little overhead, it 
generally uses small file sizes (the default is 64 KB with 
standard TCP buffer sizes) to determine network performance. 
In many cases this can be predictive of larger file transfers, but 
not for the setting we are examining with the large file sizes 
and possible parallelism associated with typical Grid data 
transfers. 

Figures 1 and 2 illustrate the differences in 
performance that can arise between a small NWS probe and an 
actual file transfer using GridFTP, the file transfer service of 
the Globus Toolkit™ These two figures plot (in logarithmic 
scale) the performance measured in a set of controlled 
experiments with NWS probes and GridFTP transfers over a 
two-week period between two pairs of sites.  Each figure 
shows approximately 1,500 NWS probes, conducted every five 
minutes, and approximately 400 GridFTP transfers at irregular 
intervals. This data is available at [15]. 
 

The NWS measurements indicate network bandwidth 
to be less than 0.3 MB/sec, while end-to-end GridFTP had a 
significantly higher transfer rate.  More problematic, however, 
we see considerably greater variability in the GridFTP 
measurements, ranging from 1.5 to 10.2 MB/sec in both cases, 
showing that simple data transformations will not improve its 
predictive merits for this application.  The NWS measurements 
are not the right tool to use, quantitatively or qualitatively, for 
accurate estimates of GridFTP costs.   
 

3. Monitoring GridFTP Performance 
 
As stated earlier, the end-to-end data path consists of 

several shared devices, including networks, CPUs, and storage 
systems. However, using predictive techniques on large file 
transfers can be complicated by the fact that often storage 
systems are less amenable to “law of large numbers” 
arguments than are wide area networks or CPUs, for example. 
No longer does one additional flow or task have an 
insignificant effect on overall performance.  

Because of this, we need to measure the entire 
transfer function, not just the transport as in other work. To 
this end, we instrumented the Globus Toolkit™ GridFTP 
server [6] to record the performance achieved for every data 
transfer in an end-to-end way.  This information, along with 
metadata indicating the nature of the transfer, serves as the 
input to our predictors.   

Figure 2:  LBL-ANL GridFTP end-to-end
bandwidth and NWS probe bandwidth 

The use of actual data transfers to collect performance 
information, rather than synthetic probes, gives us more 
accurate data for the full function and imposes no additional 
probing overhead.  The downside is that we have no control 
over the intervals at which data is collected. This situation can 
limit the predictive techniques that apply to the data, as 
detailed in Section 4. In principle, our system could be 
extended to perform file transfer probes at regular intervals for 
the sake of gathering data about the performance, and not for 
transferring useful data, but we do not consider that approach 
here. 

Figure 1: ISI-ANL GridFTP end-to-end bandwidth
and NWS probe bandwidth 



GridFTP [3] is part of the Globus Toolkit™  [14] and 
is widely used as a secure, high-performance data transfer 
protocol [3, 6, 10, 18, 32]. It extends standard FTP 
implementations with several features needed in Grid 
environments, such as security on control and data channels, 
multiple data channels for parallel transfers, partial file 
transfers, and third party transfers. GridFTP consists of two 
modules: the control, or server, module and the client module. 
The server module manages connection, authentication, 
creation of control and data channels (separate control and data 
channels facilitate parallel transfers), and reading and writing 
data The client module is responsible for higher-level 
operations such as file get and put operations or partial 
transfers. 

We instrumented the GridFTP server by adding 
mechanisms to log performance information for every file 
transfer, and this is available a service to any user of the 
Globus Toolkit™ 2.0 beta version.  We added no new 
capabilities to GridFTP itself; we merely record the data and 
time the transfer operation. Log entries include source address, 
file name, file size, number of parallel streams, TCP buffer 
size for the transfer, start and end timestamps, total time 
consumed by the transfer, aggregate bandwidth achieved for 
the transfer, nature of the operation (read or write), and logical 
volume to and from which file was transferred.  A sample log 
is shown in Figure 3. 

The monitoring code is nonintrusive, major overhead 
being in timing routines, with a smaller percentage spent 
gathering the information mentioned above and performing a 
write operation. The entire logging process consumes on 
average approximately 25 milliseconds per transfer, which is 
insignificant compared with the total transfer time. 

We log data to a standard location in the file system 
hierarchy and use a single log file for all transfers made to and 
from the server. Entries are logged in the Universal Logging 
Format (ULM) “Keyword=Value” format [40].  Each log entry 
is well under 512 bytes. Transfer logs can grow quickly in size 
at a busy site. Since old data has less relevance to predictions, 
we can trim logs based on a running window, as is done in the 
NWS. An alternative strategy used by NetLogger is to flush 
the logs to persistent storage (either disk or network) and 
restart logging. We are exploring these strategies for future 
GridFTP logs. 

4. Prediction Techniques 

Source IP File Name File Size 
(Bytes) 

Volume StartTime 
(Timestamp) 

EndTime 
(Timestamp) 

TotalTime 
(Seconds) 

Bandwidth 
(KB/Sec) 

Read/Write Streams TCP-
Buffer 

140.221.65.69 /home/ftp/vazhkuda/10 MB 10240000  /home/ftp 998988165 998988169 4 2560 Read 8 1000000 
140.221.65.69 /home/ftp/vazhkuda/25 MB 25600000 /home/ftp 998988172 998988176 4 6400 Read 8 1000000 
140.221.65.69 /home/ftp/vazhkuda/50 MB 51200000 /home/ftp 998988181 998988190 9 5688 Read 8 1000000 
140.221.65.69 /home/ftp/vazhkuda/100 MB 102400000 /home/ftp 998988199 998988221 22 4654 Read 8 1000000 
140.221.65.69 /home/ftp/vazhkuda/250 MB 256000000 /home/ftp 998988224 998988256 33 8000 Read 8 1000000 
140.221.65.69 /home/ftp/vazhkuda/500 MB 512000000 /home/ftp 998988258 998988335 67 7641 Read 8 1000000 
140.221.65.69 /home/ftp/vazhkuda/750 MB 768000000 /home/ftp 998988338 998988425 97 7917 Read 8 1000000 
140.221.65.69 /home/ftp/vazhkuda/1 GB 1024000000 /home/ftp 998988428 998988554 126 8126 Read 8 1000000 
 

Figure 3: Sample set from a log of file transfers between Argonne and Lawrence Berkeley National
Laboratories. The bandwidth values logged are sustained measures through the transfer. The end-
to-end GridFTP bandwidth is obtained by the formula BW = File size / Transfer Time. 

 
Simply collecting the data from the GridFTP monitor 

is not sufficient to make a replica selection decision. In most 
cases, a prediction of future behavior is needed, not just a 
recitation of past behavior. In this section we briefly describe 
some of the predictors we developed, categorize possible 
approaches by basic mathematical techniques, context-
insensitive filtering (using only the last five measurements, for 
example), and context-sensitive filtering (for example 
choosing only to use data for similarly sized file transfers). We 
detail the pros and cons of each technique and then describe 
the set of predictors we use for our data. 
 
4.1. Basic Mathematical Functions  
 

Mathematical functions for predictions are generally 
grouped into three categories: mean-based, median-based, and 
auto-regression model techniques. We use several variations of 
all of these models in our experiments. 

Mean-based, or averaging, techniques are a standard 
class of predictors that use arithmetic averaging (as an estimate 
of the mean value) over some portion of the measurement 
history to estimate future behavior.  The general formula for 
these techniques is the sum of the previous n values over the 
number of measurements. Mean-based predictors vary with the 
amount of history information used in their calculations and 
the amount of weight put on each value. For example, a total 
average uses the entire set of history data with each value 
weighted equally, but if more recent behavior has better 
predictive value, then a subset of the data is used. We discuss 
these variations in the subsequent section. 

A second class of standard predictors is based on 
evaluating the median of a set of values.  Given an ordered list 
of t values, if t is odd, the median is the (t+1)/2 value; if t is 
even, the median is half of the t/2 value added with the (t+1)/2 
value. Median-based predictors are particularly useful if the 
measurements contain randomly occurring asymmetric outliers 
that are rejected. However, they lack some of the smoothing 
that occurs with a mean-based method, possibly resulting in 
forecasts with a considerable amount of jitter [20]. 

 
 



A third class of common predictors is auto-regressive 
models [17, 20, 42]. We use an Auto-regressive Integrated 
Moving Average (ARIMA) model technique that is 
constructed using the equation:  

Yt = a + bYt-1,  
where Yt is the prediction for time, t, Yt-1 is the previous data 
occurrence and a and b are the regression coefficients that are 
computed based on past occurrences of Y. The standard 
equation includes a shock term, which is not needed in this 
case. 

 This approach is most appropriate when there are at 
least 50 measurements and the data is measured with equally 
spaced time intervals, which we obviously do not have but we 
still examine this common technique. The main advantage of 
using an ARIMA model is that it gives a weighted average of 
the past values of the series thereby possibly giving a more 
accurate prediction. However it needs a larger data set than the 
previous techniques to achieve a statistically significant result, 
and can have a much greater computational cost. 
 
4.2. Context-Insensitive Factors 
 

More recent values are often better predictors of 
future behavior than an entire data set, no matter which 
mathematical technique is used to calculate a prediction. 
Hence, there are many different variants in selecting a set of 
recent measurements to use in a prediction calculation. 

The fixed-length, or sliding window, average is 
calculated by using only a set number of previous 
measurements to calculate the average. The number of 
measurements can be chosen statically or dynamically 
depending on the system. We use only static selection 
techniques in this work. Options for dynamically selecting 
window size are discussed in [42]. 

The degenerative case of this strategy involves using 
only the last measurement to predict the future behavior. Work 
by Downey and Harchol-Balter [22] shows that this is a useful 
predictor for CPU resources, for example. 
Instead of selecting the number of recent measurements to use 
in a prediction, we also consider using only a set of 
measurements from a previous window of time. Unlike other 
systems where measurements are taken at regular intervals [11, 
42], our measurements can be spaced irregularly in time. Using 
temporal-windows for irregular samples can reflect trends 
more accurately than selecting a specific number of previous 
measurements because they capture recent fluctuations, 
thereby helping to ensure that recent (and, one hopes, more 
predictive) data is used. Much as the number of measurements 
included in a prediction can be selected dynamically, the 
window of time used can be decided dynamically.  

As shown in Figure 4, we use fixed-length sets of the 
last 1 (last value), 5, 15, and 25 measurements. We use 
temporal-window sets of data of the last 5 hours, 15 hours, 25 
hours, 5 days, and 10 days. We consider both mean-based and 
median-based predictors over previous n measurements; mean-
based predictors over the previous 5, 15, and 25 hours; and an 

ARIMA model technique over the previous 5 and 10 days, 
since this function requires a much larger data set to produce 
accurate predictions than our other techniques. 
 
4.3. Context-Sensitive Factors 
 

Filtering a data set to eliminate unrelated values often 
results in a more accurate prediction. For example, a prediction 
of salary is more accurate when factors such as previous 
training, education, and years at the position are used to limit 
the data set of interest. 

With the GridFTP monitoring data, initial results 
showed that file transfer rates had a strong correlation with file 
size. Studies of Internet traffic have also revealed that small 
files achieve low bandwidths whereas larger files tend to have 
high bandwidths [4, 5, 19]. This difference is thought to be 
primarily due to the startup overhead associated with the TCP 
start mechanism that probes the bandwidth at connection 
startup. Recent work has focused on class-based isolation of 
TCP flows [43] and on startup optimizations [45, 46] to 
mitigate this problem.  As a proof of concept, we found 5–10 
percent improvement on average when using file-size 
classification instead of the entire history file to calculate a 
prediction. This is shown in Figures 12 and 13, and discussed 
in Section 6. 

For our GridFTP transfer data we ran a series of tests 
between our testbed sites to categorize the data sizes into a 
small number of classes. We categorized our data into four 
sets: 0–50 MB, 50–250 MB, 250–750 MB and more than 750 
MB based on the achievable bandwidth. We note that these 
classes apply to the set of hosts for our testbed only; further 
work is needed to generalize this notion. 
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Last 1 Value LV   
Last 5 Values AVG5 MED5  
Last 15 Values AVG15 MED15  
Last 25 Values AVG25 MED25  
Last 5 Hours AVG5hr   
Last 15 Hours AVG15hr   
Last 25 Hours AVG25hr   
Last 5 Days   AR5d 
Last 10 Days   AR10d 

Figure 4: Context-Insensitive Predictors Used
.4. Predictors Used 

In our initial experiments presented in Section 6 we 
sed a set of 30 predictors over our data sets: 15 predictors 
ach over the entire data set ignoring the context-sensitive 
actor of data-transfer size, and the same 15 using previous 
ata partitioned by file size. These predictors are summarized 
 Figure 4.  Of course, many other variants for predictors are 

ossible [11, 36, 42]. Also, rather than choosing just a single 
rediction technique, we could also evaluate a number of them 
nd choose the most appropriate one on the fly, as is done by 
e NWS.  



 
5. Delivery Infrastructure 
 

Gathering the data is just the first step in building a 
service to provide predictions for replica selection. The second 
step, discussed in Section 4, is predicting future behavior 
based on past information. The third step, described in this 
section, is defining object classes, integrating this information 
with a resource provider, and then allowing this information to 
be discovered in the context of an information service.  
Within the Globus Toolkit, the information infrastructure is 
handled by MDS-2 [9].  This service provides a configurable 
information provider component called a Grid Resource 
Information Service (GRIS) and a configurable aggregate 
directory component called a Grid Index Information Service 
(GIIS). These components interact with each other and higher-
level services (or users) using two basic protocols: a soft-state 
registration protocol for identifying entities participating in the 
information service, and an inquiry protocol for retrieval of 
information about those entities. In brief, a GRIS uses the 
registration protocol to notify a GIIS (or other higher-level 
service) of its existence; a GIIS uses the inquiry protocol to 
obtain information from the known to that provider, which it 
merges into an aggregate view. This is shown in Figure 5. 

Any information provided by a sensor, or information 
provider, can be used as part of this framework by 
communicating to a GRIS using a well-defined API. The 
GRIS and GIIS use the Lightweight Directory Access Protocol  
(LDAP) [25]. They publish information in LDIF and 
categorize it under different object classes (comprising 
multiple attributes and their associated values) as part of the 
defined schema. 

II
Inquiry

Registration

R R R

Figure 5: Depicts index servers, GIIS (I), with
registered resources, GRIS (R). GRIS, R consists of
various information providers (such as the GridFTP
performance information provider) registered with it.
Depicts user inquiries to GIIS on performance
information. 

GridFTP Information Provider Output 
dn:"140.221.65.69, 
hostname=dpsslx04.lbl.gov,dc=lbl,dc=gov,o=grid" 
cn:"140.221.65.69" 
hostname:"dpsslx04.lbl.gov" 
gridftpurl:"gsiftp://dpsslx04.lbl.gov:61000" 
minrdbandwidth:1462K 
maxrdbandwidth:12800K 
avgrdbandwidth:6062K 
avgrdbandwidthtenmbrange:5714K 
……………………………… 

 
5.1. GridFTP Information Provider 
 

For the GridFTP monitoring data, we built an 
information provider that accesses the log data to advertise a 
set of recent measurements as well as some summary statistic 
data. To generate statistical information on transfers, we 
developed LDAP shell-backend scripts to filter the information 
in the logs. In addition, we developed schemas [16] for this 
data. 

Figure 6 presents a fragment of the output from a 
GridFTP information provider (details include: prediction 
information, GridFTP server and port information, etc.). 
Combined, these enable a GridFTP performance information 
provider to process logs by building schemas and scripts to 
publish statistical information. Replica locations (sites running 
GridFTP servers) publish such performance information using 
GRIS servers.  

From our preliminary experiments, a log of 
approximately 100 KB, around 700 log entries, took the 
information provider approximately 1 to 2 seconds to filter, 
classify the entries into object classes, and compute 
predictions.  
 

6. Experimental Results 

Figure 6: A fragment of the output from the GridFTP
performance information provider registered with the
GRIS at LBL.  

 
We evaluated the thirty predictors (described in 

Section 4) on log files obtained from GridFTP transfers on a 
testbed of three sites: Argonne National Laboratory (ANL), the 
University of Southern California Information Sciences 
Institute (ISI), and Lawrence Berkeley National Laboratory 
(LBL).  The results are presented in this section. 
 
6.1. Log files Generation and Preprocessing  
 

The datasets are derived from two GridFTP log files, 
each containing transfer data collected over a two-week period, 
one during August and the other during December 2001. Each 
data set examined transfers over two wide area links: LBL to 
ANL and ISI to ANL. Each log file contains approximately 
350 to 450 transfers. Logs were generated using controlled 
GridFTP experiments that were performed daily from 6 pm to 
8 am CDT, selecting a random file size from the set {1M, 2M, 
5M, 10M, 25M, 50M, 100M, 150M, 250M, 400M, 500M, 
750M, 1G} and randomly sleeping from 1 minute to 10 hours 
between file transfers. Figure 7 show how many values were 



obtained for each file classification size (as discussed in 
Section 4.3).  Traces of log data can be obtained from [15].  

Each data transfer was performed by using tuned TCP 
buffer settings and with parallel streams. GridFTP provides 
mechanisms to set TCP buffer sizes for transfers. In general, 
good buffer sizes can be calculated using the formula: 

RTT * "bottleneck bandwidth in the link" 
 with RTT values obtained from ping, and bottleneck 
bandwidth obtained using a tool such as iperf [39]. For our 
experiments, we used a buffer size of 1MB and eight parallel 
flows. 

For each data set and predictor, we used a 15-value 
training set; that is, we assumed that at the start of a predictive 
technique there were at least 15 values in the log file. This 
number does not imply, in the case of using context-sensitive 
information, that there were 15 relevant values, only that there 
were 15 values in the logs to begin to work with. 
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when we sort the data by file size and use a file of at least 100 
MB. Figures 12 and 13 compare error rates of predictors in the 
context-sensitive and context-insensitive cases.  In general, 
large file transfers seem to be more predictable than smaller 
file transfers.  

We also measured the relative performance of these 
15 predictors by computing the best and worst predictor for 
each data transfer. Figures 14 through 21 illustrate these 
results. On average, predictors that had high best percentage 
also performed poorly more often, thus nullifying any 
improvement, although median-based predictors seemed to 
vary more. Of note is the fact that the ARIMA models do not 
see improved performance for our data, although they are 
significantly more expensive. This is likely due to the irregular 
nature of our data. In addition, for our data sets, we did not see 
a noticeable advantage in limiting either average or median 
techniques by sliding window or time frames.  This result, 
however, is likely due to the controlled experimental nature of 
our data. 
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  August December 
All LBL 450 365 
 ISI 432 334 
10 MB LBL 168 134 
 ISI 162 94 
100 MB LBL 112 82 
 ISI 108 87 
500 MB LBL 112 82 
 ISI 108 87 
1 GB LBL 58 67 
 ISI 54 66 
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fers in terms of file size classification for 
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ummary of Results  

n this section, we analyze our predictions by 
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ce between the two data sets, we illustrate all our 

sing the August 2001 datasets. A complete set of 
ercentage error tables, and logs, for both the August 
mber 2001 datasets can be found at [15]. 

e calculate the prediction accuracy using the 
e error calculation:  
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our 15 predictors for transfers between LBL-ANL and 
 with various file-size groupings. For each predictor 
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he major result from these predictions is that even 
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le for pragmatic prediction systems.   More 
ly, we see a marked improvement in predictions 

 
 
 
 
 

Figure 8: Percent error rates of predictors for
LBL-ANL and ISI-ANL 10MB ranges. 

 
 Figure 9: Percent error rates of predictors for

LBL-ANL and ISI-ANL 100MB ranges.  



 
 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 
 

Figure 10: Percent error rates of predictors for
LBL-ANL and ISI-ANL 500MB ranges.
 

 

 
 

 
 
 
 

Figure 11: Percent error rates of predictors for
LBL-ANL and ISI-ANL 1GB ranges. 

 

 Figure 12: Impact of classification and the
reduction in percent error rates for LBL-ANL.  

 

Figure 13: Impact of classification and the
reduction in percent error rates for ISI-ANL.
 
Figure 14: Relative performance of predictors
for ISI-ANL 10MB ranges. 

 
Figure 15: Relative performance of predictors
for ISI-ANL 100MB ranges. 



 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

 
 
 
 

Figure 16: Relative performance of predictors
for ISI-ANL 500MB ranges. 

Figure 19: Relative performance of predictors
for LBL-ANL 100MB ranges. 

 
 

 
 
 
 
 

Figure 17: Relative performance of predictors
for ISI-ANL 1GB ranges. 

Figure 20: Relative performance of predictors
for LBL-ANL 500MB ranges. 

 

 
 Figure 18: Relative performance of predictors

for LBL-ANL 10MB ranges.  
 
 

Figure 21: Relative performance of predictors
for LBL-ANL 1GB ranges. 

 
 
 



7. Conclusions and Future Work 
 

In this paper we have described a technique that takes 
a step toward resolving the file replica selection problem.  We 
detailed a monitor for GridFTP file transfer behavior, 
discussed several possible predictive techniques, and showed 
how data related to this is made accessible as part of the 
Globus Toolkit information service MDS by means of an 
information provider that uses GRIS/GIIS components. 

Since our work with predictions was inconclusive, our 
future work will include using additional prediction 
techniques, as well as the possibility of using the NWS 
dynamic selection techniques. In addition, we plan to 
investigate using both basic predictions on the sporadic data 
combined with more regular NWS measurements and 
predictions for small regular data movement to overcome the 
drawbacks of each approach in isolation. Further, to extend the 
usability of these approaches, we plan to experiment with 
techniques that will let us extrapolate data when there is no 
previous transfer data between two sites [13], or to leverage off 
of other available data in these settings. 
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