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Abstract—DRAM is a precious resource in extreme-scale
machines and is increasingly becoming scarce, mainly due to
the growing number of cores per node. On future multi-petaflop
and exaflop machines, the memory pressure is likely to be so
severe that we need to rethink our memory usage models.
Fortunately, the advent of non-volatile memory (NVM) offers
a unique opportunity in this space. Current NVM offerings
possess several desirable properties, such as low cost and power
efficiency, but suffer from high latency and lifetime issues. We
need rich techniques to be able to use them alongside DRAM.

In this paper, we propose a novel approach for exploiting
NVM as a secondary memory partition so that applications
can explicitly allocate and manipulate memory regions therein.
More specifically, we propose an NVMalloc library with a suite
of services that enables applications to access a distributed
NVM storage system. We have devised ways within NVMalloc
so that the storage system, built from compute node-local
NVM devices, can be accessed in a byte-addressable fashion
using the memory mapped I/O interface. Our approach has
the potential to re-energize out-of-core computations on large-
scale machines by having applications allocate certain variables
through NVMalloc, thereby increasing the overall memory
capacity available. Our evaluation on a 128-core cluster shows
that NVMalloc enables applications to compute problem sizes
larger than the physical memory in a cost-effective manner.
It can bring more performance/efficiency gain with increased
computation time between NVM memory accesses or increased
data access locality. In addition, our results suggest that
while NVMalloc enables transparent access to NVM-resident
variables, the explicit control it provides is crucial to optimize
application performance.

I. INTRODUCTION

In the post-petascale era, scientific applications running

on leadership-class supercomputers are ever more hungry for

main memory. “Hero” jobs, running on O(100,000) cores,

consume O(100TB) of memory for their processing. For ex-

ample, a 100,000 core run of the GTS fusion application [29]

on the Jaguar machine (No. 3 on the current Top500 [26]

list) at Oak Ridge National Laboratory, consumes 200 TB

of memory (at 2 GB/core.) As we approach several hun-

dred petaflops or an exaflop, the memory requirements of

applications are only likely to get more intense.
DRAM is an expensive resource in the HPC landscape and

its provisioning consumes a significant portion of the multi-

million dollar supercomputer budget. While it may seem that

large-scale machines have a lot of memory, often to the tune

of hundreds of TBs (e.g., 360TB on Jaguar), problem sizes

attacked by modern HPC applications have been growing

fast as well. Further, the memory-to-FLOP ratio has been

steadily declining, from 0.85 for the No. 1 machine on

Top500 in 1997 to 0.01 for the projected exaflop machine

in 2018 [26], [19]. For example, the 2.5 petaflop Tianhe-1A

(current No. 2 on Top500) has around 229 TB of DRAM,

with a memory-to-FLOP ratio of 0.08. In addition, DRAM is

a significant contributor to the supercomputer power budget.

The shrinking memory/FLOP ratio can also be attributed

to the desire to cap the power budget for next generation

machines. Applications face the prospect of running wider

to account for the ever shrinking memory/node, thereby

incurring increased communication costs and, worse yet,

increased usage of supercomputer allocation, a precious

commodity mostly obtained through rigorous peer review.

The advent of non-volatile memory (NVM) devices, such

as solid state disks (SSDs) offers a tremendous opportunity

in such a setting. It is a well-known fact that flash technology

is already serving to bridge the performance gap between

DRAM and disk both in enterprise [16], [22], [5], [9] as

well as HPC [11], [21] domains. To this end, today’s large-

scale HPC machines are being equipped with SSDs on the

compute nodes. For example, the No. 5 machine in Top500

(Tsubame2) [26] has around 173 TB of total node-local SSD

storage. Similarly, Gordon [17] at SDSC is an SSD-based

data intensive cluster. We argue that NVM can also play a

significant role in extending memory capacity in extreme-

scale machines.

Flash technologies possess several features desired in

DRAM, including low cost, high power efficiency, and high

capacity. On the flip side, there are several other factors that

limit their use as a substitute for main memory, such as high

latency, access granularity, and limited lifetime. While the

holy grail of “universal memory” (UM) that can replace both

DRAM and NVM is still elusive [14], Mogul et al. propose

a hybrid memory scheme that seamlessly combines NVM

and DRAM with operating system support [15]. The premise

here is that in the event it is desirable to replace DRAM with

UM, the features of UM will require OS support. Even in



Table I

DEVICE CHARACTERISTICS. DEVICE PRICES ARE BASED ON CURRENT MARKET VALUES (OCTOBER 2011).

Device Type Interface Read Write Latency Cap. (GB) Cost ($)

Intel X25-E [1] SLC SATA 250MB/s 170MB/s 75us 32GB $589

Fusion IO ioDrive Duo [8] MLC PCIe 1.5GB/s 1.0GB/s <30us 640GB $15,378

OCZ RevoDrive [18] MLC PCIe 540MB/s 480MB/s - 240GB $531

Memory (DDR3-1600) SDRAM DIMM 12.8GB/s 12.8GB/s 10-14ns 16GB <$150

commodity and enterprise-class systems, such an approach

is still a long-term vision, let alone in the HPC landscape,

where DRAM is integral to application performance and

scalability.

Consequently, at the other end of the spectrum, we are

faced with the following approaches for the use of NVM

towards memory extension. First, the availability of node-

local NVM makes it feasible to re-enable virtual memory

on the compute node OS on extreme-scale machines (e.g.,

swapping to NVM). Traditionally, the OS on the tens of

thousands of compute nodes on these systems has swapping

turned off due to the absence of node-local disks. Since hard

disks are particularly failure-prone, large-scale machines are

usually not equipped with node-local scratch disks and are

instead provided with high-speed central scratch parallel

file systems. NVM offers several desirable features when

compared to disks, such as superior throughput, lower access

latency, and higher reliability due to the lack of mechanical

moving parts, making it much more likely to be adopted

as node-local storage. Although the access latency of a

traditional NVM device (e.g., SATA-based SSD) is several

orders of magnitude higher than DRAM, interfaces such

as PCIe (e.g., FusionIO and OCZ flash cards) offer much

lower latency (Table I.) Recent efforts [23], [12], [10],

[20] have adopted the integration of a flash store with the

Linux commodity OS virtual memory system as a means to

extend memory capacity. Similar strategies can potentially

be adopted for the optimized OS kernels running on HPC

machine’s compute nodes (e.g., Compute Node Linux).

Alternatively, a novel angle would be to expose the node-

local NVM explicitly as a secondary, but slower memory

partition for applications. While it is more complicated

than virtual memory integration of NVM, this approach can

offer better performance and a greater degree of control to

applications, in allowing them to explicitly manage the NVM

and dictate data placement. For instance, applications could

potentially use the memory partition for operations that ex-

ploit the inherent device strengths, e.g., by allocating “write-

once-read-many” variables onto the NVM. In particular, this

usage model would be extremely beneficial for applications

that conduct “out-of-core” computation.

The POSIX mmap() interface offers a viable way to

map files or devices into memory. Using such an interface,

sophisticated management structures can be built for the

efficient use of node-local NVM. However, a realistic de-

ployment scenario of NVM in future leadership machines

makes this a non-trivial problem. For example, we noted

earlier that PCIe connected SSDs offer lower latency and

higher throughput than a typical SATA connected SSD (Ta-

ble I). However, they are also expensive. Currently, a high-

end Fusion I/O PCIe MLC flash card (io Drive Duo) at 640

GB is priced around $15K and offers around 1.1-1.5 GB/s

read/write throughput, which is still at least 8.53 times

lower than DRAM rates (Table I). Other PCIe offerings

are cheaper, but provide further lower throughput. While

NVM prices are continuing to reduce, the scale of current

and future supercomputers makes it prohibitively expensive

for each and every compute node to be equipped with an

NVM device. For example, the Jaguar machine has 18,000+

compute nodes and future 100-300 petaflop and 1 exaflop

machines are expected to host O(100,000) and O(1 Million)

compute nodes, respectively. It is more than likely that only

a subset of the nodes will be equipped with such devices

(e.g., perhaps a partition of special “fat” nodes.) Thus, we

need techniques so that clients can access such a partition

of NVM-equipped nodes as a memory device.

In this paper, we have developed methods to expose a

subset of NVM nodes as a secondary memory partition, from

which applications can explicitly allocate memory regions

and operate on them. Our key contributions are as follows:

NVMalloc: We have developed an NVMalloc library,

comprising of a suite of services so that client applications

can explicitly allocate and manipulate memory regions from

a distributed NVM store. The NVMalloc library exploits

the memory-mapped I/O interface to access local or remote

NVM resources in a seamless fashion. In addition, the library

provides an elegant approach to checkpoint both DRAM as

well as NVM-allocated variables in an elegant, transparent

manner. To the best of our knowledge, our work is the

first in its attempt to enable memory-mapped accesses to

an aggregate NVM store.

Revitalize Out-of-core Computation: Our solutions have

the potential to re-vitalize out-of-core computation on large-

scale machines with many-core processors. Applications can

compute problems at a scale much larger than what the

physical memory allows. Our approach presents a novel way

to exploit the collective potential of node-local NVM and

brings it bear on applications and machines faced with the



DRAM pressure.

Byte-addressability to Block Store Mapping: We have

developed ways so that a block storage system can be

accessed in a byte-addressable fashion. NVMalloc bridges

the granularity gap between byte-by-byte accesses and large

chunk-based aggregate distributed store through additional

layers of data caches.

Evaluation: We have evaluated NVMalloc on a 128-

core cluster with node-local SSDs using resource-intensive

kernels such as matrix multiplication and sorting. Our

results suggest the following: out-of-core execution using

NVMalloc is a very viable solution (53.75% execution time

improvement for matrix multiplication); smart data access

patterns that can exploit NVMalloc’s caching and SSD

traits can achieve better performance; bridging mmap’s byte

accesses against the block store is critical to the success

of NVMalloc and the library can indeed enable efficient

computations on problem sizes larger than the DRAM size.

II. BACKGROUND: AGGREGATE NVM STORE

In our prior work [11], [21], we have built an aggregate

NVM storage system (using SSDs) from a subset of compute

nodes and have demonstrated that such a storage system can

be presented as an I/O impedance matching device between

applications and the parallel file system (PFS) in extreme-

scale systems. The aggregate NVM storage architecture is

similar to our prior efforts on node-local disk aggregation

(e.g., FreeLoader [27], stdchk [2].) In our design, compute

nodes (or a subset of them) run a benefactor process that

contributes the node-local NVM (or a partition of it) to a

manager process that manages the aggregated NVM space

to present a collective intermediate storage system to clients.

The manager carries out tasks such as benefactor status

monitoring, space allocation, data striping, and data chunk

mapping. The aggregate NVM storage is made available

to clients via a transparent file system mount point, (e.g.,

/mnt/AggregateNVM) using FUSE. A client that writes

data to the mount point will be redirected to the aggregate

SSD storage, without requiring any other code modification.

On a large-scale system, such an aggregate NVM store

can be used as a checkpointing device or a staging store for

large output/input data (as shown in our prior work [11],

[21].) Our work has shown that when the NVM devices are

distributed across a set of system nodes, aggregation and

access through a file system mount point offers an elegant

abstraction to transparently access them from the numerous

compute nodes. This decouples the placement of NVM from

the compute nodes and allows for sharing of NVMs across

multiple nodes, as well as easy system hardware upgrades or

re-configuration. Such a storage serves to complement the

HPC center’s PFS and provides intermediate staging area.

Thus, the storage system is required to be as lightweight as

possible and not be burdened by traditional PFS overhead.

This is the reason we did not choose PVFS [4] or Lustre [6]

for the aggregate NVM store.

In this paper, we use the aggregated NVM storage to

provide memory extension for data-intensive computing on

multi-core systems. The aggregate space can be presented

using a separate partition of “fat nodes”, equipped with

NVM to provide uniform local accesses. Alternatively, the

aggregate space can be built dynamically, on a per-job basis,

using a subset of the job’s allocated nodes that are equipped

with NVM. We examine both these models in our proof-of-

concept prototype development and its evaluation.

III. DESIGN AND IMPLEMENTATION

A. Goals

We are guided by the following goals in designing

NVMalloc.

Providing explicit control to applications via familiar

interfaces: Scientific applications should be able to explicitly

manipulate the collective NVM storage just as they would

operate on DRAM allocations. This implies the ability to

control individual dataset’s placement (on DRAM or NVM

), allocate storage space from the aggregate NVM store and

have it appear as memory buffers, and free the allocated

buffers.

Transparent access to local and remote NVM alike: In

our target environment, only a subset of the compute nodes

might be equipped with NVM and nodes in this set may or

may not overlap with a job’s own node allocation (depending

on whether we have an aggregate NVM storage that is

center-wide or per-job.) From a compute client’s standpoint,

it should not be required to be aware of the location of NVM

devices and be able to use any NVM-resident variables in

the same way as DRAM variables.

Bridging byte-addressability and block storage: A key

requirement for NVMalloc is to address the granularity

mismatch between the byte-addressable mmap interface and

the distributed block storage. Since memory accesses are

byte-based, the mmap interface will send out I/O requests to

the underlying storage for each and every access. Even when

the NVM devices are local, the overhead can be significant,

let alone remote accesses within the distributed NVM store.

Meanwhile, block storage accesses perform I/O in larger

granularity due to the latency involved in accessing block

devices.

Optimizing NVM performance and lifetime: Byte-

addressability is one aspect towards overall performance.

Since we intend to provide the collective NVM storage to

expand memory for applications that will use it in conjunc-

tion with DRAM, it is essential to optimize its performance

through smart data placement. Even the fastest commodity

NVM device today is more than an order of magnitude

slower than DRAM. Therefore, we need to optimize the

NVM store by taking into account the locality of the NVM,

data access patterns, etc. Meanwhile, NVM devices such
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Figure 1. NVMalloc overview

as SSDs have limited write cycles. Our design needs to

optimize the total write volume on these devices.
Ability to seamlessly checkpoint the memory-mapped vari-

able: HPC applications routinely checkpoint their compu-

tation states. For a seamless user experience, we need to

reconcile the checkpointing of an application’s DRAM-

allocated variables (or state) along with variables residing

on the NVM device, while taking advantage of the persistent

storage offered by NVM.

B. Architecture Overview

In order to accomplish the desired goals, we have focused

our efforts on two fronts. First is a middleware layer,

NVMalloc, comprising of a suite of services that enable

clients to perform memory operations on the aggregated

NVM storage system. Second is a set of modifications to

the distributed NVM storage to make it amenable to be

used as a memory partition. Figure 1 illustrates this usage

model, wherein a parallel application’s processes, potentially

running on thousands of compute nodes, explicitly utilize the

aggregate NVM store as an extended memory partition.

The primary motivation of NVMalloc is to let applications

explicitly control the usage of the NVM store through the

use of memory-mapped variables. To this end, out-of-core

client applications can use NVMalloc to allocate memory

from the NVM store for certain variables. These might

include variables that are write-once-read-many or accessed

infrequently, relative to the ones allocated on DRAM, which

offers better access performance due to lower latencies and

higher bandwidth. Alternatively, an application may not

distinguish its variables in this fashion and might simply

need more memory than physically available.

Our architecture comprises of several layers as shown in

Figure 1. At the highest level is the application, requesting

memory allocations from the NVM. Beneath that is the

NVMalloc library, which enables explicit manipulation of

the underlying NVM space. At the next level is the FUSE

layer that provides a file system interface for NVMalloc so

that the aggregated space can be accessed seamlessly. All

of the above client-side components will reside on every

compute node of a cluster. The lowest layer is the aggregate

NVM store that abstracts the distributed NVM devices. This

server-side component sits on compute or a subset of “fat”

nodes with node-local NVM to contribute to the unified

NVM space through a benefactor process.

C. Memory Mapping Files on Distributed NVM Storage

The NVMalloc layer supports a set of services such

as ssdmalloc() and ssdfree() that lets a client al-

locate and free a block of memory from the aggregate

NVM storage. Thematic to our design is the use of the

POSIX mmap() interface that allows files or devices to be

mapped into memory. Under the covers, the ssdmalloc()

interface uses the mmap() system call, which maps a file,

residing on the distributed NVM storage, onto an address

space of the client process (Figure 1).

However, before we can memory-map a file on the dis-

tributed NVM, we need to be able to access the NVM store

in a seamless file system-like fashion. To this end, we exploit

our prior work on FUSE-enabling the distributed, aggregate

NVM storage [11], [2] and extend it by implementing several

file system flags necessary for interfacing with mmap().

Each compute node in our target environment has the

aggregate NVM storage mounted via the FUSE user space

file system (e.g., /mnt/AggregateNVM), which allows

clients to open, read and write logical files that are stored

in a distributed fashion. The file itself is striped across

distributed NVM devices as chunks (256KB). Clients can

invoke standard POSIX file system calls to operate on the

file in the distributed NVM storage space.

One example of the flags implemented within our FUSE

file system is O RDWR, which opens a file in read/write

mode and ensures that data written to it is available imme-

diately for reading. This is needed by NVMalloc to make

sure that the modified memory regions are available for

immediate read accesses.

The pseudocode sequence below gives a simplified view

of the mechanism behind an ssdmalloc() call:

fd = open("/mnt/AggregateNVM/MoreMem"...)

nvmVar = mmap(0, len, prot, flags, fd,

offset)

This maps a file, MoreMem, pointed to by fd,

onto the client application’s address space, beginning

at nvmVar. Thereafter, addresses within the range,

[nvmVar, nvmVar+len-1], are legitimate addresses

for the client application, mapped to the range of bytes

[offset, offset+len-1] in the file on the NVM



store. Thus, ssdmalloc() returns a virtual memory ad-

dress space that is mapped to an SSD-resident file (either

on local or distributed devices.) Each ssdmalloc call creates

a file on the NVM store, with an automatically generated

file name internal to NVMalloc. The client need not be

aware of the file name and only sees the memory-mapped

variable, nvmV ar. The prot argument needs to be set to

PROT WRITE|PROT READ to indicate the combi-

nation of read/write accesses on the data being mapped,

which translates to a file that is also readable as well as

writable at the backend NVM storage. The flags argument

indicates the disposition of write references to the memory

object. This needs to be set toMAP SHARED to indicate

that write references shall change the underlying file object.

The alternative, MAP PRIV ATE flag, creates a copy on

write and does not affect the original file. In particular, if the

NVM-allocated variable, nvmV ar, is to be checkpointed,

the MAP SHARED mode is essential. Reads and writes

to the address range [nvmVar, nvmVar+len-1] are

transformed by mmap into reads and writes to the file that

is striped on the distributed NVM store.

In response to an initial ssdmalloc() request, the

aggregate NVM storage performs file creation as follows.

First, the manager on the aggregate NVM store generates a

benefactor list (selected nodes equipped with NVM) that will

store the file chunks and performs NVM space allocation on

them (e.g., deducts their NVM space contributions to accom-

modate the size of the in-coming file.) The file creation is

simply a space reservation and does not involve any data

transfer immediately. The ssdmalloc buffer size is intimated

to the distributed storage using posix_fallocate(),

which tells the aggregate NVM manager to create appropri-

ate file size metadata. Typically, posix_fallocate() is

part of an advisory information option used to ensure that

writes to the named file does not fail due to the lack of free

space on the storage media. Subsequently, the benefactors

are ready to receive data from the client in parallel. Actual

data transfers occur between the client and the benefactors

when mmap() issues read and write calls. From then on,

a client application can operate on the NVM storage using

the virtual address nvmVar.

The ssdfree() call uses the munmap() system call to

release mappings to the file. Further, the memory-mapped

file on the aggregate NVM will be deleted. If it has not

been explicitly checkpointed (discussed in Section III-E)

NVMalloc or the aggregate store offers no guarantees that

the file will be persistent. One can imagine associating

a lifetime with these memory-mapped variables, residing

on the NVM store, so that they are persistent beyond the

application run. Such a scheme can aid data sharing between

a workflow of jobs or a simulation and its in-situ analysis.

D. Bridging the Granularity Gap

The mmap interface allows us to access a file residing on

a block NVM store in a byte-addressable fashion. However,

there is an obvious granularity gap between the byte-by-byte

memory accesses and larger block accesses. Moreover, our

distributed NVM storage system also delivers data in the

form of larger chunks to clients to minimize the number of

network requests. Thus, there is the need to bridge this gap

to optimize performance.

To address this, we exploit the FUSE layer, beneath the

NVMalloc library, on each compute node that is needed to

access the aggregate NVM store. We use the FUSE cache to

optimize both the read and write performance to the NVM-

allocated variable. The FUSE client’s cache size is a tunable

parameter that can be adjusted at the time of instantiation.

The cache size needs to be sufficient enough to aid with

bridging the granularity gap, while also not consuming too

much DRAM. The cache size used in our tests is 64 MB.

The NVM variable read operation in our library works

as follows. When a read access is made (e.g., with x

= nvmVar[i]), mmap resolves the index into a corre-

sponding POSIX read call for the particular offset into the

file, "/mnt/AggregateNVM/MoreMem", which is then

propagated to the FUSE layer. The read implementation

within the FUSE client transforms the operation into calls

understood by the aggregate NVM store. With NVMalloc,

benefactors store chunks as individual files and an NVM

variable can be spread across multiple chunk files. Therefore,

a call is first issued to the NVM manager to decipher

which benefactor stores the requested data chunk. Next, the

FUSE client makes a direct connection to the appropriate

benefactor to retrieve the data chunk needed. The default

chunk size used for this communication is 256 KB. Thus,

for each byte of access, a 256 KB chunk will be fetched

from a remote benefactor, which can be quite expensive if

we do not perform caching at the FUSE layer. Caching the

chunks at the FUSE layer can significantly aid in data reuse

and minimize network data transfers. We exploit this trait of

the FUSE buffers to improve the overall read performance

within the NVMalloc library. However, it should be noted

that this approach primarily helps the sequential read access

pattern, which is the predominant usecase in HPC settings.

The NVM variable write works as follows. Upon a write

request, the call is resolved, as in the read case, to the FUSE

layer and the corresponding chunk to be updated is read

from the benefactor to the FUSE client’s cache in case of

a miss. The 256KB chunk includes 64 pages (4KB) and

the OS page cache sends out write requests to the FUSE

layer on a page granularity. After this, we mark the page

as dirty within the FUSE cache. The 64MB FUSE cache

is managed using LRU. Upon chunk eviction, NVMalloc

performs optimized writing, by sending only the dirty pages

from within that chunk to appropriate target benefactors,



avoiding unnecessary transfers of clean pages within the

chunk. This process is repeated until enough dirty pages

are evicted to make room for the incoming chunk. If there

are not enough dirty pages to evict to accommodate the new

chunk, then the oldest chunk is evicted. Thus, for writes, the

FUSE cache is optimized on a page-level within the chunks.

E. Seamless Checkpointing of DRAM and NVM Variables

Checkpointing is an I/O operation that saves the current

state of an application’s execution, mainly to protect it

from failure. Checkpoint files are used to restart an appli-

cation from a previous consistent state. We are interested

in studying the interplay between application checkpointing

and NVMalloc. When it comes to saving the state at every

checkpoint timestep, an application needs to snapshot both

DRAM and NVM allocated variables alike.

The process of checkpointing DRAM will typically pro-

duce a restart file on the PFS. However, in our setting,

given the availability of an aggregate NVM store, it is only

fair to assume that the application will want to checkpoint

to this fast storage instead of the traditional disk-based

PFS. In fact, we have previously shown that checkpointing

to such an intermediate device and draining to PFS in

the background is an extremely viable alternative and can

help alleviate the I/O bottleneck [11], [21]. An application

can easily open a checkpoint file on the distributed NVM

store (e.g., /mnt/AggregateNVM/CheckpointFile)

and write to it using standard POSIX I/O through our FUSE-

based file system. In such a scenario, the checkpoint file is

also distributed (striped) across many nodes, much like the

memory-mapped variable. The question then is how to rec-

oncile these two, to provide a logical restart file for the client,

and to optimize the checkpointing performance/volume in

the context of NVMalloc.

To this end, NVMalloc library provides the

ssdcheckpoint() service. An application can use

ssdcheckpoint() to checkpoint both its DRAM

variables (and execution state) as well as NVM variables

into one logical restart file. The ssdcheckpoint()

service is a transparent interface that essentially dumps the

entire application state to the aggregate NVM store as a

file. This method copies the entire physical memory address

space, followed by the NVM-allocated memory-mapped

variables. This process will begin to create the chunks for

the checkpoint file on the NVM store. Let the checkpoint

file at timestep, t, be, chckptF ilet. Let the chunks

created to checkpoint DRAM-resident data be {a, b, c}.
These chunks now reside on the NVM benefactors. The

memory-mapped variable is already persistently stored

on the aggregate storage and, therefore we should try to

avoid redundant copying. Let the memory-mapped variable,

nvmVar, point to the file, FileForNvmV ar, which in

turn points to the chunks {d, e, f}. The scope of nvmVar is

within the client application. The file, FileForNvmV ar,

and its chunks reside on the aggregate store. To avoid

redundant copies on the aggregate storage, we link together

the chunks of the nvmVar at the end of chckptF ilet.

Appropriate chunk-mapping metadata is updated in the

manager for chckptF ilet to reflect this merge. After this

process, chckptF ilet points to chunks {a, b, c, d, e, f}.
Here, we have shown a basic layout for the checkpoint

file. However, a user may wish to specify the layout of the

variables within the checkpoint file. Such information can

be potentially passed through the ssdcheckpoint()

interface.

The above solution avoids unnecessary copying of the

NVM allocated variables, saving both checkpointing cost

and NVM write cycles. However, this creates a challenge for

subsequent accesses to these variables. nvmV ar is stored

as chunks on the aggregate NVM store, and chckptF ilet
essentially reused those chunks. We need to ensure that

subsequent modifications to nvmV ar, during the following

compute phases, do not alter chckptF ilet.

We need a way to optimally store the modifications

to nvmVar, during the compute phase, between any two

checkpoints. One approach is to create a new backend file

(as chunks on the aggregate NVM store) that is a copy of

the original variable at the time of the checkpoint. However,

this defeats our purpose of avoiding unnecessary duplicates

and is inefficient. Alternatively, we adopt a copy-on-write

scheme for data access and checkpointing.

With our approach, write operations to nvmVar will be

resolved to a chunk. For example, if chunk e is modified

out of nvmVar’s {d, e, f} chunks, we create a new chunk,

e′ (with the modifications), on the aggregate store. Now

the memory-mapped file, FileForNvmV ar for nvmVar,

contains the chunk set {d, e′, f}. Note that chckptF ilet and

FileForNvmV ar still share the other unmodified chunks,

{d, f}. In case of failure, the application can be restarted

from chckptF ilet. At the next checkpoint timestep, t+ 1, a
new checkpoint file, chckptF ilet+1, will be created with

chunks corresponding to any physical memory data and

nvmVar’s chunks, {d, e′, f}. This way, we ensure that

the checkpoint files and the NVM-allocated variables can

share chunks whenever possible and yet retain the ability to

modify the memory-mapped variables during the compute

phases. What is more, incremental checkpointing is automat-

ically enabled with the NVM store, further reducing write

overhead and wearing.

IV. EVALUATION

We have evaluated the NVMalloc library that we have

built atop an aggregate NVM store.

A. Testbed

Our experiments were conducted on the 128-core HAL

cluster at Oak Ridge National Lab. Detailed configuration

of the cluster is shown in Table II. Each compute node runs



Table II

TESTBED: HAL CLUSTER.

Type HAL cluster

Compute nodes (#) 16

Cores per node (#) 8

Processor (GHz) 2.4

Memory per node 8GB

SATA SSD model Intel X-25E, 32GB

Network Bonded Dual Gigabit Ethernet

the Linux 2.6.32 kernel and is equipped with SATA Intel

X-25E SSD. The specification of the SSD is presented in

Table I. The aggregate NVM store is built by running a

benefactor process on a core/node, on a subset of the nodes.

B. Performance Analysis

We analyzed NVMalloc as follows. We measured an ap-

plication run that allocates certain variables through NVMal-

loc and compared it against a run when all the variables are

allocated on local DRAM. To be fair, we show results from

different application access patterns to study when it does

and does not make sense to use NVMalloc.
1) STREAM: STREAM [13] is a widely used synthetic

benchmark that measures the sustained memory bandwidth

and computation rate for simple vector kernels, namely

COPY, SCALE, SUM and TRIAD. In this paper, we present

the TRIAD kernel results, whose computation kernel is given

below. The other kernels produce similar results.

for(t = 0; t < TIMES; t++) {

for(i = 0; i < N; i++) // TRIAD

A[i] = B[i]+3*C[i];

}

We evaluated NVMalloc atop the distributed SSDs with

STREAM and experimented with a variety of data placement

settings (i.e., different combinations of arrays on NVM store

and DRAM.) As is evident, the STREAM kernel tests the

basic streaming of an array from/to the NVM store and does

not perform any significant computation. Further, there is no

reuse of data. Thus, this benchmark is intended to test the

worst case performance of NVMalloc.
The STREAM kernel (with 8 threads) ran on a single

node (with 8 cores.) The size of each array is 2GB and

the kernel iterates 10 times. Figure 2 shows the TRIAD

results, comparing the DRAM only mode and the NVMalloc

mode on local and remote SSDs. Both the local and remote

SSD accesses were handled transparently through the FUSE-

based distributed NVM store. For the NVMalloc results,

we tested 6 different TRIAD array placement options, by

allocating a subset of arrays (such as “A” only or “B&C”

together) on SSDs. Overall, we see that NVMalloc-based

STREAM performance (both local and remote SSDs) sig-

nificantly falls behind the DRAM performance by a factor

of 62 and 115 for local and remote SSDs, respectively.
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Table III

TABLE SHOWS THE BANDWIDTH (MB/S) OF STREAM WITH

ARRAY C ON LOCAL SSD, WITH AND WITHOUT NVMALLOC.

OTHER DATA PLACEMENT OPTIONS SHOW SIMILAR BEHAVIOR.

STREAM Kernel COPY SCALE COPY TRIAD

w/ NVMalloc 176 237 263 340

w/o NVMalloc 117 187 170 289

The results are not surprising, however, given that

STREAM benchmarks the raw device bandwidth and there

is at least a factor of 40 bandwidth difference between

DRAM and the SSD models we tested. What this experiment

suggests is that if all an application does is to stream

data through NVMalloc and not perform any intelligent

computation, it is obviously going to suffer a significant

performance hit. Meanwhile, further experiments suggest

that the NVMalloc framework does not introduce signif-

icant overhead itself. In fact, STREAM accesses to local

SSD with and without NVMalloc (Table III) suggest that

NVMalloc actually improves performance by introducing

another layer of FUSE-based read-ahead caching that we

have implemented. Since the STREAM access is sequential,

the larger chunks fetched by NVMalloc into the FUSE layer

helps subsequent accesses.

2) Matrix Multiplication: For the next set of experiments,

we used an MPI implementation of dense matrix multipli-

cation (MM), a resource-intensive kernel, which possesses

computation and memory access patterns common in numer-

ical simulations. MM computes C = A×B, where A, B and

C are n×n matrices. Both A and B are stored contiguously

in an input file. Like in many applications, only one master

process reads the input file and broadcasts the data to all the
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Figure 3. MM runtime with shared mmap file for matrix

B for the problem size of 2GB/matrix.

other processes for parallel multiplication, using a BLOCK

distribution. Input and output files, one for each matrix, are

stored in a PFS.

MM’s execution is broken down into five steps (shown

in Figure 3 and 4): (i) the master MPI process reads A

from an input file and sends chunks (partitioned in row

or column order) to the slave processes; (ii) the master

reads B; (iii) the master broadcasts B to all processes;

(iv) all processes compute their local C partitions; (v)

the master gathers and writes the resulting C partitions.

Thus, A and C are distributed among all the processes,

while B is fully replicated. We implemented MM with loop

tiling [30], a common optimization that partitions the main

loops’ iteration space for better cache reuse.

In our experiments, we varied the following: (i) tiling

size, (ii) data access patterns (row-major or column-major

access for the SSD-resident matrix), and (iii) the matrix

placement (which matrix or matrices to place on NVM.)

For a fair comparison, we disabled all swapping files or

devices, and locked enough memory through mlock() to

leave only 1.25GB memory for the system (including space

for the kernel or underlying file system cache/buffer). We

also tested with two other options (1.75GB and 2.25GB)

but did not see significant difference in our experiments and

report numbers with 1.25GB memory for the system.

As all processes share the same matrix B, which remains

read-only after being initialized, an obvious optimization

here is to allow multiple processes within a compute node

to map their matrix B to a shared file, residing on the NVM

store. This option saves both storage space, I/O and network

traffic and is enabled by a special flag to the ssdmalloc()

interface within the NVMalloc library.

Figure 3 shows the results for a size of 2GB for each

of the matrices, accessed in a row-major fashion. The

figure also depicts multiple memory allocation and storage

distribution settings, with the total execution time of each job

broken down into the five aforementioned stages. The MM

algorithm we tested has excellent computation scalability.

Since matrix B is replicated across all processes, each

process can proceed with its computation, requiring little

communication with its peers. On the other hand, this

approach has higher memory consumption (compared to

alternatives such as decomposing both A and B.) With

the amount of physical memory available (8 GB/node), the

DRAM-only solution could only fit two processes on each

node, wasting 75% of the compute power on these 8-core

machines. With NVMalloc, SSDs can be used to seamlessly

extend the DRAM space, allowing all of the cores to be

utilized.

For a direct comparison, we carried out experiments where

only 2 processes are allocated on each compute node. This

result is shown by the L-SSD(2:16:16) bar in Figure 3

(where “L” stands for “local”, and “2:16:16” indicates that

there are 2 processes per node, 16 nodes used in the job, and

16 SSD benefactors). In this case, the overall performance

with NVMalloc is only slightly worse (by 2.19%) than using

DRAM only, due to an increase in the cost of broadcasting

B. The computation, which consumes the bulk of the total

execution, appears to take the same amount of time when

the majority of data structures are allocated on the SSD.

This suggests that commodity SSD units can be effectively

used as a memory extension in high-performance computing

applications, with their higher access latency hidden auto-

matically by multiple layers of memory caches in the system.

The result further indicates that we can even run larger

problem sizes than what the DRAM can accommodate.

Next, we examined the performance of using 8 processes

per node to maximize core utilization (Figure 3). NVMalloc

enables each process to occupy a smaller footprint on

DRAM. L-SSD(8:16:16) achieves a 53.75% improvement

compared to the DRAM only case. Again, the computation

stage shows excellent scalability, relative to the total number

of processes. We then analyzed the use of remote SSDs from

the NVM store. For these tests, the SSD benefactors were

all remote to the compute nodes. We can see that there

is very little overhead (1.42%) in using remote SSDs as

shown by cases L-SSD(8:8:8) and R-SSD(8:8:8). Further, R-

SSD(8:8:8) is still 34.73% better than the DRAM only case,

suggesting that network does not appear to be a bottleneck.

The group of results using R-SSD(8:8:z) settings in Fig-

ure 3 tested the performance of MM under varied ratios

of compute node to SSD benefactor nodes in the NVM

store. This can shed light on the number of clients an SSD

benefactor can serve. We can see that reducing the number

of SSD units equipped on the cluster (with each shared by

more compute nodes) does not have a visible effect on most

stages of the MM execution, except for slight increases again

in the broadcasting stage due to higher I/O and network

traffic concentration. In particular, the R-SSD(8:8:1) results

reveal that by adding one $300 SSD drive to every 8 compute
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Figure 4. MM: shared versus individual mmap files for

matrix B for a problem size of 2GB/matrix.

nodes and using mechanisms like NVMalloc, we can bring

about a 32.47% performance improvement while running on

half the nodes compared to the DRAM only mode. This

result suggests that future machines can reduce the total

provisioning cost by purchasing a combination of DRAM

and NVM and use them in concert as above.

Shared versus Individual mmap files: To observe the

performance when processes do not share common read-

only data structures, we also evaluated the case where each

process maps its matrix B to a separate file. In Figure 4,

bars labeled “-SSD-S” use shared mmap access, while “-

SSD-I” uses per-process mmap files. Not surprisingly, the

individual mode is slower (up to 18%). Key factors include

the increased broadcasting and computation overhead. The

performance difference is particularly more, when all 8 cores

are used (the “(8:y:z)” cases), with larger memory and

I/O contention. However, the individual file mode still has

significant advantages over the DRAM case.
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Table IV

DATA EXCHANGED BETWEEN APPLICATION, FUSE AND SSD

STORE FOR A PROBLEM SIZE OF 2GB/MATRIX.

Access Aggregated Request Request

Pattern Accesses to FUSE to SSD

of B to B (GB) (GB) (GB)

Row-major 256 4 2

Column-major 256 113 130

Table V

PERFORMANCE (COMPUTING TIME IN SECONDS) OF MM

(L-SSD(8:16:16)) WITH VARIOUS TILE SIZE FOR

2GB/MATRIX.

Tile Size 16×16 32×32 64×64 128×128

Row-major 464 449 446 443

Column-major 4190 2628 2549 1325

Row and Column-major Accesses: To evaluate the impact

of memory access pattern, we experimented with two access

orders for B: column-major and row-major (effectively

altering the data placement strategy). Figure 5 shows the

runtime of the computation phase. As expected, column-

major is much slower. Further, its performance degrades

significantly when the SSD resources are reduced (from L

to R, then with declining number of benefactors), while

the row major performance remains stable. Also, the dif-

ference between row- and column-major performance is

much more pronounced with NVMalloc-enabled memory

extension compared to the DRAM only case. The explosion

in column major execution time is due to a combination

of factors, including less data locality for DRAM caching,

random SSD accesses, and more network communication as

well as I/O volumes. For row-major accesses, our FUSE-

based read caching helps due to the locality of accesses.

Essentially, a sub-optimal access pattern can dramatically

weaken the capability of hiding SSD access latencies with

DRAM caches, exposing the inferior capability of SSD-

based memory extension. This indicates that applications

need to be aware of the ramifications of the data access

patterns and the placement of their data structures while

using the NVMalloc library.

Table IV shows the size of the aggregated data read during

the computing phase of MM, the size of the data requested

from the system to the FUSE buffers, and the real transfers

between the compute node and the SSD-benefactor-node, for

both row-major and column-major L-SSD(8:16:16) cases.

From the table, the SSD access latency can be effectively

hidden by the caching mechanism in NVMalloc if there

exists good access locality (row-major). This is also shown

by the performance comparison between row-major and

column-major results (Figure 5).

Varying the tiling size: We also varied the titling size of



Table VI

SORTING TIME (IN SECONDS) WITH VARIOUS CONFIGURATION.

Quicksort DRAM L-SSD R-SSD

(8:16:0) (8:16:16) (8:8:8)

Time (s) 1148.82 100.57 301.24

Pass (#) 2 1 1

MM to further study memory access patterns. The matrix

size is 2GB, which means each process has 128 rows or

columns to calculate. Thus, the largest tile size possible is

128 × 128. For column-major accesses, Table V shows that

as the tile size increases, the computing time decreases, indi-

cating locality of accesses within larger tiles. For row-major

accesses, however, we did not see a significant improvement

due to larger tiles, due to inherent sequentiality.
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8GB Problem Size: To illustrate the potential to run

applications with problem sizes larger than what the physical

memory allows, we increased the size of the matrices to

8GB each (Figure 6.) Note that the physical memory size is

only 8GB/node. Matrix B is accessed from the NVM store

using a shared mmap file, while matrices A and C are in

DRAM, split between the processes in each configuration.

Comparing against the 2GB computation phase, the 8GB

computation should have increased by a factor of 16. How-

ever, the loop tiling technique favors computing with longer

rows (the 8GB case) much more than shorter rows and the

computing phase only increases by a factor of 9. Thus, the

performance due to NVMalloc scales well for larger sizes.

3) Parallel Sorting: In this experiment, we used an MPI

based parallel Quicksort program. Quicksort sorts a list of

data elements based on the divide and conquer strategy,

splitting the entire list into two sub-lists and sorting them

recursively. The basic steps of the algorithm are as follows:

(i) Choose a pivot element in the list. (ii) Reorder the list

such that elements less than the pivot are arranged before

Table VII

DATA EXCHANGED DUE TO NVMALLOC WRITE OPTIMIZATION

FOR A RANDOM WRITE SYNTHETIC APPLICATION.

NVMalloc write Data Written Data Written

optimization to FUSE to SSD

w/ Optimization 467MB 504MB

w/o Optimization 471MB 19.3GB

the pivot and all elements greater than the pivot come after

it. After the partitioning, the pivot is in its final position.

(iii) Recursively reorder two sub-lists.

Table VI presents the results of the MPI based Quicksort

program. In these experiments, we measured the total run-

ning time of a 200 GB data list for various DRAM/NVM

configurations. DRAM(8:16:0) is a configuration that runs

on the entire machine (8 cores/node and 16 nodes), using

all of the system memory (128 GB). Even so, it does not

have sufficient memory to load all of the data (200GB)

at once. L-SSD(8:16:16) is a hybrid DRAM + SSD store

configuration, where 100 GB of data are loaded on the

DRAM, and the other 100 GB are loaded on 16 local SSDs,

using NVMalloc. R-SSD(8:8:8) is also a hybrid DRAM +

SSD configuration, where 50 GB of data are loaded on the

DRAM, and the other 150 GB are loaded on 8 remote SSDs,

using NVMalloc. The results show that L-SSD(8:16:16)

offers the best performance for this setting, providing a

factor of 10 speedup compared to DRAM(8:16:0). Since

DRAM(8:16:0) is unable to load the entire 200 GB dataset,

it requires us to change the original program to decompose

the entire dataset into two sub datasets and run two passes to

sort the sub datasets. The two passes of DRAM(8:16:0) also

require significant data exchange between each other, with

the PFS used to share the interim sorted data. These steps

are obviously not required for both L-SSD(8:16:16) and R-

SSD(8:8:8). R-SSD(8:8:8) is slower than L-SSD(8:16:16),

since it has half the number of nodes with double the

workload. This experiment illustrates that NVMalloc is able

to run problems much larger than what the physical memory

allows.

4) Write Optimization in NVMalloc: With MM, we

showed the benefits of read caching within NVMalloc. To

study the write optimization, we constructed a synthetic

application that issues write operations (128K times) to

randomly generated address within a 2GB data located on

the SSD store. Writes were issued byte-by-byte to these

random addresses, to depict the performance of our opti-

mization under an extreme case. Table VII shows the results

with and without our optimization. For each dirty chunk,

rather than sending the entire chunk (256KB) to the local or

remote SSD, writing only the dirty pages (4KB) significantly

reduces the data transferred between FUSE and the SSD.

5) Checkpointing DRAM/NVM Variables: We study the

benefits of seamless checkpointing of DRAM/NVM vari-



Table VIII

PERFORMANCE OF SEAMLESS CHECKPOINTING

DRAM/NVM Test Test Test Test
Variables Case 1 Case 2 Case 3 Case 4

checkpointing

DRAM size (GB) 8 8 8 8
NVM size (GB) 4 8 16 32
Regular chkpt 248.6 437.3 866.4 1633.5

time (s)
SSDcheckpoint 82.4 82.4 82.4 82.4

time (s)
Improvement in time 66.8% 81.2% 90.5% 95.0%

Improvement in size 33.3% 50.0% 66.7% 80.0%

ables. We varied the size of NVM variables from 4GB to

32GB and fixed the size of DRAM variables at 8GB. We

used 112 clients, checkpointing in parallel, to the NVM

store. We compared ssdcheckpoint that avoids the redundant

copy using incremental writes against regular checkpointing

that re-writes the NVM-allocated variable to the checkpoint

file. For both ssdcheckpoint and regular checkpointing,

the checkpoint file is saved in the aggregate NVM store.

Table VIII provides the average performance improvement

of ssdcheckpoint over regular checkpointing. The check-

pointing cost mainly contains two parts: (1) saving the

DRAM state to the checkpoint file and (2) saving the

memory-mapped file on NVM to the same checkpoint file.

The time taken to save the DRAM state is obviously the

same for both ssdcheckpoint and regular checkpointing.

However, for the NVM variables, our ssdcheckpoint mecha-

nism enables the sharing of chunks between the checkpoint

file and the memory-mapped files of the NVM-allocated

variables. Therefore, the entire overhead of duplicating data

is avoided. Thus, as Table VIII shows, the larger the NVM

memory to checkpoint, the better the improvement. Note

that the improvement is more significant than the portion of

memory allocated on the NVM store. This is because check-

pointing NVM-resident variables with the regular approach

is more costly, as NVM reads are slower than DRAM reads.

V. RELATED WORK

Paging is a popular memory management technique in

modern operating systems that enables memory pages to be

swapped in and out between DRAM and I/O devices [24].

HDD can have virtual memory partitions for swap spaces.

Recent popularity of NAND flash memory has enabled the

exploration of swapping on SSDs. To this end, several

solutions have been proposed [10], [20], [12], [23], [25].

Ko et. al. [10] have proposed a log-structured swapping

algorithm to avoid performance degradation due to garbage

collection. Park et. al. [20] have proposed a flash aware page

replacement algorithm that can avoid the high performance

penalty of erase operations on NAND flash. Also there have

been several empirical studies on how to use a flash device,

connected over the network (such as Infiniband) or the PCIe

bus, as a swap area [12], [25]. All of these explore the

following unique properties of NAND flash unlike magnetic

disks: (i) writes are expensive than reads, (ii) data access

granularity is a page (2KB or 4KB), thus misaligned pages

need to be carefully managed, and (iii) flash device has a

life time concern on flash cells.

Large-scale HPC machines have swap space turned off as

they do not contain node-local disks. Also, swapping to disk

can potentially cause more unpredictable performance due to

the memory to disk gap. Faster flash devices and the above

optimization efforts can encourage the use of swap on flash

in HPC. While NVMalloc shares the goal of providing more

memory through flash, it is different in its attempt to provide

explicit control over the extended partition. We provide

applications more control on data placement. Further, all of

the aforementioned efforts require changes to the operating

systems, however, our approach resides at the user-level.

Accessing remote memory to supplement node-local

DRAM has been explored previously [31]. This effort at-

tempts to access additional memory from specialized mem-

ory servers through MPI communication panels. NVMalloc

is similar in the sense that it mmaps from a distribute pool

of devices (albeit NVM), but needs to deal with a variety of

byte-addressability issues that network memory systems do

not address.

In the recent work on ssdalloc [3], the authors have

considered various application level approaches to use the

flash device as an extended memory space on a single

server-based system, and concluded using mmap on flash

device can incur significant runtime overhead. In contrast,

we aim to provide more memory for data-intensive parallel

applications running on many-core systems. In particular,

we address the unique challenge of building an aggregate

store upon distributed SSD devices attached to a subset

of supercomputer nodes. Our work also draws different

conclusions on the utility of mmap based on our target

domain and application access patterns.

Efforts such as Mnemosyne [28] and NV-heaps [7] strive

to provide a persistent interface to second-generation NVM

such as phase change memory (PCM), STT-RAM, mem-

ristors so that in-memory data structures such as trees,

lists and hashes can survive system crashes. Our work on

NVMalloc complements these efforts and while we have

demonstrated it using the first-generation NVM (SSD), it is

applicable to next-generation devices as well. Further, the

byte-addressable, second generation Phase Change Memory

(PCM), which is still a few years from mass production,

cannot yet scale to the capacity levels of block-based NVM

(e.g., PCM on DIMM has only been prototyped for up

to 1GB; PCM on PCIe can scale further, but is slower.)

Moreover, the power consumption for a baseline PCM is

much more than DRAM. Thus, deep memory tiers are

most likely to be presented on a subset of “fat” nodes

with some node-local byte-addressable NVM as and when



that technology matures. Thus, our work on accessing a

distributed NVM store through NVMalloc is very timely.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented the rationale, design

and implementation of NVMalloc, a runtime library that

supplies parallel applications with a distributed NVM stor-

age as a secondary memory partition. NVMalloc provides

a suite of services for applications to explicitly allocate

and manipulate memory regions on the NVM store, bridge

the gap between byte-addressable memory accesses and

the block-based store, seamlessly checkpoint DRAM/NVM-

resident variables and optimize for SSD-specific data access

patterns. Our evaluation on a multicore testbed suggests

that NVMalloc is viable. It further enables cost-effective

parallel computation by allowing applications to (1) utilize

the multiple cores available more efficiently in data-intensive

computation, and (2) compute problem sizes much larger

than what the physical memory permits.

In our future work, we plan to evaluate NVMalloc with

more out-of-core applications, address proactive prefetching

based on application memory allocation/access patterns, and

explore transparent interfaces for applications to allocate

large objects across the DRAM and NVM space.
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