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Abstract—Innovative scientific applications and emerging
dense data sources are creating a data deluge for high-
end computing systems. Processing such large input data
typically involves copying (or staging) onto the supercomputer’s
specialized high-speed storage, scratch space, for sustained
high I/O throughput. The current practice of conservatively
staging data as early as possible makes the data vulnerable to
storage failures, which may entail re-staging and consequently
reduced job throughput. To address this, we present a timely
staging framework that uses a combination of job start-
up time predictions, user-specified intermediate nodes, and
decentralized data delivery to coincide input data staging with
job start-up. By delaying staging to when it is necessary, the
exposure to failures and its effects can be reduced.

Evaluation using both PlanetLab and simulations based on
three years of Jaguar (No. 1 in Top500) job logs show as
much as 85.9% reduction in staging times compared to direct
transfers, 75.2% reduction in wait time on scratch, and 2.4%
reduction in usage/hour.

Keywords-High performance data management, data-staging,
HPC center serviceability, end-user data delivery

I. INTRODUCTION

The advent of extremely powerful computing systems,

e.g., Petaflop supercomputers, and the data they can process,

e.g., from emerging sources such as space observatories and

large-scale particle colliders, are pushing the envelope on

dataset sizes. For instance, the Large Hadron Collider (LHC)

at CERN [1] or the Spallation Neutron Source (SNS) at

Oak Ridge National Laboratory (ORNL) [2] will generate

petabytes of data. These large datasets are processed by a

geographically dispersed user base, often times, on high-end

computing systems. Therefore, result output data from High-

Performance Computing (HPC) simulations are not the only

source that is driving dataset sizes. Input data sizes are also

growing many fold [1], [2], [3], [4].

To match the I/O capabilities with the computational

power in a supercomputing center, the required input data for

a given job is almost always copied to the fast local storage

– the scratch parallel file system – at the center before

the job is started. This process is commonly referred to

as staging. Modern applications usually encompass complex

analyses, which can involve staging gigabytes to terabytes

of input data, using point-to-point transfer tools (e.g., scp,

hsi [23]), from observations or experiments. Many times, the

applications also involve comparing the above analysis data

against large-scale simulation results to see how theoretical

models fit real experimental results. Thus, input data can

originate from multiple data sources ranging from end-user

sites, remote archives (e.g., HPSS [5]), Internet repositories

(e.g., NCBI [6], SDSS [3]), collaborating sites and other

centers that run pieces of the job workflow (e.g., Figure 1).

Once submitted, the job waits in a batch queue at the

HPC center until it is selected for running, while the input

data “waits” on the scratch space. HPC centers are heavily

crowded and it is not uncommon for a job to spend hours—

or even days on end—in the queue. In the best case when

the data is staged at job submission, the time a job takes

to complete, i.e., (wall time + wait time), is also the time

the input data spends in the scratch space. In the worst case,

which is more common, the data wait time is longer as users

conservatively (manually) stage in the data much earlier than

job submission, let alone job startup.

Scratch space is an expensive commodity, and provision-

ing and maintaining it usually consumes a notable fraction

of the HPC center’s operations budget. The cost of scratch is

often to the tone of millions of dollars for state-of-the-art su-

percomputers such as Jaguar [7] (which comprises of 14,000

disks, 192 object storage servers, 1300 object storage targets

and 48 controller pairs). More importantly, the scratch space

is meant for facilitating currently running or soon to run jobs.

From a center standpoint, sub-optimal use of the scratch

resource could impact the center’s serviceability, i.e., the

ability to serve more incoming jobs. That is why, even with a

huge scratch capacity, Jaguar administrators constantly trim

usage through purge policies and send periodic reminders

every week to users to delete their data from scratch. From

a user standpoint, the input data is exposed to potential

unavailability due to storage system failure [8], [9], [10]

while it is waiting for the job to be scheduled. Consequently,

when the job is selected for running, crucial pieces of input

data may be unavailable, requiring a rescheduling (delay on

the order of hours to days). What is needed is a framework



that enables timely staging of large input datasets for jobs.

A. Design Challenges

We now present the challenges and issues involved in

designing a timely staging service for HPC centers. In order

to stage the data to be coincident with job startup, we

need intelligent estimates of the following. First, we need

to know when the user’s job will commence. This has been

explored extensively [11], [12], and HPC schedulers (e.g.,

PBS Pro [13], Moab [14]) can also provide a batch queue

wait time estimate based on current and historical (jobs with

a similar profile) data. However, a simple and direct use of

batch queue predictions in staging is not appropriate due to

sudden changes in schedules. For example, an unexpected

failure can cause a 10,000 node job to suddenly exit,

resulting in many jobs being promoted to “ready to run”

state all too quickly. This prospect needs to be factored into

the staging mechanism.

Second, we need an estimate of how long the data staging

would take from the input locations to the HPC center. We

need continuous bandwidth measurements so they can be

factored in to revise the route dynamically and adapt to

changing network conditions. The upshot is that both the

queue wait time estimates and network bandwidth estimates

are volatile and “soft”. Consequently, our staging solution

needs to be resilient to adapt to these transient conditions.

B. Contributions

In this paper, we present a timely staging framework that

attempts to have the data available at the scratch storage,

from multiple input sources, just before the job is about to

run, thereby mitigating the aforementioned issues. The basic

idea is to reduce the staging time by proactively bringing the

data to intermediate storage locations on the path from the

end-user site to the HPC center, then transferring the data

to the scratch space as late as possible without delaying the

job’s scheduled start time.

The novelty of our work is the integration of decentralized

data transfer systems into HPC management to improve

overall scratch utilization, and not another decentralized

transfer mechanism. Thus, the framework uses an innovative

combination of high-efficiency data dissemination (BitTor-

rent [15]) and network monitoring (Network Weather Ser-

vice (NWS) [16]) to exploit orthogonal, residual bandwidth

and to dynamically adapt to network volatility, respectively.

Further, the framework constantly adjusts to changes in

the predicted job start time, e.g., due to job cancellations

or improved estimates. Such dynamic adaptation achieves

just-in-time data staging to meet the job’s commencement

schedule. We stress that despite prior work in developing

decentralized data transfer schemes [17], [18], [19], [20],

[21], such schemes have not been adopted by HPC centers.

Centers, without an exception, still use simple point-to-

point protocols, e.g., scp, sftp, GridFTP [22], hsi [23],

etc., due to lack of seamless integration with critical HPC

services that the users care about, e.g., job startup pre-

diction, PBS [13], and scratch space. Moreover, no prior

work reconciles scratch space consumption with volatility

(both network and storage) and timely staging, which is the

overarching unique goal of our work.

We have evaluated our solutions using both real-world

experiments on PlanetLab [24] as well as extensive simula-

tions using three years worth of job logs from the ORNL

Jaguar supercomputer (No. 1 in Top500) [7]. Our approach

optimizes precious scratch space usage and minimizes the

exposure of input data at center storage. Such an approach is

a fundamentally novel way of staging data into HPC centers.

Extant data staging techniques are point-to-point, not fault-

tolerant and do not factor in scratch space optimization or

job startup schedules.

Evaluation of our timely staging framework shows as

much as 85.9% reduction in staging times compared to direct

transfers, and reduced exposure to scratch failures: 75.2%

reduction in wait time on scratch, and 2.4% reduction in

usage/hour.

II. DESIGN

In this section, we first present the goals of our timely-

staging framework, then we discuss the framework compo-

nents in detail.

A. Objectives

In designing a timely-staging service for HPC centers,

there is a need to reconcile several factors. We highlight

these in the following discussion.

Timely delivery of input data: Our primary goal is to

deliver application input data to center local storage from

multiple sources on time, in the face of both transient

network conditions and changing batch queue job wait

times. Not properly accounting for such dynamism can have

adverse effects on the staging framework: data delivery is

delayed and, consequently, job turnaround time is increased.

Minimize transfer times: Ability to minimize trans-

fer times by choosing optimal routes and constantly re-

evaluating them is critical for reacting to changes. For

instance, optimal routing can mitigate the effect of a sudden

tightening in the delivery deadline that can occur due to an

unexpected cancellation of a large job.

Reduce duration of scratch space consumption: From a

center standpoint, it is desirable to stage the data of a waiting

job as late as possible so that the scratch space is available

for all of the currently running jobs’ I/O (e.g., checkpointing

and output). Consequently, if the waiting jobs’ duration of

scratch usage is reduced, it would help the HPC center better

service the currently running jobs.



Enduser

Location

HPC Center

/scratch

Running

jobs’ data

Job Queue

Compute Nodes

I/O Nodes

Minimize time spent by 

input data of queued jobs

Data Staging

Manager

Job wait time estimate

Site A

Job Output Data

Overlay of Intermediate nodes 

Remote Archive 

(e.g., HPSS) 
Internet Database 

(e.g., NCBI, SDSS)

Batch Queue 

Prediction

Direct transfer

Decentralized

transfer

Figure 1. Overview of the timely staging framework, and interactions between the components.

Reduce exposure window: Another downside of staging

the data early is its exposure to potential storage system

failure. We refer to the time elapsed between when data is

staged in until the associated job starts running as exposure

window, Ew. To protect against storage failures, it is desir-

able to minimize Ew, preferably as close to 0 as possible.

The reason for minimizing Ew is stressed by the observa-

tion that in a supercomputer with tens of thousands of disks,

failure is a norm and not an exception. Scratch is prone to

failures due to the sheer number of disks, I/O nodes and

controllers used in realizing the system. To put things in

perspective, supercomputers such as Jaguar, ASCI Q, ASCI

White, and PSC Lemieux all cite storage as a primary reason

for system downtime with MTBF of 37.5 hrs, 6.5 hrs, 40 hrs,

and 6.5 hrs, respectively [25].

Avoid starvation: Finally, from a center serviceability

perspective, it is absolutely essential that the job scheduler

not be rendered idle because the input data of a waiting job

has not been completely staged-in.

B. Architecture

In the following, we detail our framework components,

and how they are integrated to realize timely staging. Fig-

ure 1 shows the overall architecture overview, and illustrates

interactions between components.

1) Intermediate Nodes: Our framework uses intermediate

nodes (Nis) that can provide temporary storage for data on

the path from the source to the HPC center. The intuition

behind using Nis is that nodes closer to the center than the

user site can support faster data transfers for staging and

reduce staging times. This provides for delaying the staging

to much later than when using a direct transfer, which also

reduces Ew.

These nodes can be the user’s own collaborating sites,

from where other input data can also be staged, ensuring that

the data is transferred through a dependable substrate. Using

these nodes, the HPC center can also asynchronously retrieve

data from other sources, decoupled from the user site.

Intermediate nodes provide multiple data flow paths from

the user site to the center, which lead to better bandwidth

utilization, faster staging speeds, as well as fault-tolerance

in the face of failures.

Motivation for collaboration: In today’s HPC environ-

ment, supercomputing jobs are almost always collaborative

in nature. In fact, a quick survey of jobs awarded compute

time on the ORNL NLCF, through the DOE’s INCITE [26]

program, suggests that these jobs involve multiple users

from multiple institutions. This collaborative property is

even more true in the TeraGrid [27], where jobs are usually

from a virtual organization, which is a set of geographically

dispersed users from different sites, coming together to solve

a problem of mutual interest for a certain duration. In such

cases, it is clear that many users, from different sites will be

interested in seeing the job run to completion, with as little

delay as possible. This emerging property of collaborative

science can be exploited to perform a collaborative stage-

in of job input data. We therefore argue that there exists a

natural incentive to provide resources and to participate in

the timely staging process.

A set of intermediate nodes is typically employed for

staging data to a single HPC center at a time. However,

the design certainly allows usage scenarios that may include

employing the same intermediate nodes to support staging



for multiple HPC centers. We argue against this case,

as intermediate nodes are temporarily setup to support a

particular collaborative project, and are chosen not by center

policies, but by the users’ collaborations. Therefore, such

overlap across centers is not likely.

Landmark Nodes: The reliance of our design on inter-

mediate nodes exposes the data delivery system to possible

failures due to lack of sufficient Ni’s. For instance, the

end-user site may not have access to any (or sufficient

enough) intermediate nodes on the path to the HPC center.

This could be either due to the lack of many participating

sites in the job or due to the volatility of the intermediate

nodes. To avoid such a scenario, we propose to utilize a

number of geographically distributed Landmark nodes that

are always available and can serve as intermediate nodes.

The Landmark nodes can be other HPC centers, or nodes

along national links such as, Internet2 [28], REDDNET [29],

Lambda Rail [30] or the TeraGrid [27] to which many end-

users may be connected. The location and number of the

Landmarks is determined through out-of-band agreements

with the HPC center. For instance, HPC centers can setup

such an infrastructure to benefit the whole range of users

that it caters to. Consider the following scenario where a

collaboration near SDSC (a TeraGrid site) runs a job on

the Kraken machine at the University of Tennessee (also a

TeraGrid site). An elegant way to dispatch the large input

data to the computation would be to exploit the connectivity

between the two landmark sites (SDSC and UT) and use

the intermediate storage overlay between the end-user and

SDSC. A challenging research question to answer is the con-

certed use of Landmarks and intermediate storage to achieve

an efficient data delivery schedule. For instance, a direct

GridFTP transfer is well suited for delivering data between

two well-endowed sites, whereas a decentralized delivery is

better equipped to exploit the intermediate storage. In the

following sections, we highlight the use of a combination of

direct and decentralized delivery schemes to achieve timely

end-user data delivery.

Impact on infrastructure costs: We reiterate that our

design does not require the explicit setup and management

of landmark and intermediate nodes. Instead, it leverages

and “piggybacks” on existing infrastructure. Several national

testbeds, e.g., TeraGrid [27], REDDNET [29], etc., are

already in production and can act as such nodes, without

incurring any additional costs such as electricity, manpower,

and management costs. Moreover, intermediate nodes use

resources that are already part of the “collaborative” job.

We also do not require extra provisioning of network band-

width, rather employ the residual bandwidth that would have

otherwise gone unused. Thus, our design also achieves better

utilization of resources and possibly a higher system-wide

efficiency.

2) Queue Prediction as Staging Deadline: In our design,

the HPC center is expected to support a batch queue predic-

tion service (e.g., NWS batch queue prediction [31]), which

the users can query before submitting their jobs to get an

estimate of queue wait times. Scheduling based on queue

wait times is already popular in TeraGrid [27] supercomputer

centers. In fact, modern resource managers (e.g., Moab [14])

are beginning to provide services that would enable users to

query and obtain start times of queued jobs. The prediction

service can usually provide both wait time estimates as

well as the probability of a job starting by a user-specified

deadline [31]. In cases where direct wait time predictions are

unavailable, the user can pose a query to the service, with

a deadline, and determine the likelihood of the job starting

by the deadline. A 90% or higher probability can be treated

as an affirmation of the user-specified deadline and can be

used as the job startup time and, consequently, the staging

deadline.

However, the job can potentially start earlier than this

predicted deadline due to inaccuracies in the prediction or

due to failure of other running jobs. Similarly, a lower

probability may mean that the job may not commence by

the user-specified deadline, but is only an estimate. To

accommodate this, we can let the user tweak the estimate

by up to a fixed factor, f , moving the deadline earlier. This

can be done for one of two reasons: (i) the user may wish to

use the prediction with “guarded optimism” to account for

jobs starting earlier than estimated; or (ii) may wish to finish

staging the data as early as possible by using an artificial

tighter deadline, thereby shifting the burden of protecting the

data during the prolonged wait time to the center. While (i) is

acceptable, (ii) works against the basis of our timely staging;

allowing f to be large can unduly affect other jobs, which

have genuine tight deadlines. Thus, limiting the adjustment

to only a factor is necessary to ensure global fairness in the

staging of all jobs. Consequently, the estimate is reported to

the staging manager so it can ensure that the user-submitted

deadlines are within the factor.

3) Timely Staging Algorithm: Once a deadline for com-

pleting the input data staging is determined, the user submits

a job script to the staging manager at the center with

a description of the job and other details necessary for

timely staging. The script includes attributes such as the

user-adjusted job startup deadline, the set of intermediate

nodes, < Ni, Pi >, where Pi denotes the usage prop-

erties of the intermediate nodes Ni, for the decentralized

staging process, and the sizes and locations of the input

datasets, Dj . The staging manager also takes as input the

current snapshot, BWi, of the observed NWS bandwidth

between the HPC center and Ni as well as between the

Ni’s themselves. The manager reconciles the predicted job

start deadline with the user-adjusted one to determine if it

can allow the user’s tight deadline. This reconciled deadline

is denoted by TJobStartup. Based on these parameters,

the manager decides upon a data staging schedule, Xj ,

for each Dj , which delivers the dataset in time, Tj =



Min(DirectT ransfer, DecentralizedT ransfer). To es-

timate these times, the manager uses the measured available

bandwidth to the user site as well as the intermediate nodes.

To create a distributed schedule, the intermediate nodes are

sorted based on available bandwidth and then the number of

nodes to which data is sent is increased until overall transfer

times that are better than a direct transfer (if possible)

can be achieved. This choice is dictated largely by the

available bandwidth and storage at the intermediate nodes.

When the intermediate nodes can provide a faster transfer,

a decentralized transfer is scheduled. Each dataset could

come from a variety of sources, including those wherein

our decentralized transfer software cannot be installed. In

such cases, the manager relies on just-in-time probes to the

data source to judge if a direct transfer to the HPC center is

most appropriate. Alternatively, such input data could also

be transferred through the intermediate nodes by having the

edge-level nodes pull the data from the source, enabling

decentralized staging.

The multi-input stage-in should obviously also com-

plete before job startup and should satisfy the property,

Max(Tj) ≤ TJobStartup. Minimizing transfer times by

choosing optimal routes helps achieve this goal. At the

same time, each of the input stage-ins, Xj , is also started

as late as possible to reduce the duration of scratch space

consumption and, consequently, the exposure window, Ew

of the datasets. The exposure window for each input dataset

is: Ewj = TJobStartup−Tj . Then, total exposure of all input

data is, Ew = Sum(Ewj). The closer Ew is to 0, the better.

Thus, the ideal start time for each input dataset is the one

that achieves, TJobStartup − Tj = 0. In practice, however, a

small difference is desirable to safeguard against unexpected

delay. This approach factors in both timely delivery as well

as scratch space usage optimization.

4) Feedback and Re-evaluating Staging Decisions: Even

after a particular course of action, e.g., decentralized transfer,

is chosen, the manager periodically re-evaluates the data

staging based on an updated < Ni, Pi, BW ′

i >, where BW ′

i

is the latest snapshot of NWS bandwidth measurements. If

the re-evaluated time to staging, T ′

j , satisfies the property,

T ′

j > TJobStartup, then, alternate routes are taken (if

available) to stage the data before job startup, enabling us

to meet the staging deadline.

In addition to constantly re-evaluating the network routes

based on latest bandwidth measurements, the staging man-

ager also has to account for batch queue status changes as

discussed earlier. We address this by having the manager

periodically obtain new estimates T ′

JobStartup from the batch

queue service. If the staging schedules reflect that Tj >

T ′

JobStartup, then alternate routes are evaluated to ensure

timely delivery. This also has the desired side effect of

preventing the job scheduler from starvation due to inability

to schedule jobs as a result of unfinished stage-ins.
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Figure 2. The data flow path from the client site to the HPC
center. Each intermediate node (hexagon) runs NWS (gray square)
for bandwidth monitoring.

5) Staging and Compute Dependency: Upon receiving a

job script, the manager splits it into the compute job and

the staging task. The compute job is submitted to the batch

queue to ensure that it is in line to start to run by the user

deadline. The staging task is placed on a data job queue to

start data delivery as necessary. The manager also sets up a

dependency such that the compute job does not begin until

the staging has finished. To this end, we use and extend our

earlier works [32], [33] on instrumenting the job submission

system, and the stagesub tool used in the ORNL Jaguar

machine.

C. Supporting Timely Staging

Once the data staging is initiated, the client chooses a

number of nodes from the set of Ni’s (fan-out) ordered

by available bandwidth. The cardinality of the fan-out is

chosen to stage-in all the necessary data before the predicted

job start time. These chosen Ni’s serve as the Level-1

intermediate nodes. Note that the selected fan-out is not

static, and can vary depending on the actual transfer speeds

and the impending deadline. The manager monitors the

changing bandwidths periodically (using NWS) to determine

if a chosen fan-out needs to be increased. Next, the input

data is split into chunks and parallel transfer of the chunks

to Level-1 nodes is initiated. The transfer may also involve

further levels of intermediate nodes (up to Level-N ). The

choice of the number of levels of intermediate nodes is left

to the users, and does not have a direct bearing on the center

to Level-N node performance that is critical for our design.

The levels simply enable users to provide multiple data-flow

paths to the center, and we foresee the levels to be not more

than two in typical scenarios. Additionally, depending on the

availability of intermediate nodes, the client can also stage

the data to Level-N nodes much earlier than the deadline.

As the job startup deadline approaches, the close prox-

imity of the Level-N nodes to the center allows them to

quickly move the input data to the center’s scratch space.

Also, this design allows the Level-N nodes to stage the data

at peak (pre-specified) bandwidth at the most appropriate

time without worrying about the availability (and connection

speed) of the submission site (Figure 2).



Intermediate nodes provide multiple data-flow paths as

well as several alternative options for data delivery. For

instance, data may be replicated across different Ni’s during

the transfer from one level to the other. This will allow

the center to pull data from a number of locations, thus

providing fault tolerance against node failure, as well as

better utilization of the available in-bandwidth at the center.

D. Discussion

Recent studies have shown the high rate of storage sys-

tem failures [8], [9], [10] and the complexity of ensuring

reliability in large-scale installations [34], [35], [36] such

as the HPC scratch space. Improving reliability in such

fixed installations entail going through a rigorous and time-

consuming acquisition process mired with delays. In con-

trast, the collective use of less-reliable individual interme-

diate nodes can provide a solution that can be arbitrarily

grown to accommodate any desired level of reliability. Thus,

we argue that although individual intermediate nodes may be

more prone to errors compared to individual disks in an HPC

center, as a system our approach is able to provide better

reliability due to its flexibility. Plus, this reliability comes

for free as we use resources volunteered by collaborators,

which would otherwise not be used [37].

Alternative design considerations: There are several

possible alternative solutions for the HPC staging problem,

namely, adding more scratch space, streaming data directly

and not using the scratch space, and moving computations

closer to data. In the following, we discuss why we did not

adopt these options in our design.

First, we reiterate that simply adding more scratch is not

practical (Section I), as scratch is a precious commodity

and provisioning more scratch means taking dollars away

from buying FLOPS, and more FLOPS are how most HPC

acquisition proposals are won.

Second, streaming data online and bypassing scratch to

support HPC applications is not viable and sustainable

(based on Top500 supercomputers). Be it large input/output

or checkpoint data, scratch is desirable (and mandated by the

HPC center) for its high-speed parallel I/O bandwidth (e.g.,

Jaguar [7] scratch offers I/O rates of 256 GB/s). A 100,000-

core job cannot afford to idle its cores (wasting compute

time), waiting for the input data to be streamed in from re-

mote locations. Furthermore, streaming mechanisms cannot

match the I/O rates required to keep such large systems busy.

In fact, as pointed out earlier, HPC centers spend millions of

dollars provisioning and optimizing scratch exactly to avoid

this scenario.

Third, moving computation closer to data is a compelling

idea, but there are numerous HPC applications, e.g., DOE

supercomputer and NSF TeraGrid applications, which cannot

be sustained on users’ local clusters where data may be avail-

able. Our design takes all these factors into consideration for

realizing a practical solution to the staging problem.
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Figure 3. Implementation architecture for timely staging.

#PBS -N myjob

#PBS -l nodes=128, walltime=12:00

mpirun -np 128 ˜/MyComputation

#Stagein file://SubmissionSite:/home/user/input1

file:///home/scratch/user/input1

#Stagein wget://WebRepo:/input2

file:///home/scratch/user/input2

#InterNode node1.Site1:49665:50GB

#InterNode nodeN.SiteN:49665:30GB

#JobStartDeadline 11/14/2008:12:00

Figure 4. An instrumented PBS script for timely staging.

III. IMPLEMENTATION

We have implemented the timely staging manager using

about 3500 lines of C code, with the p2p overlay created us-

ing FreePastry [38]. Figure 3 shows the overall architecture

as well as the interactions between the manager components.

Integration with Job Submission: To facilitate easy

adoption of our scheme by the community, we have inte-

grated it with the widely-used PBS [39] job submission sys-

tem. Specifically, we instrument the job submission scripts

to let users specify intermediate nodes and deadlines. An

example instrumented PBS script is shown in Figure 4,

where the user specifies intermediate nodes and deadlines

as well as details such as available storage capacities. The

nodes listed in the script are just a suggestion, and the

actual runtime queries these nodes directly for availability

as needed.

The annotated script is submitted to the staging manager

on the center, which filters out the staging-specific directives

and forwards the remaining script to the standard batch

queue, but with a dependency on the staging task.

Integration with BitTorrent and NWS: We exploit Bit-

Torrent’s [15] scatter-gather protocol for transferring data

by extending the protocol to use NWS bandwidth measure-

ments. The NWS measurements are integrated with bittor-

rent to dynamically select locations from where to retrieve a

particular dataset, and adapt to changing network behavior

by adjusting fan-out to enable staging of data in time. This

is in contrast to the standard protocol, which will continue

to use a location(s) even if the performance degrades.

This allows efficient use of the orthogonal bandwidth, and

provides opportunities to improve overall transfer times.

The Staging Manager creates a “torrent” file for the subset

of data to be transmitted to a set of chosen intermediate



nodes. Upon receiving the torrent file, the nodes use the

metadata information in the file along with a BitTorrent

tracker to “download” the data subset to their local storage.

The process is repeated at all the intermediate node levels.

When the job is about to run at the center, the Manager can

use appropriate torrent files to pull the input data from the

intermediate nodes to the center, thus completing the staging

process.

Center-wide Global Staging Considerations: Since we

anticipate all jobs, along with their staging needs will be sub-

mitted through the staging manager, we have instrumented

into the manager certain global optimizations that can be

performed across all jobs. (1) All jobs that desire a staging

to the Level-N , i.e., one hop away from the center, can be

started immediately. Since these stage-in operations do not

use any center resources — neither occupying scratch space

nor consuming bandwidth — the data can be brought closer

to the center and pulled in much faster when needed. (2) A

job whose startup deadline tightens during the course of a

previously initiated stage-in will be given higher priority if it

is determined that the staging may not complete in time. For

instance, this could mean providing more flows to maximize

the last leg of the transfer, using more of the center’s in-

coming bandwidth.

Ensuring Data Reliability: To ensure that data is reli-

ably staged on the center, we employ replication of data by

sending out chunks to more than a single location. This is

a tunable parameter in our implementation and users can

specify the minimum number of replicas that should be

created for a given dataset. If necessary, more space-efficient

erasure codes can be used. The erasure code that we have

used in our implementation is Reed-Solomon [40] in 4:5

coding configuration, i.e., four input chunks are coded to

produce five output chunks, with a redundancy of 25%. The

chunk-size is also a tunable parameter which can be set

based on the size of the datasets being transferred.

Multi-Input Staging: Our implementation is capable of

retrieving data from more than a single source, directly as

well as incorporating it into the decentralized transfer. The

data sources are provided as links in the job-submission

script. If the external data source runs an instance of our

software, the staging manager can simply use the NWS in-

formation to decide between direct or decentralized staging.

However, if the external source does not support NWS, the

staging manager uses small scale tests, e.g., partial download

from a web repository, to determine expected transfer times

and make staging decisions. In this case, the goal of the

staging manager is to ensure staging of all input data from

all sources before the predicted job startup time.

IV. EVALUATION

In this section, we present an evaluation of our timely

data staging using both our implementation on the PlanetLab

Table I
AVERAGE OBSERVED BANDWIDTH BETWEEN PLANETLAB

NODES DURING EXPERIMENTATION. ALL NUMBERS ARE IN

MB/S.

Center Client Level-1 Level-2

Center - 3.82 - 10.9
Client 3.07 - 5.22 -

Level-1 - 3.86 - 4.22
Level-2 9.47 - 5.66 -

Table II
TRANSFER TIMES (IN SECONDS) USING A DIRECT TRANSFER

(scp) AND OUR DECENTRALIZED STAGING.

File size
Step 1 GB 2 GB 5 GB

Direct 864 2034 5188
Client offload 703 1264 4082

Center pull 155 337 731

testbed [24], and a simulator driven by three-year job-

statistics logs from the Jaguar [7] supercomputer. We also

compare our results to the popular direct transfer technique

that is the default approach for staging input data in many

HPC centers.

A. Implementation Results

First, we use the PlanetLab [24] testbed to study the ef-

fectiveness of our decentralized staging in a true distributed

environment. We chose 20 PlanetLab nodes arranged in a

tree-structure: one as the client site and root of the tree,

one as the HPC center, 10 Level-1 nodes, and 8 Level-

2 nodes. Table I shows the average bandwidths observed

between the nodes during the course of our experiments.

Our results represent averages over a set of three runs.

1) Decentralized Staging vs. Direct Transfer: In this

experiment, we compare decentralized staging to a point-

to-point direct transfer using scp. For this purpose, we

used a range of file sizes from 1 GB to 5 GB, limited

by PlanetLab policies, and measured the time to transfer

data under the two schemes. Table II shows the times for

direct data transfer from client to HPC center (Direct), from

client to Level-1 nodes (Client offload), and from Level-2

to the center (Center Pull). Compared to a direct transfer,

the decentralized staging can reduce the last-hop transfer

times by 82.1% to 85.9% for 1 GB and 5 GB data sizes,

respectively.

This implies that the decentralized staging can delay

copying of data to scratch space by a factor of 6.2 on average

across the studied file sizes, and still get the data to the center

in time for the job to start. Thus, it reduces the time the

scratch space has to hold the data, consequently, reducing the

exposure window (Ew), and improving center serviceability.

2) Effect of Using NWS Measurements: Next, we com-

pare our NWS-based monitored transfer approach with a

standard BitTorrent-based data transfer. In this case, we use



Table III
THE TIME TO TRANSFER A 2 GB FILE USING STANDARD

BITTORRENT. THE EQUIVALENT PHASES FOR OUR SCHEME ARE

SHOWN IN BRACKETS.

Phase Time(s)

Send to intermediate nodes (Client offload) 1428
Download at HPC center (Center pull) 362

C

S X Y
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X Y

CX Y
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I II III

Figure 5. Configurations used in Multi-Input test.

NWS bandwidth measurements to greedily provision Level-

2 nodes to increase the fan-in, i.e., the number of nodes

simultaneously transferring data to the center, to utilize the

maximum center in-bound bandwidth. Table III shows the

times taken to deliver a 2.0 GB file using standard BitTorrent

protocol. Compare these to the transfer times using our

timely staging shown earlier in Table II: both Client offload

and Center pull in our approach out-perform by 11.5%

and 6.8%, respectively, the corresponding steps in regular

BitTorrent transfer. These results show that active bandwidth

monitoring provides a good tool for improving staging times.

3) Employing Decentralized Staging: In the above exper-

iments, the bandwidth available between the Level-2 nodes

and the center, which dictates Center pull times, is greater

than that between the client and the center, which dictates

direct transfer time. Thus, the center always decided to

perform decentralized staging. In the next experiment, we

modified the setup to use a faster node as the client site,

and repeated the experiment for staging a 2 GB file. First,

we do the transfer without considering direct transfer and

always using decentralized staging. Second, we repeat the

experiment with the ability to choose between direct and

decentralized staging depending on the ability to meet a

transfer deadline (job startup). We observed that for the

first case, the time to stage and transfer the data to the

center was 2867 seconds. In contrast, for the second case the

direct transfer completed in 968 seconds, an improvement of

66.2%. This stresses the need for the staging mechanisms to

dynamically adjust to the variations in the system behavior,

and to not be hard-wired to simply always do a staged

transfer or a direct transfer.

4) Multi-Input Staging: Next, we study the ability of

our decentralized staging to accommodate input data from

multiple sources. We consider three configurations, shown

in Figure 5, with two sources (X and Y ) of data in addition

to the client site (S). In I, the data from all sources is staged

in a decentralized manner. This captures retrieving data from

Table IV
TRANSFER TIMES (IN SECONDS) FOR MULTI-INPUT DATA

UNDER DIRECT AND DECENTRALIZED STAGING.

Configuration
Step I II III

Direct 652 872 844
Client Offload (S) 318 672 740

X offload 646 92 N/A
Y Offload 574 142 N/A

Center Pull 312 158 340

Staging time 312 158 340
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Figure 6. Transfer time as different combinations of Level 1 (L1)
and Level 2 (L2) nodes are failed. The results are normalized with
respect to a direct transfer.

slower external sources. In II, we consider fast external

sources, e.g., online data repositories [6] so the center can

directly retrieve from them. Finally, in III, the intermediate

nodes may already have the data, such as collaborating sites

in TeraGrid jobs [27]. For each case, we compare a direct

transfer from the sources to that of our staging. Table IV

shows the results. It is observed that decentralized staging

is able to handle multiple sources, and outperform direct

transfers by 52.1%, 81.8% and 59.7% for I, II, and III,

respectively. Note that in real scenarios, the staging manager

will switch between the various configurations depending on

the transfer rates and staging deadlines.

5) Behavior Under Failures: Improved transfer times are

key to delaying staging, and thus reducing scratch space

usage times. Therefore, in the following set of experiments,

we study how failures will affect the transfer times under

our framework.

First, we examine intermediate node failures. We focus

on our decentralized staging, as a failure under direct will

result in data transfer to be incomplete by job startup

time, consequently leading to obvious job rescheduling.

Figure 6 shows transfer time achieved by our approach

under various failure scenarios, normalized to direct transfer

time. We failed two intermediate nodes under three different

scenarios: two Level-1 nodes fail, a Level-1 and a Level-

2 node fail, and two Level-2 nodes fail. In this test, the
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Figure 7. The distribution of staging delay and re-transmission overhead for 25 transfers with one scratch space failure.

number of replicas at each level is set to 3. The system

tolerates two Level-1 failures, i.e., 20% of Level-1 nodes,

with negligible affect. A failure at Level-2 increases the

transfer time somewhat (by a factor of 1.3), but two Level-2

failures are significantly more disruptive (time increase by

a factor of 2.7). However, this is an extreme case with 25%

of the Level-2 nodes failing. On the plus side, the transfer

time, even with these failures, is less than half (41.2% on

average) that of the direct transfer. Furthermore, our flexible

design can easily accommodate extra replicas to improve

fault tolerance, as observed by the reduction of transfer times

for each of the Level-2 failure cases when one extra replica

is used. This experiment shows that dynamic rerouting of

our approach can adapt to the changing network conditions

and ensure meeting the staging deadline with minimal delays

if any. Moreover, the use of a flexible routing path between

the client site and HPC center allows for offsetting delays

due to intermediate node failures.

Next, we examine how failure in scratch space affect the

ability of a transfer scheme to meet a given job deadline.

Here, we capture the early-transferring approach of users by

starting the direct transfers as early as TJobStartup −n ∗Tj ,

with 1 ≤ n ≤ 10. Next, we randomly introduce a single

failure on the scratch space between the time of starting the

transfer and TJobStartup, and determine the delay in meeting

the job deadline, as well as the extra amount of data that

has to be transferred. For timely staging, we assume perfect

prediction, so it starts staging-in data as late as possible

for a given file size. The experiment is repeated 25 times

using files of sizes from 1 GB to 5 GB, for each studied

n. Figure 7 shows the distribution of delay in meeting a

deadline and the amount of data re-transferred, respectively.

In the distributions, a higher count for a smaller x-axis value

is desirable as that implies less delay and higher chances of

meeting a deadline, and less data re-transfers. Our timely

staging shows excellent properties with 98% of the transfers

Table V
STATISTICS ABOUT THE JOB LOGS USED IN THE SIMULATION

STUDY.

Duration 22764 Hrs

Number of jobs 80234

Job execution time 30 s to 120892 s, average 5835 s

Input data size 2.28 MB to 3714 GB, average 32.1 GB

completing with no delay. In contrast, only a direct transfer

that starts as early as with n = 10 is able to come close with

94% transfers without delay. With n = 2, only 31% of direct

transfers complete in time. The flip side is that by staging

early, the data remains exposed to the failures on the scratch

and possible re-transfers. It is observed that while over 91%

of the transfers in our approach had no retransmissions due

to exposure to failures, that is only true for 36% of the cases

with direct transfers.

Note that since we introduce a single failure, the maxi-

mum overhead is 100%. In real scenarios, multiple failures

can further exacerbate the problem, as the re-transfer may

now take much longer than the earlier transfer or failures

in the system may prevent immediate response to a failure.

This implies that delaying staging is preferable. Thus, our

timely staging is able to withstand failures much close to

the job deadline, and the delay if any is small. Such delay

can be easily compensated by assuming a slightly tighter

deadline than actual, as discussed in Section II.

B. Simulation Results

In this section, we study the performance of timely staging

using job-statistics logs collected over a period of three-

years on the Jaguar [7] supercomputer. Table V shows some

relevant characteristics of the logs.

To analyze the logs, we have developed a simulator that

captures the design of our setup. The simulator models job

queuing, scheduling, batch-queue prediction, job execution

times, and provides data about scratch space usage and delay
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Figure 8. Scratch savings under timely staging compared to direct.
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in meeting deadlines. It also models distributed intermediate

nodes, their bandwidth variations and decentralized data

staging. It uses the connectivity values from PlanetLab

nodes and plays the periodic snapshot NWS bandwidth

measurements to emulate volatility. In the following, we use

this simulator to gain insights into timely staging.

1) Impact on Scratch Space Usage: In this experiment,

we quantify the impact of timely staging on scratch space

usage. We play the logs in our simulator and determine

the amount of scratch used both under direct and timely

staging. For this test, we assume that the scratch is empty

at the beginning, and use perfect batch queue prediction.

Moreover, the center is setup for weekly purges of the

scratch space and the maximum center in-bound bandwidth

is limited to 10 Gb/s. Only input data is considered, and a

data item is only purged if its associated job has completed.

Figure 8 shows the instantaneous savings in scratch space

usage by timely staging compared to direct, measured every

10 minutes. The instantaneous savings (associated with a job

input data) become zero as the job startup time approaches,

as timely staging has to bring in the necessary data. A more

representative aspect is the average savings over a period of

time, as it captures not only the savings but the duration

for which the savings were possible. Therefore, we also

show the average savings calculated per hour. Finally, we

calculated the average savings per hour across the entire

log, and found that staging uses 2.43% less scratch per unit

of time (e.g. 24.9 GB/Hr on average per Terabyte of storage)

compared to direct. Thus, timely staging is a promising way

for conserving precious scratch resource.

2) Effect on Exposure Window: In this experiment, we

repeat the previous experiment, but now study the exposure

window (Ew), i.e., duration for which the data has to wait on

the scratch before the associated job is run. Figure 9 shows

the observed Ew under direct and timely staging, for each

job in our log, arranged in ascending order. For 30.7% of

the jobs, timely staging was effectively able to reduce Ew
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Figure 9. Size of exposure window for each job in the log.

to zero, and for the remaining jobs it reduced Ew by 64.2%,

i.e., 75.2% reduction on average across all jobs. Moreover,

Ew was reduced by at least a factor of 10 for 48.3% of the

jobs. However, it is seen that some jobs (≈ 1.3%) with large

Ews saw only negligible (< 1%) affect from timely staging.

The reason for this is that: (i) many jobs require large input

data, so the long duration of transfer increases the effective

Ew; and (ii) many jobs in our logs arrived in bursts, and

timely staging is forced to start transfers early to ensure all

necessary data is available and avoid staging errors. Overall,

the significantly reduced Ew for most jobs under timely

staging shows that it can provide better resiliency against

storage system failures and costly re-staging.

3) Effect of Job Startup Time Prediction: In this exper-

iment, we randomly introduce up to 20% variance in the

batch queue prediction and the actual job start-up time.

Then, we simulate the time by which timely staging will

miss the actual job start-up, i.e. staging error. Figure 10

shows the distribution of staging error for different predic-

tion accuracies. The results show the dependence of timely

staging on the accuracy of batch queue prediction: as the

error in accuracy increases from 0% to 20%, the number

of jobs with no staging error reduces from 95% to 75%,

i.e., by 21%. However, even with increased prediction error,

the number of jobs with significant delays is much less

than half (30.6% of the jobs suffer a staging error of more

than 1000 seconds). Note that in this test, we assumed

that the prediction error remains constant, however, in real

scenarios, the accuracy is improved as the start-up time

draws near, implying that timely staging will have much

improved performance than studied in this case. Finally, the

results show that the approach can withstand some prediction

errors, and with improved predictions becoming available,

can provide better staging alternatives.

V. RELATED WORK

Users either perform out-of-band manual staging, or in-

clude the staging commands in the job scripts. Manual
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staging lacks coordination with job start-up times. Scripted

staging wastes compute allocation as allocated cores are

waiting while the data is being staged. In our own earlier

work, we addressed this to some extent by decoupling data

movement from computation and scheduling it separately

using a zero-charge data queue [32]. Our work in this paper

complements this effort and can be used therein.

PBS Pro [13] supports stage-in requests with and without

jobs. In the former, the job is run once the staging finishes.

However, if there are other jobs waiting to be run, there

is unnecessary scratch space usage and exposure of data. In

the latter, prolonged exposure of data is unavoidable until the

compute job is submitted. Moab [14] attempts to coordinate

staging with job startup. However, these solutions do not

adapt the data staging to changes in job startup times. There

is no way to expedite the transfer as they only support point-

to-point transfer protocols. Consequently, these solutions

cannot address network volatility either.

Stork [20] a scheduler for data placement activities in

a grid environment, along with Condor [41] and DAG-

Man [42], is used to schedule data and computation together

in the face of vagaries. However, these systems are posi-

tioned as a part of the application workflow rather than a set

of HPC center integrated services, where our work resides.

BatchAware Distributed File System (BAD-FS [43]) con-

structs a file system for large, I/O intensive batch jobs

on remote clusters. BAD-FS addresses the coordination of

input data and computation by exposing distributed file

system decisions to an external workload-aware scheduler.

We attempt to inherently improve the job workflow without

creating a new file system.

Kangaroo [44] uses intermediate buffers in grid transfers,

with the goal to provide reliability against transient resource

availability. However, it simply provides a staged transfer

mechanism and does not address network vagaries. IBP [45]

uses a set of strategically placed resources to move data. Our

approach also exploits the presence of pre-installed storage

nodes. However, it combines both staged and decentralized

transfers to deliver data under a deadline.

Systems such as Bullet [17], [18], Shark [19],

CoDeeN [46], and CoBlitz [21] have explored the use

of multicast and p2p-techniques for transferring large data

between multiple Internet nodes. Their focus is on down-

loading user or multimedia data. Staging requires factoring

in center-user agreements and dynamic resource availability,

which are not considered in these systems. Downloading

large files from several mirror sites has been validated by

its wide-spread use in BitTorrent [15], and many other pro-

tocols have been proposed [47], [48], [49]. These works are

complementary, and we build on their principles, especially

BitTorrent.

VI. CONCLUSION

In this paper, we have presented the design and im-

plementation of a timely staging framework to coincide

input data delivery with job startup. Our framework lever-

ages periodic job wait time estimates from a batch queue

prediction service, user-specified intermediate nodes, and

periodic network bandwidth measurements to deliver input

data on time. We use this in conjunction with BitTorrent

that we instrumented to use dynamic network monitoring

information to adapt to transient network conditions and to

tap available residual network bandwidth. Thus, our solution

is able to reconcile several key factors such as reduce

the duration of scratch space consumption and exposure

window, adapt to volatility and deliver the data on time.
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Barroso. Failure trends in a large disk drive population. In
Proc. USENIX FAST, 2007.

[10] S. Shah and J.G. Elerath. Reliability analysis of disk drive
failure mechanisms. In Proc. RAMS, 2005.

[11] W. Smith, V.E. Taylor, and I.T. Foster. Using run-time pre-
dictions to estimate queue wait times and improve scheduler
performance. In Proc. JSSPP, 1997.

[12] A. Downey. Using queue time predictions for processor
allocation. In Proc. JSSPP, 1997.

[13] Pbs pro technical overview: Scheduling and file staging. https:
//secure.altair.com/sched staging.html, 2008.

[14] Cluster resources. http://www.clusterresources.com/, 2008.

[15] Bram Cohen. BitTorrent Protocol Specification. http://www.
bittorrent.org/protocol.html, 2007.

[16] Rich Wolski, Neil Spring, and Jim Hayes. The Network
Weather Service: A distributed resource performance fore-
casting service for metacomputing. Future Generation Com-
puting Systems, 15(5):757–768, 1999.

[17] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet:
High bandwidth data dissemination using an overlay mesh.
In Proc. ACM SOSP, 2003.

[18] Dejan Kostic, Adolfo Rodriguez, Jeannie Albrecht, Abhijeet
Bhirud, and Amin M. Vahdat. Using random subsets to build
scalable network services. In Proc. 4th USENIX USITS, 2003.

[19] S. Annapureddy, M. J. Freedman, and D. Mazires. Shark:
Scaling file servers via cooperative caching. In Proc. 2nd
USENIX NSDI, 2005.

[20] T. Kosar and M. Livny. Stork: Making data placement a first
class citizen in the grid. In Proc. ICDCS, 2004.

[21] KyoungSoo Park and Vivek S. Pai. Scale and performance
in the CoBlitz large-file distribution service. In Proc. 3rd
USENIX NSDI, 2006.

[22] W. Allcock, J. Bresnahan, R. Kettimuthu, and M. Link. The
Globus Striped GridFTP framework and server. In Proc. of
Supercomputing, 2005.

[23] M. Gleicher. HSI: Hierarchical storage interface for HPSS.
http://www.hpss-collaboration.org/hpss/HSI/, 2009.

[24] Larry Peterson, Tom Anderson, David Culler, and Timothy
Roscoe. A Blueprint for Introducing Disruptive Technology
into the Internet. In Proc. ACM HotNets, 2002.

[25] C. Hsu and W. Feng. A power-aware run-time system for
high-performance computing. In Proc. SC, 2005.

[26] Department of Energy, Office of Science. Innovative and
Novel Computational Impact on Theory and Experiment
(INCITE), Jan 2008. http://www.er.doe.gov/ascr/incite/.

[27] TeraGrid. http://www.teragrid.org/, 2009.

[28] Internet2. http://www.internet2.edu/, 2008.

[29] Reddnet. http://www.reddnet.org/, 2009.

[30] National Lambda Rail. http://www.nlr.net/, 2008.

[31] Batch Queue Prediction. http://nws.cs.ucsb.edu/ewiki/nws.
php?id=Batch+Queue+Prediction, 2008.

[32] Z. Zhang, C. Wang, S. S. Vazhkudai, X. Ma, G. Pike, J. Cobb,
and F. Mueller. Optimizing center performance through
coordinated data staging, scheduling and recovery. In Proc.
SC, 2007.

[33] H. Monti, A.R. Butt, and S.S. Vazhkudai. /scratch as a cache:
Rethinking hpc center scratch storage. In Proc. ICS, 2009.

[34] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar
Pasupathy, and Jiri Schindler. An Analysis of Latent Sector
Errors in Disk Drives. In Proc. SIGMETRICS, 2007.

[35] Ilias Iliadis, Robert Haas, Xiao-Yu Hu, and Evangelos Eleft-
heriou. Disk scrubbing versus intra-disk redundancy for high-
reliability raid storage systems. In Proc. SIGMETRICS, 2008.

[36] Alma Riska and Erik Riedel. Idle read after write: Iraw. In
Proc. USENIX ATC, 2008.

[37] Ali R. Butt, Troy A. Johnson, Yili Zheng, and Y. Charlie
Hu. Kosha: A peer-to-peer enhancement for the network file
system. Journal of Grid Computing: Special issue on Global
and Peer-to-Peer Computing, 4(3):323–341, 2006.

[38] Druschel et. al. Freepastry. http://freepastry.rice.edu/, 2004.

[39] Albeaus Bayucan, Robert L. Henderson, Casimir Lesiak,
Bhroam Mann, Tom Proett, and Dave Tweten. Portable Batch
System: External reference specification. November 1999.
http://www-unix.mcs.anl.gov/openpbs/docs/v2 2 ers.pdf.

[40] J. S. Plank. A tutorial on Reed-Solomon coding for fault-
tolerance in RAID-like systems. Software – Practice &
Experience, 27(9):995–1012, 1997.

[41] M. J M. J. Litzkow, M Livny, and M. W Mutka. Condor - A
hunter of idle workstations. In Proc. ICDCS, 1988.

[42] Directed acyclic graph manager. http://www.cs.wisc.edu/
condor/dagman/, 2007.

[43] J. Bent, D. Thain, A. Arpaci-Dusseau, R. Arpaci-Dusseau,
and M. Livny. Explicit control in a batch aware distributed
file system. In Proc. NSDI, 2004.

[44] D. Thain, S. Son J. Basney, and M. Livny. The kangaroo
approach to data movement on the grid. In Proc. HPDC,
2001.

[45] J. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany, and
R. Wolski. The Internet Backplane Protocol: Storage in the
network. In Proc. Network Storage Symposium, 1999.

[46] L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson. Reliability
and security in the CoDeeN content distribution network. In
Proc. USENIX ATC, 2004.

[47] P. Rodriguez, A. Kirpal, and E. W. Biersack. Parallel-access
for mirror sites in the internet. In Proc. IEEE Infocom, 2000.

[48] James S. Plank, Scott Atchley, Ying Ding, and Micah Beck.
Algorithms for high performance, wide-area distributed file
downloads. Parallel Processing Letters, 13(2):207–224, 2003.

[49] Rebecca L. Collins and James S. Plank. Downloading repli-
cated, wide-area files – a framework and empirical evaluation.
In Proc. Symposium on Network Computing, 2004.


