
Active Flash: Performance-Energy Tradeoffs for Out-of-Core

Processing on Non-Volatile Memory Devices

Simona Boboila∗, Youngjae Kim†, Sudharshan S. Vazhkudai†, Peter Desnoyers∗ and Galen M. Shipman†

∗Northeastern University, †Oak Ridge National Laboratory

{simona,pjd}@ccs.neu.edu, {kimy1,vazhkudaiss, gshipman}@ornl.gov

I. INTRODUCTION

In this abstract, we study the performance and energy tradeoffs

involved in migrating data analysis into the flash device, a process

we refer to as Active Flash. The Active Flash paradigm is similar

to “active disks”, which has received considerable attention. Active

Flash allows us to move processing closer to data, thereby minimizing

data movement costs and reducing power consumption. It enables

true out-of-core computation. The conventional definition of out-of-

core solvers refers to an approach to process data that is too large

to fit in the main memory and, consequently, requires access to disk.

However, in Active Flash, processing outside the host CPU literally

frees the core and achieves real “out-of-core” analysis.

Moving analysis to data has long been desirable, not just at this

level, but at all levels of the system hierarchy. However, this requires

a detailed study on the tradeoffs involved in achieving analysis

tunraround under an acceptable energy envelope. To this end, we

first need to evaluate if there is enough computing power on the flash

device to warrant such an exploration. Flash processors require decent

computing power to run the internal logic pertaining to the Flash

Translation Layer (FTL), which is responsible for operations such as

address translation, garbage collection (GC) and wear-leveling.

Modern SSDs are composed of multiple packages and several flash

chips within a package. The packages are connected using multiple

I/O channels to offer high I/O bandwidth. SSD computing power is

also expected to be high enough to exploit such inherent internal

parallelism within the drive to increase the bandwidth and to handle

fast I/O requests. More recently, SSD devices are being equipped with

powerful processing units and are even embedded with multicore

CPUs (e.g. ARM Cortex-A9 embedded processor is advertised to

reach 2GHz frequency and deliver 5000 DMIPS; OCZ RevoDrive X2

SSD has 4 SandForce controllers, each with 780MHz max frequency

Tensilica core). Efforts that take advantage of the available computing

cycles on the processors on SSDs to run auxiliary tasks other than

actual I/O requests are beginning to emerge. Kim et al. [2] investigate

database scan operations in the context of processing on the SSDs,

and propose dedicated hardware logic to speed up scans. Also, cluster

architectures have been explored [1], which consist of low-power

embedded CPUs coupled with small local flash to achieve fast,

parallel access to data.

Processor utilization on SSD is highly dependent on workloads

and, therefore, they can be idle during periods with no I/O accesses.

We propose to use the available processing capability on the SSD to

run tasks that can be offloaded from the host. This paper makes the

following contributions:

• We have investigated Active Flash and its potential to optimize the

total energy cost, including power consumption on the host and

the flash device.

• We have developed analytical models to analyze the performance-

energy tradeoffs for Active Flash, by treating the SSD as a black-

box. This is particularly valuable due to the proprietary nature of

the SSD internal hardware.

• We have enhanced a well-known SSD simulator (from MSR) to

implement “on-the-fly” data compression using Active Flash. Our

results provide a window into striking a balance between energy

consumption and application performance.

II. TRADEOFFS ANALYSIS

We analyze the tradeoffs of using the SSD controller to do part of

the computation which would otherwise be carried out on the host

CPU. The two scenarios compared are:

• Baseline: the entire computation is performed on the host CPU.

• Hybrid Model: a part of the computation is performed on the SSD

controller; the rest, if any, is run on the host CPU.

Most of the data path segments are common for Baseline and

Hybrid Model: in both cases, the data needs to pass through the

SSD controller. Data transfer between the controller and the host

CPU is very fast with current SATA and PCIe interfaces (e.g. SATA

3.0 at 750MB/s bandwidth; PCIe up to 16GB/s bandwidth), and

does not affect performance significantly. Therefore we investigate

the tradeoffs due to computation, not data transfer, the latter being

ignored to keep the model simple.

Energy and time consumption are mainly affected by the power
and speed differences between the SSD controller and host CPU. We
estimate energy savings versus slow down, based on the following
parameters:

x = Host CPU utilization for Baseline (average of a long run).

This represents the percentage of time when the CPU is being utilized
and can range from 0 to 100%.

s =
Speed host cpu

Speed ssd controller
; p =

∆Power ssd controller

∆Power host cpu

Let us suppose the controller does s times less work than the host

CPU, as it is s times slower. For example, a 2x slower controller

at 100% utilization does the same work in the same amount of

time as the host CPU at 50% utilization. Mapping [0%-100%] to

[0..1] and for x = 1/s, the SSD controller can accommodate

the entire computation at 100% controller utilization. This means

that the entire computation can be moved to the controller if the

baseline CPU utilization is ≤ 1/s. If the baseline CPU utilization is

> 1/s, the controller will be fully utilized and able to accommodate

only a part of the computation. The percentage of work done is

c% = (100%×Speed ssd controller)/(x%×Speed host cpu),
where 100% is the ssd controller utilization, and the x% is the

host cpu utilization. To summarize, the fraction of the computation

that can be moved to the SSD controller as a function of x is:

c(x) =

{

1, for x ∈ [0, 1/s)

1/(sx), for x ∈ [1/s, 1]

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

E
n

er
g

y
 S

av
in

g
s

(%
)

S
lo

w
 d

o
w

n

Host CPU Utilization - Baseline(%)

energy savings (x-axis)
slow down (y-axis)

Fig. 1: Energy savings vs slow down in the long run. The SSD

controller is used in conjunction with the Host CPU to carry out part of

the computation. The x-axis shows host CPU utilization in the baseline,

before part of the computation was moved to the controller.

To compute the energy savings, we compute the variation in energy

consumption as: ∆Energy = T ime × ∆Power, where ∆Power =

Power active − Power idle.

Also, time is inversely proportional to speed, which gives:

∆E = 1−
∆Energy ssd

∆Energy host

= 1−
Speed host cpu×∆Power ssd controller

Speed ssd controller ×∆Power host cpu

= (1− sp)

Finally, since only a fraction, c(x), of the computation is moved

to the controller, the energy savings are: ∆E(x) = (1− sp) · c(x)

Considering that the computation on the SSD controller and the
host CPU occur in parallel, the extra time taken by the controller to
finish its share of the analysis determines the slow down:

S(x) =
T ime ssd hybrid model

T ime baseline
= s · c(x)

Figure 1 gives a concrete estimation of energy savings compared to

job slow down. We consider the 800MHz ARM Cortex-A8 embedded

processor advertised at a speed of 1600 DMIPS or more, and a host

CPU featuring a 2.4GHz Intel Core 2 Duo processor benchmarked at

7922 DMIPS. We estimated p based on the idle and active power

consumption values cited in datasheets and benchmarks. For an

average host utilization of ≥ 60%, the Hybrid Model gives about

20− 30% energy savings with a negligible slow down (converges to

1). For analyses that are not that computationally intensive, a high

fraction of the computation can be accommodated on the controller

at some slow down cost, resulting in energy savings of up to 90%.

III. PRACTICAL CASE STUDY: COMPRESSION

We have analyzed the tradeoffs of Active Flash for a widely used

application, compression, to show that processing on the SSD is

feasible in terms of energy and performancy efficiency. We have

extended MSR’s SSD simulator to simulate a 64GB SSD and the

processor parameters from Section II. The scenario here is that the

main application on the host CPU writes out data to the SSD, which

is required to compressed. The application issues 6GB of 4K random

writes to the SSD. We refer to this I/O traffic to the SSD as a

foreground process. The SSD has been simulated to offer 123MB/s

random write throughput without compression.

Figure 2 shows energy savings when compression is performed on-

the-fly, on the SSD controller, while it also serving the foreground

I/O. The compression is run as a background process, during idle

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

E
n

er
g

y
 S

av
in

g
s

(%
)

Write throughput (MB/s)

Sustained throughput

without compression

Foreground throughput

decrease due to full

background compression I/O

c = 12%

c = 30%

c = 61%

c = 100%

Fig. 2: Compression running in the background on the SSD

controller. While the foreground application writes at the specified

throughput (x-axis), the SSD controller is able to compress c% of the

writes during idle times and save energy (y-axis).

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

C
o

m
p

re
ss

io
n

 t
h

ro
u

g
h

p
u

t
(M

B
/s

)

E
n

er
g

y
 s

av
in

g
s

(%
)

Percentage of data compressed on SSD controller (%)

throughput (x-axis)
energy savings (y-axis)

Fig. 3: Compression running in parallel on both host CPU and SSD

controller. The data to be compressed on the host CPU is re-read from the

SSD; the SSD controller compresses flash-resident data. Both operations

are performed after the foreground I/O.

periods on the SSD. Since compression is also I/O intensive, the fore-

ground process needs to run at a lower throughput to accommodate

the additional I/O due to background compression (i.e. foreground

throughput is ≤ 24 MB/s for 100% background compression, due to

just additional I/O and no computation on controller).

Figure 3 studies throughput and energy savings when compression

is performed after the completion of the foreground I/O, in a

traditional chaining approach (e.g., main application followed by

analytics.) In this case, compression is performed on both the host

CPU (re-reading data back from the SSD) and the SSD controller

(using SSD-resident data.) The figure shows that the computation

time is the bottleneck and the throughput peaks when 20% of the

data is compressed on the controller, and the rest on the host CPU.

However, if energy cost is to be minimized, then more data needs to

be compressed on the SSD controller.

IV. CONCLUSION AND FUTURE WORK

We have studied the potential of Active Flash as a means to move

processing into SSDs and have showed that it can be a vehicle to

balance the reduction in energy cost and application throughput. Our

future work involves hybrid scheduling on CPU and flash and in

optimally running the active computation alongside FTL operations.

REFERENCES

[1] ANDERSEN, D. G., FRANKLIN, J., KAMINSKY, M., PHANISHAYEE, A.,
TAN, L., AND VASUDEVAN, V. FAWN: A Fast Array of Wimpy Nodes.
In SOSP (2009).

[2] KIM, S., OH, H., PARK, C., CHO, S., AND LEE, S.-W. Fast, Energy
Efficient Scan inside Flash Memory SSDs. In ADMS (2011).

