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Abstract
Continuing increase in the computational power of supercom-

puters has enabled large-scale scientific applications in the ar-
eas of astrophysics, fusion, climate and combustion to run larger
and longer-running simulations, facilitating deeper scientific in-
sights. However, these long-running simulations are often inter-
rupted by multiple system failures. Therefore, these applications
rely on “checkpointing” as a resilience mechanism to store appli-
cation state to permanent storage and recover from failures.

Unfortunately, checkpointing incurs excessive I/O overhead on
supercomputers due to large size of checkpoints, resulting in a sub-
optimal performance and resource utilization. In this paper, we de-
vise novel mechanisms to show how checkpointing overhead can
be mitigated significantly by exploiting the temporal characteristics
of system failures. We provide new insights and detailed quantita-
tive understanding of the checkpointing overheads and trade-offs
on large-scale machines. Our prototype implementation shows the
viability of our approach on extreme-scale machines.

1. Introduction

Increase in the computational capability of supercomputers has en-
abled scientists to run larger simulations both in time and size, facil-
itating deeper scientific insights [1, 29]. Unfortunately, these long-
running simulations are often interrupted by multiple system fail-
ures. Therefore, applications have traditionally relied on “check-
pointing” as a resilience mechanism against failures. Checkpoint-
ing is a process by which applications periodically save their state
to permanent storage so they can restart from a previously known
stable state, in the event of a failure [16, 27].

Checkpointing and restoring the application state after a failure
exerts severe pressure on the I/O subsystem, as it involves writing
and reading a large amount of data from permanent storage [3, 6].
For example, GTC, a fusion application writes 20 TB of checkpoint
data per hour at-scale and has to read back at every failure.

To illustrate this, Fig. 1 (top) shows the time spent on I/O, use-

ful computation and wasted work1 for different system sizes. As the
system size increases, the time spent on I/O increases significantly
to perform a fixed amount of computation because of the increased
failure rate. The I/O overhead and wasted work are also dependent
on the frequency of checkpoints. For example, comparatively less
frequent checkpointing may decrease the I/O overhead (Fig. 1 (bot-
tom) vs (top)), but will increase the wasted work, possibly increas-
ing the application’s total execution time. Therefore, checkpointing
has implications to both storage and compute systems.

Unfortunately, both system administrators and the scientific ap-
plication programmers have a limited understanding of the inter-
play between checkpointing, the I/O overhead and the compute re-
source wastage, due to the non-trivial trade-offs involved and the

1 Wasted or lost work is the amount of work between the failure and the last
checkpoint that can not be recovered.
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Figure 1. Impact of checkpoint/restart mechanism on a large-scale

application checkpoint taken every hour (top), and every four hours
(bottom). Checkpoint and restart time 30 mins and 15 mins, respec-
tively. MTBF of each node is taken as 25 years and scaled according
to the system size. Large-scale scientific applications are weak-scaling,
i.e., the compute time per node remains a constant.

lack of a large-scale quantitative study. Therefore, the goal of this
paper is to understand, quantify and mitigate the impact of check-
pointing on the storage system on extreme-scale machines. The
study is driven using analytical models, statistical techniques, and
real large-scale computing facility parameters, logs and traces.

Contributions: First, we study the effect of the traditional peri-
odic checkpointing technique for a variety of leadership computing
applications, using an analytical model and simulation based vali-
dation. Our study reveals several interesting, previously unknown
insights. We show that the analytically derived optimal checkpoint
interval, though difficult to determine in a dynamic environment,
can be approximated and works well in most situations.

Second, we investigate failures on multiple leadership comput-
ing facilities to understand their impact on I/O overhead and com-
pute resource wastage. One of our interesting findings, from ana-
lyzing more than 9 years worth of failure data from supercomputing
facilities, is that failures have a strong temporal locality. The proba-
bility of a failure is high soon after a failure has occurred (i.e., more
failures occur on the heels of a failure).

Based on our observation of the temporal locality in failures,
we propose two novel techniques, Lazy Checkpointing and Skip
Checkpointing, that place checkpoints by taking advantage of the
temporal locality in failures, instead of naively taking periodic
checkpoints.

The temporal locality in failures indicates that a significant frac-
tion of failures is likely to occur within a relatively shorter time-
period (compared to the MTBF of the system) after a failure strikes.



Domain Application Checkpoint
data size

Job run-time

Astrophysics CHIMERA 160 TB 360 Hours

Astrophysics VULCUN/2D 0.83 GB 720 Hours

Climate POP 26 GB 480 Hours

Combustion S3D 5 TB 240 Hours

Fusion GTC 20 TB 120 Hours

Fusion GYRO 50 GB 120 Hours

Table 1. Checkpoint data size and job run-time of characteristics of

leadership applications.

Lazy checkpointing takes advantage of this observation by intel-
ligently increasing the checkpointing interval between two fail-
ures with minimal or no performance degradation. Our proposed
scheme dynamically increases the checkpointing interval using the
statistical properties of failure inter-arrival times. To avoid poten-
tial performance degradation, we provide an upper bound to these
increasing checkpointing intervals and reset the checkpointing in-
terval to default optimal checkpointing interval at every failure.

Our evaluation demonstrates that Lazy checkpointing can sig-

nificantly reduce the I/O overhead2. We present, Skip checkpoint-
ing, an alternative, simpler and static checkpointing technique that
takes advantage of temporal locality in failures as well. Skip check-
pointing scheme skips a “later” checkpoint after a failure instead of
the ones that follow immediately. We present a thorough evaluation
of the benefits and limitations of both proposed techniques.

Third, we have built a prototype implementation that integrates
different checkpointing strategies. We evaluate the techniques us-
ing this prototype and actual supercomputing I/O traces and fail-
ure logs, and show that our technique can significantly mitigate the
checkpointing overhead even in a dynamic environment.

2. Background and Methodology

2.1 Leadership Computing Facility and Scientific Applica-

tions’ Requirements

Our work is primarily modeled and evaluated based on Titan, No.
2 on the Top 500 supercomputer list. Titan consists of 18,688
compute nodes (CPU and GPU) and more than 700 TB memory
capacity. At the time of this study, it had a peak I/O bandwidth
of 240 GB/s. Titan’s peak performance is approx. 27 Petaflops.
We have also included various system design points to show the
relevance of our insights and the impact of our techniques for future
exascale systems.

Table 1 shows the checkpoint size and run time for different

leadership applications3, based on traditional hourly checkpoints
on Titan [1, 29]. Table 1 depicts application-level checkpointing,
wherein an application only saves the data it deems necessary for
a restart, as opposed to system-level checkpointing that saves the
entire system state [16]. Therefore, depending on the nature of the
application, the checkpoint size can vary significantly. Although
with the variation in the checkpoint interval, the size of checkpoint
data may vary, but for simplicity we assume it to be a constant.

2.2 Data Collection

I/O Data: I/O data, presented in this study, has been collected on
the DDN RAID controllers on the Titan’s Spider storage system
(Lustre parallel file system). I/O statistics such as bandwidth and
IOPS are collected at a granularity of 2 second intervals over these
DDN controllers (negligible overhead is observed on Spider due to

2 We use the terms I/O overhead and checkpointing cost interchangeably.
3 Leadership-scale computing refers to supercomputers facilitated by the
Department of Energy, and we refer to the large-scale application run on
these supercomputers as leadership applications.

this monitoring). A corresponding database is populated with this
data using a custom utility [24].

Failure Data: Failure related data, presented in this study, has
been collected from multiple supercomputing facilities such as the
Oak Ridge Leadership Computing Facility (OLCF) and the Los
Alamos National Lab (LANL), over a total of 1000 failures. The
OLCF data represents Titan’s failure log data for approx. sixe
months since it went into production (Mar’13). The failure log-
ging is mostly automated at OLCF. Limited amount of console logs
from the compute nodes are pushed to a Cray admin server where a
daemon utility runs continuously to parse them and detect failures.
The parser uses a simple event correlator to parse important events,
based on a set of rules. The simple event correlator identifies all
the events that may require some action, and not necessarily fail-
ures. The rules are periodically updated to reflect the addition of
new components and events (e.g., new custom interconnect, GPU
addition).

We have identified the events that cause application failure to
avoid any under/overestimation of failures. We collect all of the
system-level failures, including some software failures. We do not
account for all storage-subsystem failure as not all of them will
cause an application to fail-stop. However, some Lustre parallel
file system related failures do fail-stop an application and they
have been accounted for appropriately. Since the log provides exact
time stamps, it can be used in a dynamic environment to reduce
checkpointing overhead as shown later.

LANL failure logs are collected manually, but for a relatively
longer duration (9 years) [33]. It has been used to support our
findings and the applicability of our proposed techniques.

We have conservatively assumed the per-node MTBF to be 25
years, which is higher than what is observed in our system. System
MTBF is obtained by dividing the per-node MTBF by the system
size.

3. Understanding I/O Overheads on Leadership

Scale Computing Systems

Large-scale scientific applications traditionally checkpoint hourly
depending on the estimated I/O overhead. This stems from the fact
that they are not aware of the system failure rate or the MTBF.
Unfortunately, this approach does not lead to an optimal execution
time because it fails to account for the lost work due to failures and
the nature of the failure distribution. Therefore, first we build an
analytical model to derive a checkpoint interval, one that minimizes
the overall runtime. Second, we verify this model with event-driven
simulation and derive insights. Third, we present the results for our
portfolio of leadership applications and the implications of these
results on current and future systems.

3.1 Analytical Modeling of I/O Overhead and Checkpoint

Interval

We model a large-scale scientific application’s execution as a se-
quence of computation and checkpointing activity chunks. We de-
note α as the computation period after which a checkpoint is taken
periodically; every α is followed by the checkpointing activity for
a duration, β (as shown in Fig. 2). Put another way, α indicates
how long an application can compute before it needs to checkpoint.
Therefore, we also refer to α as the checkpoint interval, and β as
the time-to-checkpoint.

These activities, when interrupted by failures, incur restart over-
heads (e.g., reading the last saved checkpoint) for a period of
time, say, γ. In a failure-free environment, the application com-
pletes its execution after S such activity chunks, each chunk being
α+ β long. However, due to failures we incur additional overhead
(Twaste), the work that is “lost” due to failures. We can express the
total running time of the application as follows:
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Figure 2. Periodic computation and checkpoint phases of scientific

application.

Ttotal = Tcompute + Tcheckpoint + Twaste (1)

where the total compute time, Tcompute, is equal to the check-
point interval times the total number of steps in a failure-free en-
vironment ( Tcompute = Sα). Similarly, the time spent towards
checkpointing can be expressed as follows:

Tcheckpoint = (S − 1)β (2)

= (
Tcompute

α
− 1)β (3)

Total overhead due to failures can be broken down into two
components. First, each failure will cause a certain fraction, say ǫ,
of the computation and checkpointing duration, α+ β to go waste.
Second, each failure will have an associated recovery overhead, γ.
Thus, the total overhead due to failures can be expressed as:

Twaste = Nf (ǫ(α+ β) + γ) (4)

where Nf is the total number of failures. Both Nf and ǫ are
dependent on the nature of the failure distribution. Next, we derive
an expression for Nf assuming that failures follow an exponential
distribution, as assumed in previous studies [37, 36, 30, 7, 28]. We
will revisit the validity of this assumption using the failure logs col-
lected from supercomputer facilities (Section 4). We also quantita-
tively estimate the value of ǫ under these assumptions (Section 4.2).

The number of failures can be expressed as the difference be-
tween the total number of trials needed to complete S chunks with-
out encountering a failure and the number of times the chunks com-
plete successfully (S). Recall that each chunk is a pair of compute
and checkpointing activity, (α+β). The number of trials can be fur-
ther estimated as S divided by the probability of not failing before
the period α+ β (i.e., 1− Pr(t < (α+ β))). Therefore,

Nf =
S

1− Pr(t < (α+ β))
− S (5)

For an exponential distribution, the probability of failure before

time t is given by Pr(X ≤ t) = 1−e−
t
M , where M is the MTBF.

Using this, the above expression can be simplified as:

Nf = S(e
α+β
M − 1) (6)

Putting it all together, the total job execution time (Eq. 1) can
be obtained as a complete function of the checkpoint interval, α, by

substituting S with
Tcompute

α
as follows:

Ttotal = Tcompute + (
Tcompute

α
− 1)β (7)

+
Tcompute

α
(e

α+β
M − 1)(ǫ(α+ β) + γ)

For the range, where α+ β ≪ M , we can simplify the above
expression:

Ttotal = Tcompute + (
Tcompute

α
− 1)β (8)

+
Tcompute

α
(
α+ β

M
)(ǫ(α+ β) + γ)

Optimal checkpoint interval, αoci, that will minimize the total

execution time can be obtained by solving d
dα

(Ttotal) = 0. The
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Figure 3. Value of ǫ, i.e., lost work fraction for exponential distribution.

above formula can be differentiated to get the following:

1

M
(ǫ−

ǫβ2

α2
oci

−
ǫγ

α2
oci

)−
β

α2
oci

= 0 (9)

Solving this we get the expression for optimal checkpoint
interval (OCI):

αoci =

√

β2 +
βγ

ǫ
+

Mβ

ǫ
(10)

Previous studies have done similar theoretical exercise and de-
rived different variants [37, 36, 7, 30, 22, 28]. However, our ex-
ercise is slightly different as it retains the average fraction of lost
work, ǫ, in the equation, which leads to a better understanding when
we compare this model with real world supercomputer logs (Sec-
tion 4). The average fraction of lost work, ǫ, becomes the key to
understanding the difference between the model and the real-world
and its impact on the total execution time.

3.2 Model Validation and Model Driven Study

In this section, we compare our model based results against the
results from an event-driven simulator that we have developed. We
study the optimal checkpointing interval (OCI) estimation from
these two approaches for current and future large-scale systems.

Recall that our analytical model can predict both the total run-
time (Eq. 8) and OCI (Eq. 10). To drive this model, we use the pa-
rameters obtained from supercomputing facilities (Section 2). The
compute-time of a job is assumed to be 500 hours, though individ-
ual leadership applications may have varied compute-time require-
ments (Table 1). The checkpoint time is taken as 0.5 hours, typical
of multiple leadership computing facilities [6]. MTBF of one node
is taken to be 25 years (Section 2) and adjusted according to the
system size.

We empirically obtain the fraction of lost work, ǫ (Fig. 3), by
generating one million samples from an exponential distribution
(MTBF 10 hours) and estimating the lost work for a given time
interval. Note that it is not the same as the probability of a failure in
that interval. Fig. 3 shows the value of ǫ beyond the MTBF interval.
A value of 0.50 for ǫ reduces the OCI estimation as approximated
by Daly’s formula as well [7]. We revisit the significance and
implications of the “fraction of lost work”, ǫ, again in Section 4.2,
when analyzing supercomputer failure logs.

To validate our model results, we built an event-driven simula-
tor that simulates the execution of an application given certain pa-
rameters, e.g. type of failure distribution (exponential distribution),
checkpoint time, restart time, MTBF, and compute time. It does not
rely on any mathematical equation, instead it mimics an application
execution on a leadership machine. For example, the application
experiences probabilistically generated failures and recovers from
it. Ideally, modeling results should match the simulation-based re-
sults.

Fig. 4 shows the total runtime of a scientific application ob-
tained from both our analytical model and the event-driven simu-
lation. The figure depicts a “hero” run that uses all the nodes in
a system (e.g., 20K and 100K node runs). The OCI in the figure
is the point where the total execution is at a minimum. First, we
observe that the OCI decreases as the system size grows (left and
right charts). Second, the modeling and simulation results closely
track each other. For a petascale system (Fig. 4 (left)), the model-
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Figure 4. Comparing model and simulation-based results for (left)
current petascale systems consisting 20K nodes, and (right) future ex-
ascale systems consisting of 100K nodes.

Optimal Checkpoint Interval (OCI) (in hours)

CHIMERA VULCAN POP S3D GTC GYRO

12.4 0.02 0.13 1.87 3.81 0.18

Table 2. Estimated OCI for leadership applications.

based OCI (approx. 3 hours) is only 3% off from the simulation-
based OCI. The corresponding execution time difference is only
2.8%. For an exascale system (Fig. 4 (right)), the model and the
simulation both estimate the same OCI. The small difference in the
OCI estimation is also due to a relatively flat area near the min-
ima of the execution time curve. In fact, for a petascale system,
even if the estimated OCI were half an hour more/less, the result-
ing change in the model-estimated execution time would have been
only less than 0.5%. In summary, while the total execution time
may not match the simulation exactly, the model-based OCI leads
to the same minima as the simulation study. Therefore, in practice
the model-based OCI can be used to guide the checkpointing inter-
val as a simulation-based parameter exploration is often more time
consuming.

Observation 1. Optimal checkpoint interval decreases as the sys-
tem size increases, and the model-estimated OCI is fairly accurate
to be used to guide the checkpoint interval of applications.

Next, we evaluate the benefit of OCI for applications on current
Oak Ridge Leadership Computing Facility (OLCF) like systems.

3.3 Evaluation of OCI benefits

Table 2 shows the calculated OCI for different applications on the
Titan supercomputer. It is based on the applications’ checkpoint
size and an observed I/O bandwidth of 10 GB/s on the Spider
storage system (Section 2). While the peak bandwidth of such
large-scale parallel storage systems may be much higher, users may
observe a lower bandwidth due to file-alignment, stripping, and
contention issues [23]. We note that our insights are not specific
to a particular I/O bandwidth, instead we highlight the key trends
that matter under relatively low I/O bandwidth periods. Simulation
studies highlight the trends under high I/O bandwidth scenario.

Table 2 suggests that different applications favor different op-
timal checkpoint intervals; the current practice of one-size-fits-all
(hourly checkpoint) is not optimal. In fact, applications with less
data to checkpoint, and consequently less I/O overhead, (e.g. VUL-
CAN, POP, GYRO, highlighted in a grey box) should checkpoint
more often. This also implies that we will need to checkpoint more
often on faster, SSD-based storage systems to achieve the minimum
execution time. This may seem counter-intuitive at first, but this is
because of the tension between the lost work and the I/O overhead
(as indicated by Eq. 10) .

Next, we show the benefit of OCI compared to the traditional
hourly checkpointing (Fig. 5). We note that OCI is calculated as-
suming exponential distribution fits the failure inter-arrival times.
It can be seen that for all applications OCI provides a significant
reduction in execution time. However, for some applications (e.g,
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Figure 5. Benefit of OCI to leadership application compared to

traditional hourly checkpointing. Positive value shows decrease by
that factor compared to the hourly checkpointing case.

VULCUN, POP), it seems to increase the I/O overhead instead
of decreasing it. This is because hourly checkpointing is higher
than their OCI, which increases their I/O overhead, but reduces the
amount of wasted work and results in a net gain overall.

Observation 2. As emerging storage technologies (e.g, SSD) pro-
vide faster I/O bandwidth, the total time spent in checkpointing may
increase due to shorter OCI. However, this results in less wasted
work at the cost of higher I/O overhead. Overall, this results in a
net performance improvement.

We have shown that the OCI, obtained from the analytical
model, can work well in practice and provide significant perfor-
mance and I/O improvements to leadership applications, when
compared to the naive, hourly checkpointing approach.

The model for OCI estimation is based on the assumption that
failures follow an exponential distribution. While this assumption
simplifies the math and can provide us with tangible benefits, it
remains unclear if the OCI is indeed the “true” optimum on current
leadership computing facilities, where failures may or may not
follow the same characteristics assumed in this model. We need to
understand the failure characteristics if we are to achieve the true
optimum.

For this reason, we conduct an analysis (Section 4) of ma-
chine failure characteristics and its implications to the OCI, the I/O
overhead, and the total application runtime on current and future
extreme-scale systems.

4. Analyzing and Understanding Characteristics

of Failures on Large-scale Computing Systems

4.1 Temporal Locality in Failures

In this section, we present the temporal characteristics of failures on
large-scale systems. Our study is based on several years worth of
logs from multiple HPC sites. Fig. 6 shows a histogram of failures
over time from multiple HPC centers (Section 2.2). Interestingly, a
significant fraction of the failures occur much before the observed
MTBF. For example, on the OLCF system approximately 45% of
the failures occur within 3 hours of the last failure, despite an
MTBF of 7.5 hours.

These results indicate that there exists a strong temporal locality
between failures. In other words, the occurrence of certain failures
may be correlated or caused by previous failures. This is likely to
happen in a large-scale computing facility where components are
tightly packed and interconnected. For example, a sudden temper-
ature rise may cause a node outage; the resulting increase in fan
activity may cause near-by components or links to experience a
failure. This finding also implies that the average work lost due to a
failure would be less, because a significant fraction of failures oc-
cur soon after a previous failure. We will exploit this observation to
design a new checkpointing technique (Section 5).

Observation 3. Failure characteristics of large-scale systems sug-
gest that there is a strong temporal locality between them. The like-
lihood of a failure occurring on the heels of past failure is high,
though the observed MTBF of the system may be much higher.
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Figure 6. Temporal characteristics of failures from multiple HPC systems. The dashed vertical line indicates the “observed” mean time between failures
(MTBF). Multiple failures that occur beyond the x-axis limits are not shown here for clarity, but they contribute toward MTBF calculation.
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Figure 7. Result of Kolmogorov-Smirnov test (K-S test) for failure

logs of multiple systems. Null hypothesis that the samples for a given
system comes from a given probability distribution function is rejected
at level 0.05 if k-s test’s D-statistics is higher than the critical D-
value. Comparison between D-statistics and critical D-value shows that
Weibull distribution is a better fit in all cases except the last one.

We take advantage of this observation to reduce the checkpoint-
ing overhead on large-scale HPC systems by changing the check-
pointing intervals such that it captures the temporal locality in
failures. Towards that, we use two statistical techniques to fit our
failure inter-arrival times data against four distributions, normal,
Weibull, log normal, and the exponential distribution. First, Fig. 7
shows the results from the Kolmogorov-Smirnov test for different
distributions [15]. We notice that Weibull distribution fits our sam-
ple data better than the exponential distribution. We also present the
QQ-plot for visualizing the fitness of these distributions (Fig. 8),
which reaffirms the K-S test results.

We note that a Weibull distribution is specified using both a
scale parameter (λ) and shape parameter (k). If the value of shape
parameter is less than one, it indicates a high infant mortality rate
(i.e., the failure rate decreases over time). We point out that shape
parameter (k) is less than one for the Weibull distributions that fit
our failure sample data. This has also been observed by other re-
searchers for various other systems [21, 31, 35, 17], indicating a
larger applicability of the new techniques presented in this work
(Section 5), which are based on this observation. Next, we show
how does a better fitting Weibull distribution affect the OCI and the
total execution time (as opposed to the previously discussed analyt-
ical model and simulation-based results that assumed exponential
distribution of failure inter-arrival times).
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QQ−Plot from Failure Log Samples (LANL System 5)

Figure 8. QQ-Plot for graphical representation of fitting different

probability distribution functions (PDF). The quantiles drawn from
the sample (failure log) are on the x-axis and y-axis shows theoretical
quantiles. If the samples statistically come from a particular distribution
function then points of QQ-plot fall on or near the straight line with
slope=1. Only three representative failure logs are plotted due to space
constraints, the rest show similar behavior.

4.2 Effect of Temporal Locality in Failures on OCI

We found that the failure inter-arrival times are better fitted by a
Weibull distribution than an exponential distribution. Therefore, in
this section we present the results from our event-driven simulator
to study how the OCI and total execution time are affected if failure
events are drawn from a Weibull distribution instead of an expo-
nential distribution (as assumed in previously discussed analytical
model). Fig. 9 shows the total execution time of a “hero” run on
three different systems (10K, 20K and 100K nodes). We notice that
the Weibull distribution curve is always below the exponential dis-
tribution curve. This result suggests that if failure events are drawn
from a Weibull distribution, it will result in an overall execution
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Figure 9. Effect of distribution function on the total execution time

and OCI : 10K node system (top), 20K node system (middle) and

100K node system (bottom). The zoomed in section shows that the
OCI estimation, which assumes an exponential distribution is not af-
fected even though the actual run time may differ slightly.
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Figure 10. Difference in average lost work fraction between Weibull

and exponential distributions.

time that is lower than the exponential case. The underlying reason
can be explained using our previous result (Fig. 6), which shows
that a large fraction of failures occur soon after the last failure, re-
sulting in less wasted work per failure on an average. We further
support this result by showing (Fig. 10) that the lost work fraction,
ǫ is lower for a Weibull distribution than for an exponential distri-
bution.

What is of significant interest is that, while the execution time
differs, the OCI for these two distributions are quite similar (as
shown by the zoomed in section of Fig. 9). Both curves achieve
the minima for nearly the same OCI.

Observation 4. The OCI is not affected significantly by the under-
lying distribution of failure inter-arrival being Weibull vs exponen-
tial. However, the Weibull distribution does result in a lower overall
execution time compared to the exponential counterpart because
the average lost work per failure is lesser compared to the expo-
nential case.

While our findings about the temporal locality in failures do not
affect the OCI estimation, it does provide an opportunity to improve
current checkpointing strategies by exploiting this observation.

Compute Checkpoint

 OCI

iLazy

Time

F2F1

Figure 11. iLazy Checkpointing: increasing checkpointing interval

does not always lead to more waste work.

5. Exploiting Temporal Locality in Failures for

Reducing Checkpointing Overhead

Lazy Checkpointing Overview: We have shown that OCI based
checkpointing is quite effective (Section 3.3), however it inherently
fails to capture the temporal locality in failures. Towards this end,
we propose to make OCI based checkpointing temporal locality
aware.

We showed that failures have high temporal locality. That is, the
failure rate decreases over time since the last failure (and until the
next failure).

To support this, we plot the failure rates of both distributions
for a fixed MTBF of 10 hours for illustration (Fig. 12). The figure
shows that while the failure rate for the exponential distribution
remains a constant, it decreases for the Weibull distribution.

Note that the failure rate of an exponential distribution is given
by 1/M , where M is the MTBF. The failure rate for a given

Weibull distribution (1 − e−( t
λ
)k ) is given as k

λ
( t
λ
)k−1, where

λ is the scale parameter, k is the shape parameter, and t is the
time since the last failure. In Fig. 12, we determine λ using a Γ
(Gamma) function for k = 0.6 (representative of an OLCF-like
system, Fig. 7), such that the MTBF of this Weibull distribution
remains the same as the exponential distribution (M ).

We observe that since the failure rate decreases over time, one
may accordingly get “lazy” in taking checkpoints as more time
passes by since the last failure. Essentially, we should increase the
checkpointing interval over time such that it has the same slope as
the corresponding Weibull distribution’s failure rate curve. There-
fore, a simple formula to achieve this incrementally increasing
checkpoint interval, αlazy , is as follows:

αlazy = αoci

(

t

αoci

)(1−k)

(11)

where αoci is the same OCI as previously determined and t is
the time since the last failure. Note that the checkpoint interval
increases inversely to the slope of failure rate curve (k − 1).

We call this technique iLazy checkpointing (increasingly lazy,
or simply Lazy checkpointing) as the new checkpointing interval
(αlazy) keeps increasing over time until the next failure; at that
point the checkpointing interval is reset to αoci. When failures
are exponentially distributed, the iLazy technique automatically
reduces to the OCI case, guaranteeing no harm or benefit.

iLazy reduces the checkpointing overhead for failures that occur
late, while potentially increasing the wasted work. Since iLazy
increases its checkpointing interval over time, it may seem that
the waste work penalty is always higher in the iLazy case when
compared to the OCI case. However, we illustrate that this is not
the case necessarily. As shown in Fig. 11, failure F1 will result in
more lost work for OCI than iLazy; however, the reverse is true for
failure F2. The cumulative lost work may be higher than the OCI
depending on all the failures and their arrival times. This requires
an understanding of application execution over its full run.

Therefore, to gain a better understanding of how the proposed
iLazy strategy works for an application’s execution, we com-
pare it with the OCI in terms of checkpoint overhead, wasted
work and computation (Fig. 13). This example illustrates how the
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Figure 13. Comparing execution progress of iLazy and OCI techniques.
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Figure 14. Effect of applying iLazy on top of increased OCI on dif-

ferent scale of systems. Note that in this case, increased OCI achieves
a slight performance improvement over OCI, since the OCI was deter-
mined assuming exponential distribution instead of Weibull distribution,
and hence, may not be the true optimum.

iLazy checkpointing strategy significantly reduces the checkpoint-
ing overhead, albeit with increase in the amount of lost work.

Fig. 13 shows results from our event-driven simulator for a run
across 20K nodes, with a computational time of 500 hours per node,
a time-to-checkpoint of 30 minutes, a Weibull failure distribution
with k = 0.6, and model-estimated OCI of 2.98 hours. For a fair
comparison, both the iLazy and OCI schemes use the same failure
arrival times. We notice that the cumulative checkpointing over-
head reduces significantly (iLazy is better than OCI by 34% in the
checkpoint overheads) with increase in cumulative lost work, re-
sulting in only 0.45% performance hit. By reducing the checkpoint
overhead, Lazy checkpointing is able to reduce the load and con-
tention on the storage subsystem, and amount of data moved.

Is iLazy more beneficial than simply increasing the OCI?:
iLazy reduces the checkpointing overhead significantly with min-
imal performance degradation. However, one may argue that this
reduction in checkpointing overhead can also be possibly obtained
with a larger checkpointing interval compared to the OCI since the
execution time curve is relatively flat near the OCI region (Fig. 9).

To test this, we increased the OCI by the same percentage gain
achieved by iLazy for the checkpoint overhead (Fig. 14). For ex-
ample, for a petascale system since iLazy provides 34% checkpoint
time reduction, we increased the OCI by 34% (referred as Increased
OCI). Increasing the OCI results in a 25% checkpoint time reduc-
tion. Next, we apply our iLazy technique assuming increased OCI
as our base OCI (i.e., increased OCI becomes the αoci in Eq. 11)
to assess if iLazy can still reduce the checkpointing overhead. We
note that applying iLazy on top of that further reduces the overhead
significantly compared to the original OCI (by 51% and 38%, third
row in Fig. 14), albeit with a small performance degradation.

Observation 5. The iLazy checkpointing technique can provide
more reduction in checkpointing overhead than what is possible
by simply increasing the OCI by the same proportion.

While iLazy does mitigate the checkpointing overhead, it af-
fects the performance, especially when applied with increased OCI
(Fig. 14). Therefore, we dig deeper to understand the strengths and
limitations of iLazy.
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Figure 15. Effect of applying iLazy for different checkpointing in-
tervals. The base case refers to the simulation of an application run on
20K nodes, using different checkpoint intervals without iLazy.

Understanding the strengths and limitations of iLazy:
Fig. 15 plots (using the event-driven simulator) the checkpoint

overhead, the wasted work and the total execution time for different
checkpoint intervals, for both iLazy and the base case. The base
case is simply a plot of the above three aspects of the application at
various checkpoint intervals (including OCI).

First, we observe (Fig. 15 (left)) that iLazy consistently provides
checkpoint savings for all intervals. This is consistent with our
previous result that iLazy reduces the checkpointing overhead even
when OCI is increased. Also, the checkpointing overhead curve for
the base case explains the decrease in checkpoint overhead when
checkpoint interval is increased beyond OCI.

Interestingly, we observe from Fig. 15 (right) that if the “oper-
ating checkpointing interval” is smaller than the OCI or near the
OCI, then iLazy provides both a significant reduction in check-
pointing and runtime as the I/O savings offset the lost work in this
region. However, iLazy’s total runtime may still not be lower than
the OCI’s runtime.

However, if the “operating checkpointing interval” is much
larger than the OCI, the checkpoint savings decrease significantly
and the performance degradation is noticeable. The reason is that
as the checkpointing interval grows, the wasted work relative to the
base case increases; at the same time, checkpointing savings de-
crease due to longer checkpoint intervals.

Observation 6. The iLazy checkpointing technique can signifi-
cantly mitigate the checkpoint overhead if the checkpoint interval
being used is smaller or nearby the OCI. The iLazy checkpointing
can be viewed as a technique to reap the same benefits as OCI, even
when OCI may not have been very accurately estimated.

iLazy vs incrementally increasing checkpointing interval:
Next, we investigate the effects of shaping the checkpointing

intervals with an alternative function to the one used in iLazy
(Eq. 11). Essentially, we wish to understand the additional benefits
of checkpoint placement, guided by a Weibull distribution. We
compare against a simple linearly increasing function, i.e., αoci,
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Figure 16. Comparing iLazy with an alternative linearly increasing

checkpointing strategy.
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benefits.

αoci + x, αoci + 2x, and so on. Unfortunately, a linear function
does not capture the slope of the failure rate (shape parameter
k), therefore it requires tuning. Fig. 16 compares iLazy with this
approach, with tuned x value of 0.10 for k = 0.6. Due to its linear
nature, the lost work is less compared to iLazy, and as expected
the checkpoint savings are comparatively less as well. Overall, this
may work well in practice as an approximation to iLazy and can be
useful when the operational OCI is much larger than the true OCI
(providing less performance degradation compared to iLazy).

Evaluating iLazy for different shape parameter, system-
scales, and I/O bandwidth:

Next, we quantify the benefits of iLazy under various scenar-
ios. Figs. 17 and 18 show iLazy’s benefit for different shape pa-
rameters (k), different system sizes, and I/O bandwidth (time-to-
checkpoint).

First, as the shape parameter increases (Fig. 17 (left)), the bene-
fits decrease relatively, because the temporal locality decreases with
the increasing shape parameter. But, the checkpoint savings are sig-
nificant with minimal performance degradation (more than 10%
checkpointing savings with less than 0.5% performance degrada-
tion).

Second, iLazy’s improvements are sustained across different
system sizes. At exascale (Fig. 17 (right)), iLazy is expected to
provide more benefits than petascale as the OCI decreases (hence,
more checkpoints). However, due to the increased failure rate,
iLazy checkpointing suffers from increased wasted work. Thus,
while the benefits may not increase compared to a petascale system
with the same I/O bandwidth, it remains significant (approx. 25%,
15% and 10% for different shape parameters in the presence of low
I/O bandwidth with less than 1% performance hit).

Third, our results show that iLazy provides more improvement
under high I/O bandwidth availability for both peta and exascale
systems (Fig. 18). This is because under better I/O bandwidth
(lower time-to-checkpoint), OCI decreases and hence, more check-
points occur. Consequently, there is more opportunity for iLazy to
improve upon. This is particularly important for future generations
of supercomputers, where SSD-based storage systems are likely to
provide much higher I/O bandwidth. Typically a checkpoint saving
technique looses some of its shine when high-bandwidth storage
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Figure 19. Comparing Skip and Lazy Checkpointing technique for

petascale (20K) system (top), and exascale (100K) system (bottom).

systems are adopted, however our iLazy checkpointing becomes
even more attractive.

Observation 7. The iLazy checkpointing technique is likely to be-
come even more attractive in the future as supercomputing facilities
will adopt high-speed SSD-based storage systems.

Skip checkpointing strategy:

We also propose an easy alternative method to reduce check-
pointing overhead. We refer to it as “Skip” checkpointing as it
skips certain checkpoints after each failure. The intuition behind
this simple strategy is that a later checkpoint after a failure (say,
third checkpoint) is relatively less costly to skip, in terms of perfor-
mance degradation, compared to skipping checkpoints immediately
after a failure (for example, first checkpoint). The underlying rea-
son is that the temporal locality in failures suggests that failure is
relatively less likely to occur much after a failure.

Fig. 19 shows the performance and checkpoint overhead of dif-
ferent variations of the Skip Checkpointing technique. As expected,
skipping the first checkpoint after a failure results in more savings
in checkpointing time than skipping second or third checkpoint.
This is because the total number of second or third checkpoints
are lesser than the number of first checkpoints as failures are likely
to happen soon after a failure than much later. However, skipping
the first checkpoint after a failure results in higher performance
degradation. Skipping later checkpoints may still provide signif-
icant checkpointing savings without incurring much performance
degradation. Therefore, the Skip checkpointing strategy can act as
an useful, static checkpoint overhead reduction technique.

Observation 8. Skipping later checkpoints after a failure, due to
the temporal locality of failures, can reduce the checkpoint over-
head as well. Coupled with iLazy, it mitigates the checkpointing
overhead more than what iLazy technique alone can achieve.
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for no performance degradation.

Providing analytical performance bounds on the iLazy
checkpointing strategy:

We note that iLazy checkpointing technique reduces I/O over-
head significantly, however it may slightly increase the job run-
time even when the OCI is correctly estimated (Fig. 19). In some
situations, even such minimal performance loss may not be desir-
able. Therefore, we develop a mathematical model to provide no-
performance loss guarantees, at the cost of potentially decreased
reduction in I/O overhead.

The primary reason for performance loss lies in the inherent
nature of the iLazy checkpointing scheme: the checkpoint interval
becomes increasingly large. Consequently, in the cases where inter-
arrival time between failures may be considerably high, the amount
of lost work may negate the savings coming from infrequent check-
pointing. Therefore, to avoid any performance degradation, at any
given point we have to estimate if the checkpoint cost saving is
not smaller than the potential lost work. If so, the checkpoint inter-
val can not be larger than that. These trade-offs bound how large
a checkpoint interval can be. Unfortunately, estimating this at the
run time is difficult because it involves calculating the checkpoint-
ing cost saving, which in turn requires it to be compared with the
traditional OCI based scheme.

We reduce this problem to a relatively simpler case. We pro-
pose a simpler and conservative estimation of the largest possible
checkpointing interval such that no performance loss is incurred.
We focus only on how large the second checkpointing interval can
be, without degrading performance.

The proposed scenario is depicted in Fig. 21. If the second
checkpoint interval ends at t3, then we ask what is the maximum
value of t3 (resulting in the maximum allowed checkpointing in-
terval, αmax−oci) such that the potential benefit of reducing the
checkpointing cost is more than the amount of lost work compared
to the base OCI (αoci).

The amount of “additional” lost work compared to the OCI case
can be estimated in two steps: (1) calculating the probability of
failure in the time period between the end of second checkpoint in
the OCI case and the iLazy case (i.e., t2 and t4), and (2) multiplying
this probability by the additional lost work ((αmax−oci−αoci)), if
a failure did occur in this time window.

performance loss = (αmax−oci − αoci)(e
−(

t2
λ

)k
− e−(

t4
λ

)k )

= (αmax−oci − αoci)(e
−(

2(αoci+β)
λ

)k
− e−(

αmax−oci+αoci+2β

λ
)k )

(12)

Note that the probability that an event happens between time tx

and ty is given by Pr(tx, ty) = e−( tx
λ

)k
− e−(

ty
λ

)k (for Weibull
distribution).

The benefit can be estimated as one checkpointing cost saving
(β) multiplied by the probability that the failure happens beyond
time t3.

performance gain = βe−(
t3
λ

)k
(13)

Therefore, by solving the following inequality, we can obtain
the maximum value of t3 that guarantees no performance degrada-
tion:

βe−(
αmax−oci+αoci+β

λ
)k = (αmax−oci − αoci)e

−(
2(αoci+β)

λ
)k

−(αmax−oci − αoci)e
−(

αmax−oci+αoci+2β

λ
)k

(14)

If the αlazy (Eq. 11) is larger than the “upper bound” of the
checkpoint interval as determined by the above equation (Eq. 14),
then the checkpoint interval is capped at αmax−oci.

Note that our estimation of the maximum value of checkpoint
interval is conservative as doing the same cost-benefit analysis at a
later point (after actually saving multiple checkpoints) is likely to
result in higher benefits. In our evaluation (Fig. 20), we found that
even this conservative estimation obtained by a first-order approx-
imate cost-benefit model can work fairly well. In our experience,
we found the trends to remain the same across different settings.
However, this analysis depends on multiple factors, such as the base
OCI, time-to checkpoint and shape parameter, therefore, a more de-
tailed model, analysis and tuning may be required in certain cases.
Our results show that the the iLazy strategy with an upper bound
retains a significant amount of the I/O reduction provided by the
base iLazy scheme, without degrading performance. We note that it
provides approx. 20% reduction in checkpoint time. In fact, it may
improve performance by a few hours as opposed to the naive iLazy
checkpointing scheme that results in slight performance degrada-
tion at low node counts (Fig. 20(c)).

Observation 9. Using probabilistic estimation, an upper bound on
the increasing checkpoint interval can be achieved to avoid per-
formance degradation for the iLazy checkpointing strategy. This
capping retains a significant amount of original checkpointing cost
savings in the presence of other varying factors, with no perfor-
mance degradation guarantee.
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6. Prototype Implementation

Previous sections presented model and simulation-based results,
using statistically generated events to mimic real-world scenarios.
In this section, we discuss the prototype implementation of the
proposed checkpointing schemes, its integration with a practical
checkpoint restart library, and the evaluation based on real logs
from the Titan supercomputer. Our trace-driven study uses approx.
six months of real failure and I/O traces from Titan and Spider to
evaluate the prototype system. We perform trace-driven evaluation
since it is not possible to do such long-duration experiments on
a supercomputer due to allocation restrictions. Traces encapsulate
the dynamic I/O and failure behavior of these systems – the aspect
that we want to evaluate.

6.1 Checkpoint Schemes with Checkpoint/Restart Library

We implemented support for several checkpointing strategies (i.e.
static OCI, dynamic OCI, iLazy, and Skip strategies) in an
application-level checkpoint/restart (C/R) library [18] from the In-
diana University. Static OCI uses historical machine MTBF and
historically observed average I/O bandwidth. However, dynamic
OCI scheme uses a moving average of failure inter-arrival times
and estimates average I/O bandwidth (when the application writes
its first checkpoint) to calculate the OCI. Hence, under the dy-
namic OCI scheme the OCI may change over time (and across
different runs) reflecting the variations in observed MTBF (and
I/O bandwidth). The C/R library allows users to provide a pointer
to a data structure that needs to be saved. Library function calls
are provided to easily backup this checkpoint to a persistent store,
and restart from a previously saved checkpoint. Our implementa-
tion adds adaptive control of checkpointing intervals in a separate
thread. Fig. 22 shows a block diagram of the components added to
the C/R library.

We have implemented a failure log agent and an I/O log agent
within the C/R library to query the failure and I/O log databases that
Titan and Spider make available. Spider updates the I/O throughput
data from the controllers periodically to the I/O database; Titan
updates the system/console logs in the failure database. The failure
log agent queries the database to obtain inter-arrival times of any
new failure events; the I/O log agent queries Spider data for current
and historical I/O throughput. We have implemented the I/O and
failure log agents within the C/R library to show that it can be
integrated within a checkpoint library. However, these entities can
also stand alone as system-wide services that can be queried upon
by applications or checkpoint libraries.

We need to determine an appropriate time to start the next
checkpoint in accordance with the checkpointing strategies (i.e.,
static OCI, dynamic OCI, Skip or iLazy). A checkpoint timer at-
tribute in the checkpointing thread is set to expire at the start time
of the next checkpoint. Recall that the Skip and iLazy strategies
are temporal locality-aware and therefore the checkpoint timer is
dependent upon time elapsed since the last failure. Therefore, we
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Figure 23. Log driven evaluation results showing the impact of

dynamic checkpointing on checkpoint I/O time and total execution

time, with respect to the static OCI scheme (with min and max

bars).

retain the timestamp of the most recently observed failure in the
failure agent. Due to possible lag in updating the failure database,
this timestamp is maintained in the C/R library by adding addi-
tional attributes to specify a restart timestamp when the application
resumes from a previously stored checkpoint. A lag in updating
I/O log does not affect our approach because we use an average
observed statistics. Note that we have used the base iLazy scheme
(with no upperbound) in our prototype for simplicity and show that
even the base iLazy is effective in improving performance and re-
ducing checkpointing cost in a dynamic environment.

6.2 Results of Log-Driven Evaluation

We evaluate the C/R library with our strategies using six months
worth of failure logs and I/O logs from Titan and Spider. Fig. 23
shows the savings in execution time and checkpoint I/O time ob-
served for different scientific applications (with min and max bars).
The applications are run multiple times over the failure and I/O log
(without any look-ahead or prediction).

For applications with a relatively small checkpoint size (VUL-
CUN, POP and GYRO) the checkpointing interval of static OCI is
relatively small. While the dynamic OCI and Skip strategies can
adapt the checkpoint interval on-the-fly and save I/O by skipping
some checkpoints, iLazy achieves the most I/O savings. Although
the relative savings in I/O for S3D and GTC is small compared to
VULCUN, POP and GYRO, we see more impact on their total exe-
cution time. For CHIMERA, with a 160TB checkpoint, the average
I/O bandwidth used by the static OCI causes it to spend significant
amount of time in checkpoint I/O. On the other hand, the dynamic
OCI reduces the checkpoint frequency and shows significant sav-
ings in I/O time as well as total execution time. iLazy may not be
able to provide I/O savings in some pathological cases (e.g. GTC)
due to I/O vagaries, but it still provides performance gains com-
pared to static OCI. In summary, iLazy is effective in saving I/O
time by up to 70% with respect to static OCI.

In Table 3, the average volume of checkpoint data written to a
persistent storage system is shown for our scientific applications.
This further elaborates the impact of the strategies on the I/O
subsystem. The dynamic OCI, Skip, and iLazy schemes show a
significant reduction in the write volume (4.02 PB, 4.48PB, and
5.18PB respectively). The relative saving in the data volume is
consistent with the observed reduction in I/O time. This shows that
the savings in I/O time is not a result of fortunate placement of
checkpoints when higher I/O bandwidth is available. Also, while



Average volume of checkpoint written (in TB)

Application
Static
OCI

Dynamic
OCI

Skip iLazy

VULCAN 84 77 77 11

POP 193 146 142 47

GYRO 103 73 70 26

S3D 1,070 829 720 563

GTC 1,177 1,467 1,412 1,283

CHIMERA 21,752 17,668 17,367 17,143

Table 3. Total volume of checkpoint data written for leadership appli-

cations with different checkpointing strategies.
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Figure 24. Case study of application GYRO showing the I/O and

total execution time for 10 different runs.

the Skip strategy may not always provide a reduction in run-time,
it is effective in reducing the data movement.

Fig. 24 shows results for application GYRO for its ten different
runs, based on our log-driven evaluation. In general, iLazy achieves
significantly better I/O time reduction for all phases and only 4 out
of 10 runs see an increase in the total runtime. This increase is small
and overall GYRO enjoys a reduction in runtime by up to 19.2%
and 3.6% on average, while saving 66.1% in I/O time (74.8% in
write volume) on average.

Observation 10. Our prototype, based on failure locality-aware
checkpointing schemes, provides significant I/O improvements in
most cases under dynamic environment (unpredictable I/O band-
width and failure strikes), as shown by our log-based evaluation.

7. Related Work
Both checkpointing and failure analysis have been long-studied
topics in HPC community. Several studies have explored the theo-
retical underpinnings of the optimal checkpoint interval [37, 36, 7].
Other works have built a Markovian queuing model for combined
multiple checkpointing strategies and modeling their effect on the
overall performance [26]. They have modeled the effects of mode
changes on computer systems performance [20] and derived the
optimal checkpointing frequency for minimizing the job response
time in a queue [19].

There has also been extensive research on analyzing failure logs
of HPC systems [9, 21, 31, 14, 35, 34, 12]. Our study reaffirms
some of the previous findings and shows that they hold true in other
HPC facilities as well. We also show that optimal checkpointing
interval can still work well in practice as an approximation even
if failure inter-arrival times are better fitted by Weibull distribution
(instead of exponential distribution as assumed by prior works).
However, none of the previous works have exploited the tempo-
ral locality in failures to mitigate the checkpointing overhead on
HPC systems. Using the statistical properties of failure inter-arrival
times, the Lazy checkpointing technique shows how to intelligently
increase the checkpointing interval such that the I/O overhead is re-
duced significantly without degrading the overall performance.

Prior works on checkpointing have primarily focused on opti-
mizing checkpointing process and avoiding checkpointing (due to
well-known high I/O overhead of checkpointing). Techniques that

seek to optimize checkpointing process either reduce the check-
point data to be written [2] or provide mechanisms for writing
checkpoints more quickly [32, 25, 27]. These approaches are com-
plementary to our Lazy and Skip checkpointing strategies. We have
also shown that our techniques remain effective even when the
time-to-checkpoint is reduced. Therefore, such techniques can be
combined to further reduce the I/O overheads.

Checkpoint avoidance, although orthogonal to our proposed
schemes, is also a promising way to mitigate the I/O overhead on
HPC systems. Checkpoint avoidance is typically achieved either
via redundant execution [10] or developing algorithmically fault
tolerant codes [4, 8]. Unfortunately, redundant execution wastes ex-
cessive compute resources and may require three replicas for cor-
rect execution. Algorithm-based fault tolerance techniques are not
generic and require significant algorithmic rethinking and imple-
mentation efforts. Many applications, including legacy codes, may
not benefit from this approach.

Recent studies [13, 5] have tried to reduce the checkpointing
overhead by predicting failures and speculatively placing check-
points accordingly. These schemes rely on machine-learning tech-
niques to analyze large training data and are susceptible to envi-
ronment changes. Failure prediction, the basis for these activities,
is fundamentally harder [11, 5] and requires detailed logging in-
formation, which may not be turned on in production systems for
performance reasons. In contrast, our scheme is relatively simple
and only requires minimal, high-level information, making it rela-
tively more practical.

8. Conclusion
Using both analytical modeling and simulation-based verification,
we studied the interplay between checkpointing, the I/O overhead
and the compute resource wastage due to system failures. We dis-
covered that system failures on leadership computing facilities have
temporal locality. We proposed two techniques, Lazy and Skip
checkpointing, to take advantage of temporal locality in failures.
We throughly evaluated our techniques using both simulations and
a prototype based on large-scale system I/O traces and failure logs.

We believe that our findings will be useful for end-users and sys-
tem designers in understanding the trade-offs of checkpointing and
resource wastage at different system scales. Also, our techniques
can possibly be applied in other checkpointing domains where fault
inter-arrival times may be fitted by a Weibull distribution. For ex-
ample, these proposed techniques may also be extended to hard-
ware checkpointing strategies to recover from soft errors, dynamic
DVFS scaling after failures.
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