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Abstract
Modern scientific discovery is increasingly driven by

large-scale supercomputing simulations, followed by
data analysis tasks. These data analyses are either per-
formed offline, on smaller-scale clusters, or on the su-
percomputer itself. Unfortunately, these techniques suf-
fer from performance and energy inefficiencies due to in-
creased data movement between the compute and storage
subsystems. Therefore, we propose Active Flash, an in-
situ scientific data analysis approach, wherein data anal-
ysis is conducted on the solid-state device (SSD), where
the data already resides. Our performance and energy
models show that Active Flash has the potential to ad-
dress many of the aforementioned concerns without de-
grading HPC simulation performance. In addition, we
demonstrate an Active Flash prototype built on a com-
mercial SSD controller, which further reaffirms the via-
bility of our proposal.

1 Introduction
High performance computing (HPC) simulations on
large-scale supercomputers (e.g., the petascale Jaguar
machine, No. 6 on the Top500 list [45] as of June
2012) routinely produce vast amounts of result output
data [1, 36]. Examples of such applications include as-
trophysics (Chimera, Vulcan/2D), climate (POP), com-
bustion (S3D), and fusion (GTC and GYRO) (Table 1).
Deriving insights from these simulation results often in-
volves performing a sequence of data analysis tasks.

Traditionally, the simulation jobs and data analysis of
the simulation outputs are conducted on separate com-
puting resources. Data analysis tasks are run offline, on
smaller clusters, after the completion of the simulation
job, as shown in Figure 1. The high-end computing
(HEC) machine and the analysis clusters tend to share
a high-speed scratch parallel file system (PFS) to access
the input/output data.

The reason for using offline processing for analysis
is that CPU hours are expensive on HEC machines like

Jaguar. Therefore, HPC users generally utilize the allo-
cated CPU hours for FLOP-intensive codes such as the
simulation job, instead of data analysis tasks.

Unfortunately, this traditional offline approach suffers
from both performance and energy inefficiencies. It re-
quires redundant I/O (simulations write, analyses read),
resulting in excessive data movement across the compute
and storage subsystems. As we transition from petaflop
to exaflop systems, the energy cost due to data movement
is predicted to be comparable, if not more than the com-
puting cost [29]. At the same time, technology projec-
tions indicate that energy efficiency will become the pri-
mary metric for system design, as compute power is ex-
pected to increase by 1000× in the next decade with only
a 10× increase in power envelope [34]. Therefore, an ur-
gent challenge is to expedite data analysis in an energy-
efficient manner, without degrading or interfering with
the main simulation computation.

An alternative solution is to perform data analysis on
a set of dedicated analysis nodes, wherein in-transit out-
put data is analyzed, before being written to the PFS
(Figure 1)[22]. Although this eliminates redundant I/O,
it uses expensive compute nodes for the relatively less
FLOP-intensive data analysis tasks. Moreover, it may
even slow down the simulation job due to interference,

Application Analysis data gen-
eration rate (per
node)

Checkpoint data
generation rate (per
node)

CHIMERA 4400 KB/s 4400 KB/s
VULCUN/2D 2.28 KB/s 0.02 KB/s
POP 16.3 KB/s 5.05 KB/s
S3D 170 KB/s 85 KB/s
GTC 14 KB/s 476 KB/s
GYRO 14 KB/s 11.6 KB/s

Table 1: Output characteristics of parallel simulations on
Jaguar, amortized over the entire run. Outputs comprise both
result (analysis) and recovery (checkpoints) data.
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Figure 1: Three approaches to data analysis: (1) offline (left-
most), with another cluster for analysis, (2) active flash (mid-
dle), with analysis on a subset of the simulation nodes with
SSDs, and (3) analysis node (rightmost), with an extra set of
nodes on the same machine for processing.

resulting in inefficient use of expensive resources.
In this paper, we propose a new approach to data anal-

ysis in HPC settings, using emerging storage devices
such as Solid-State Disk devices (SSDs). SSDs are being
deployed on supercomputers (e.g., Tsubame2 [45] and
Gordon [32]) due to their higher I/O throughput, and are
likely to be an integral part of future storage subsystems.
They also have significant compute power on the stor-
age controllers [6] as they are equipped with low-power,
ARM-based, multi-core controllers.

We propose active flash, a means to exploit the com-
pute power in SSDs for in-situ data analysis. This ap-
proach also has the potential to improve performance and
yield energy savings since conducting analysis in-situ,
where the data already resides, reduces both the associ-
ated data transfer latency and energy costs.

The active flash approach resembles prior work in
active disks [42, 27], embedding computation in stor-
age devices. The specifics differ significantly, however,
due to differences not only in the underlying technology
(flash vs. disk), but also in application needs, problem
setting and constraints. For example, the compute nodes,
performing the HPC simulation, should not observe any
perceivable performance degradation due to the active
computation on the SSD.

Contributions: The contributions of this work are
as follows: (1) We present detailed energy and perfor-
mance models for the active flash, offline, and anal-
ysis node approaches (the three modes shown in Fig-
ure 1). We evaluate them using realistic measurements
both from Jaguar and data rates from several leadership
applications. We model the conditions under which it
is feasible to offload data analytics to SSD controllers,
showing that active flash can execute many popular
data analytics kernels in the background without de-
grading simulation performance, and provides better per-
formance and energy consumption than alternative ap-
proaches. (2) We have built an active flash prototype on
the Jasmine OpenSSD development platform [26], ex-

tending the OpenSSD flash translation layer (FTL) with
data analysis functions, demonstrating the feasibility of
adding active flash functionality without requiring any
hardware changes. (3) Via modeling, simulation-based
verification, and our prototype, we have shown that ac-
tive flash is a cost-effective and energy-efficient execu-
tion model for in-situ scientific data analysis.

2 Background
SSD-based Staging Area for HPC Simulation Out-
put: HPC simulations produce tens of TBs of out-
put data, composed of analysis data and checkpoint
data, both written at periodic intervals. For instance,
a GTC application (Table 1) run using 18,000 compute
nodes (225,000 cores) on Jaguar produces 30TB of out-
put every hour. Analysis data forms the input to post-
processing, analytics, and visualization. Checkpoint data
stores a snapshot of the execution’s state, for future
restart purposes.

Exascale projections [34] indicate that emerging ap-
plication data rates will exert a tremendous amount of
pressure on the PFS, exposing the I/O bottleneck dra-
matically [1, 34]. Consequently, the HPC community
has been investigating SSD-based solutions to help alle-
viate this I/O bandwidth bottleneck. Several studies have
proposed the use of compute node-local SSDs as an in-
termediate storage buffer that can store the output data,
and help recover from a failed state [10, 40, 12, 15, 37].
We refer to this collective SSD space as the staging area.

In this paper, we argue that performing on-the-fly data
analysis on the SSDs in the staging area will be cost-
effective, and energy-efficient. Given the massive scale
of modern supercomputers, it may not be cost-effective
to deploy SSDs on each and every compute node. A
more realistic assumption is that they can only be at-
tached to a subset of the nodes. In the next section, we
will investigate the following questions: how many SSDs
should be deployed in the staging area to meet the data
requirements of applications, and are they sufficient to
perform active processing without degrading the perfor-
mance of the main simulation?

Enabling Trends for Active Flash: While SSDs are be-
ing deployed on HEC machines to cater to growing I/O
demands, we highlight the following trends that make it
amenable for active processing.

High I/O throughput and internal bandwidth: SSDs
offer high I/O throughput and internal bandwidth due to
interleaving techniques over multiple channels and flash
chips. This bandwidth is likely to increase with devices
possessing more channels or flash chips with higher-
speed interfaces.

Availability of spare cycles on the SSD controller:
HPC workloads are bursty, with distinct compute and
I/O phases. Typically, a busy short phase of I/O activ-
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ity is followed by a long phase of computation [16, 28].
Further, the I/O activity recurs periodically (e.g., once
every hour in the GTC application), and the total time
spent on I/O is usually low (below 5% [1]). Even some
enterprise workloads exhibit idle periods between their
I/O bursts [31, 30]. Such workloads expose spare cycles
available on the SSD controller, making it a suitable can-
didate for offloading data analysis tasks.

Multi-core SSD controllers: Recently marketed SSDs
are equipped with fairly powerful mobile cores, and even
multi-core controllers (e.g. a 4-core 780 MHz controller
on the OCZ RevoDrive X2 [33]). Multi-core SSD con-
trollers are likely to become more common place, largely
due to Moore’s law, and hence the available idle time on
the SSD controllers will increase as well.
Alternative Approach Using Analysis Nodes: One al-
ternative is to perform data analysis on dedicated low-
power processors, similar to the wimpy node architec-
ture [11]. Fortunately, these low-power cores are al-
ready available on the SSD controllers being deployed
on large-scale machines. Further, SSDs offer better I/O
throughput and storage space. We argue that piggyback-
ing data analysis on existing SSD deployment eliminates
additional effort and cost associated with procuring and
installing wimpy nodes on the supercomputer’s intercon-
nect. Moreover, the high internal bandwidth of SSDs
makes it more attractive for embedding computation.

Another alternative is the analysis nodes approach. As
discussed in Section 1, running the data analysis tasks on
the high performance compute nodes (simulation nodes),
along with the HPC simulation process, may cause inter-
ference and degrade the performance of simulation pro-
cess. Therefore, we model a more generalized analysis
node approach in this paper, where we allocate a set of
dedicated simulation nodes, solely for in-situ data analy-
sis. We model this approach and compare it against ac-
tive flash, and offline techniques.

3 Modeling Data Analysis

In this section, we study the performance and energy
tradeoffs of active flash, offline, and analysis node ap-
proaches. With the active flash approach, we propose
to conduct data analysis on the storage device controller
(SSD controller) itself. With the traditional offline ap-
proach, data analysis or post-processing is performed on
a set of compute nodes after the simulation finishes on
a supercomputer. These postprocessing compute nodes
can be allocated from the same supercomputer or from
an offline cluster that shares a common PFS with the su-
percomputer. Finally, with the analysis node approach,
data analytics is performed on a set of compute nodes,
on the same simulation machine, while the output data is
in-transit from simulation nodes to the PFS.

3.1 Active Flash

With active flash, we perform analysis on the output data,
utilizing the idle cycles of the SSD controller to operate
on temporary, SSD-resident data. We assess the feasibil-
ity of this new execution paradigm by developing an ana-
lytical model to examine the aggregate processing power
and energy consumption of distributed SSD devices.

3.1.1 SSD Staging Ratio

We assume that SSDs are provisioned in HEC machines
based on typical I/O demands and not based on data anal-
ysis requirements. The factors considered include capac-
ity, performance, and write durability.

With this assumption, the total SSD storage required
is determined by the following parameters: (1) the per-
compute-node data production rate for both analysis and
checkpoint data, denoted as λa and λc respectively, (2)
the length of an output iteration (the time between two
periodic output operations), titer, (3) the total number of
compute nodes in the system, N, and (4) the number of
checkpoints retained in the staging area, numchkpts. Be-
low we derive the required staging ratio, under different
constraints.

Capacity: Intuitively, given the capacity of an SSD, and
an application’s data production rate and frequency, the
SSD can only hold the data produced by a certain num-
ber of compute nodes. We refer to this as the capac-
ity based staging ratio, Rcapacity. More formally, taking
into account a certain over-provisioning factor, fop, for
the SSD space, the total SSD storage requirement at any
given time can be estimated as fop ·

(
λa +numchkpts ·λc

)
·

N · titer. The number of SSDs is the total SSD storage
requirement divided by the capacity of one SSD, CSSD.
Consequently, the maximum staging ratio (the maximum
number of compute nodes sharing one SSD) can be cal-
culated as:

Rcapacity =
CSSD

fop ·
(
λa +numchkpts ·λc

)
· titer

(1)

Performance: There are two kinds of performance con-
straints. First, the aggregate bandwidth to all SSDs must
be at least that of the PFS itself, otherwise the appli-
cation will invariably suffer a slowdown. If the inter-
face bandwidth between the simulation node and SSD is
BWsim−SSD, the maximum staging ratio can be stated as
follows:

Rbandwidth =
BWsim−SSD

BWPFS
N

(2)

Second, a key objective of SSD deployment in HPC is to
expedite application recovery by enabling faster reads of
the checkpoint data. Therefore, the compute node should
be able to read the checkpoint snapshot data from the
SSD within a certain duration, compared to the output
frequency. We refer to this as the “restart I/O threshold
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fraction”, ( frestart ), which expresses the desired I/O time
for recovery, as a fraction of the checkpoint interval; typ-
ical values range from 0.03 to 0.05 [1]. The resulting
constraint on the staging ratio is thus:

Rrestart =
frestart ·BWsim−SSD

λc
(3)

Write-endurance: An additional constraint is imposed
by the finite write endurance of SSDs. Large-scale
HPC systems are typically upgraded at regular intervals,
and the minimum lifetime of any system component is
dictated by the interval between two system upgrades
(Utime). If we measure the write endurance Wendurance of
an SSD by the maximum number of bytes which may be
safely written over its lifetime, then the write endurance
limit on staging ratio is:

Rendurance =
Wendurance

(λa +λc) ·Utime
(4)

The final staging ratio is determined by the most re-
strictive constraint of all:

RSSD = min(Rcapacity,Rbandwidth,Rrestart ,Rendurance) (5)

Observation 1 Even without taking active computation
into account, deciding staging ratio for SSD deployment
is non-trivial. More SSDs are required (i.e. lower staging
ratio) when output data production rate, PFS bandwidth,
and system upgrade time are high, while higher write-
endurance, SSD bandwidth, and allowable I/O overhead
require fewer SSDs (i.e. higher staging ratio).

3.1.2 Performance Model

Given an SSD deployment, with a staging ratio deter-
mined by the above constraints, we derive a performance
model to study which data analytics kernels can be of-
floaded to the SSD without degrading the performance
of the main simulation. For active computation to happen
in the background without degrading the performance of
the main simulation, the summation of the time taken
to perform data analysis on the SSD controller, and the
time taken to drain both the analysis and checkpoint data
to the PFS, should be less than the output frequency
of the application. Therefore, the data analysis kernels
that can be offloaded depends on the compute through-
put of the analysis kernel, the application’s data produc-
tion rate, staging ratio, and other system specific char-
acteristics (e.g., SSD internal bandwidth, and PFS band-
width among other things). In the following discussion,
we derive a set of equations, describing the relationship
between these factors.

Once the analysis data arrives at the SSD in the stag-
ing area, active computation involves the following data
transfers: (1) from the flash memory to the flash chip
controller at the SSD internal bandwidth, BWf m2c, and
(2) from the flash chip controller to the on-device DRAM
at bandwidth, BWc2m (see Figure 2 for a detailed view
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Figure 2: Detailed view of the SSD controller

of the SSD controller). We use TSSD k to denote the
data processing throughput of a single active flash de-
vice, running the data analysis kernel, k. Certain data
analytics kernels (e.g., statistical summaries) may even
reduce the analysis data by some factor α . The SSD
is responsible for writing the analysis data (possibly re-
duced) and checkpoint data to the PFS, consuming an
appropriate share of the aggregate file system bandwidth
BWPFS. Processing plus output time for analysis results
per checkpoint interval is thus:

ta = RSSD ·λa· ( 1
BW f m2c

+ 1
BWc2m

+ (6)

1
TSSD k

+ α
RSSD

N ·BWPFS
) · titer

and the checkpoint data output time is as follows:

tc =
RSSD ·λc

RSSD
N ·BWPFS

· titer (7)

While the draining of the staged checkpoint data to the
PFS can overlap with the processing of analysis data, we
conservatively assume that these two tasks are carried out
sequentially on the same SSD controller core.

To account for the overhead of transferring data over
the interconnect from SSDs to I/O nodes, we next model
the interconnect transfer time. We assume that the mean
distance from a staging node to the nearest I/O node is
hop distance, d, and that is the same as the mean distance
from a simulation node to the nearest I/O node.

Assuming wormhole routing [18]) with packets seg-
mented into m-byte flits, and interconnect bandwidth
(with no contention) of BWidlelink, the total data transfer
time within a single output interval titer is:

ti =
m

BWidlelink
·d +

RSSD · (α ·λa +λc)
BWidlelink

· titer (8)

BWidlelink is an optimistic bandwidth estimate for the in-
terconnect latency, which may potentially favor our ac-
tive computation approach; we thus model contention in
order to provide a conservative transfer time estimate.

The interconnect contention ratio is the mean number
of nodes sharing one link. Assuming in the worst case
that each node sends a message to its farthest neighbor in
the interconnection network, we have a total of N · dmax
messages, where N is the total number of nodes and dmax
is the network diameter. If the total number of links is

4



L, then per-link contention is N·dmax
L . Thus, the effective

interconnect bandwidth can be expressed as BWidlelink·L
N·dmax

,
and Equation 8 can be re-written as follows:

ti =
1

BWbusylink
· (m ·d +RSSD · titer · (α ·λa +λc)) (9)

where

BWbusylink =
BWidlelink ·L

N ·dmax

The diameter, dmax, of an interconnect and the total
number of links can be determined from the topology.

For the active flash approach to be feasible, the device
needs to process and output the data from the S simula-
tion nodes before the next I/O iteration, i.e., consuming
data at a rate faster than its generation:

ta + tc + ti < titer (10)
Solving the inequality 10, we arrive at the minimum pro-
cessing throughput required for an analytics kernel, k to
be placed on the flash device:
TSSD k > (11)

λa ·RSSD

1−λa ·RSSD · ( 1
BW f m2c

+ 1
BWc2m

)− N·(α·λa+λc)
BWPFS

− ti
titer

In Section 5, we use this equation to evaluate the perfor-
mance feasibility of active flash for a set of representative
large-scale applications and data analytics kernels.

Observation 2 Multiple factors determine which ker-
nels may be offloaded to the SSD without degrading sim-
ulation performance. Increases in either PFS or internal
SSD bandwidth allow more computationally-intensive
kernels to be offloaded, while higher staging ratios and
data production rates decrease the amount of computa-
tion which may be offloaded.

3.1.3 Energy Model

Total energy consumed by the active flash approach
(Eactive− f lash) can be expressed as the summation of
the data movement energy expense in the interconnect
(Einterconnect ), and the energy consumed by all of the
SSDs in the staging area (ESSD), for the entire duration
of the application run:

Eactive− f lash = Einterconnect +ESSD (12)

First, we model the interconnect energy as the data
movement energy overhead for a given number of hops.
If e(h) represents the energy to transfer a unit amount
of data across h hops, then we can express the total data
movement energy cost as:

Einterconnect = tsim ·N · (e(ds) · (λa +λc)+ (13)
e(d) · (α ·λa +λc))

where ds is the number of hops from the simulation node
to its nearest staging node. (Recall that d is the distance
from a staging node to the nearest I/O node.)

The energy consumed by the SSDs is:
ESSD = EbusySSD +EidleSSD−Eiosaving (14)

where EbusySSD, energy consumed during the SSD busy
time, is the summation of (1) the energy to transfer data
from the simulation nodes to the SSDs (Esim−SSD), (2) the
energy used while processing analysis data (EactiveSSD),
and (3) the energy to transfer data to the PFS (ESSD−PFS).

EidleSSD, in turn, is the energy consumed by the SSD
in the idle state (when it is not performing I/O or compu-
tation). Finally, higher I/O bandwidth due to SSDs may
reduce the time spent waiting for I/O at the simulation
nodes; the resulting reduction in energy consumption at
the simulation nodes is denoted by Eiosaving.

Next, we estimate each component of the SSD busy
time (EbusySSD) individually. Let PSSD

busy and PSSD
idle be the

SSD busy and idle power levels, respectively, and tsim the
total simulation computation time for a single application
run.

Esim−SSD is the total time (ttrans f er) to transfer data
from the simulation nodes to the SSDs in the staging
area, times the power PSSD

busy . Total data transferred is:

datatotal = N · (λa +λc) · tsim

Then, the ttrans f er is equal to:

(
1

BWsim−SSD
+

1
BWbusylink

) ·datatotal

The total energy consumed by the SSDs during the data
transfer from the simulation nodes to the SSDs can then
be expressed as:

Esim−SSD = PSSD
busy · ttrans f er (15)

Similarly, the time taken to post-process, tactivecompute,
is equal to:

N ·λa · tsim(
1

BWf m2c
+

1
BWc2m

+
1

TSSD k
)

and the total energy consumed by the SSDs during data
analysis is:

EactiveSSD = PSSD
busy · tactivecompute (16)

After data analysis tasks, both checkpoint and analysis
data are written to the PFS by the SSDs. Accounting for
both PFS transfer and interconnect latency, the energy
cost is:

ESSD−PFS = PSSD
busy ·datatotal · (

1
BWPFS

+
1

BWbusylink
) (17)

Finally, the idle energy consumption can be calculated
from the estimated total idle time, utilizing the busy time
estimate above:

EidleSSD = PSSD
idle · (

N
RSSD

· tsim−
EactiveSSD +ESSD−PFS

PSSD
busy

) (18)

The busy time involved in Esim−SSD is not subtracted in
the equation above, unlike the other two components.
This is because both the CPUs and the SSDs are involved
in the data transfer, which is not a part of tsim, and does
not perform data generation.
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We estimate the per-node idle time reduction as

Tiosaving =
N · (λa +λc)

BWPFS
−

(RSSD · (λa +λc)) · (
1

BWsim−SSD
+

1
BWbusylink

)

Therefore, the energy savings on the simulation nodes,
over the entire application run is:

Eiosaving = N ·Tiosaving · tsim ·Pserver
idle (19)

Observation 3 Energy spent during the SSD busy time
is dependent on the total amount of work performed and
the data transferred, and thus independent of the staging
ratio (i.e. the number of SSDs deployed). In contrast,
idle SSD energy costs and energy savings on the simula-
tion nodes vary with the staging ratio.

3.2 Modeling Offline Processing

With the offline approach, compute nodes on the analy-
sis cluster need to read only the analysis data and write
the results according to their share of the whole data, i.e.,
N·λa

M , assuming M nodes are used to perform offline anal-
ysis. Similarly, each of the M nodes need to process the
data at the processing rate, Tserver k, for a given kernel
k. Again, we assume that each node gets its appropri-
ate share of the PFS bandwidth 1

N ·BWPFS. The intercon-
nect latency would be equal to N·λa

M·BWbusylink
. The following

equation captures the runtime of the offline analysis:

To f f line=
N ·λa · tsim

M ·Tserver k
+ (20)

(1+α) · (N ·λa · tsim

M
) · ( N

BWPFS
+

1
BWbusylink

)

In some cases, analysis data is transferred over the
wide area network for processing, resulting in more per-
formance and energy penalty than what our optimistic
model estimates.

Next, we model the energy cost of offline processing.
We charge only idle power for the compute servers while
they read and write the analysis data, and account for
busy power during data analysis. We can obtain this by
multiplying Equation 20 by Pserver

idle for the reading and
writing part of the process, and multiplying by Pserver

busy for
the analysis part of the process.

There are various topologies which could be used for
the offline approach, making estimates of interconnect
energy cost difficult. We therefore conservatively ignore
the cost of moving data to an offline compute cluster
when comparing to our active flash approach, giving a
total energy cost of:

Eo f f line=Pserver
idle · (1+α) · (N2 ·λa · tsim

BWPFS
+

N ·λa · tsim

BWbusylink
)

+Pserver
busy ·

N ·λa · tsim

Tserver k
(21)

Observation 4 The energy cost of offline processing
does not depend on the number of offline nodes, but only
on the total amount of data to be read and processed.

3.3 Modeling the Analysis Node Approach

Much like the case of SSD deployment, we begin by de-
termining the staging ratio for analysis node deployment,
based on capacity and bandwidth constraints. The capac-
ity constraint here refers to the memory capacity (Cmem)
on the analysis node, and the bandwidth constraint corre-
sponds to the memory bandwidth (BWmem) instead of the
host to SSD bandwidth.

We assume that all simulation output—both check-
point data and analysis input—is transferred to the anal-
ysis nodes, as is done by libraries such as ADIOS [22],
as the resulting increase in checkpoint write bandwidth
allows the simulation nodes to progress faster.

Equations 1, 2, and 5 are thus changed as follows:

Rcapacity =
Cmem

fop ·
(
λa +numchkpts ·λc

)
· titer

(22)

Rbandwidth =
N

BWPFS
·BWmem (23)

Ra node = min(Rcapacity,Rbandwidth) (24)
where subscript a node refers to the analysis node ap-
proach. Similarly, Equations 6, 7, and 9 can be modified
to estimate the data analysis time, output time, and the
interconnect latency:

ta = Ra node ·λa(
1

Ta node k
+

α

Ra node
N ·BWPFS

) · titer (25)

where Ta node k is the throughput required to run the data
analysis kernel, k on the analysis node.

tc =
Ra node ·λc

Ra node
N ·BWPFS

· titer (26)

ti =
1

BWbusylink
· (m ·d +Ra node · titer(αλa +λc))(27)

Similar to the active flash model, we can derive the
minimum throughput required for the analytics kernels
that can be offloaded to the analysis nodes:

Ta node k > (28)
λa ·Ra node

1− N·(α·λa+λc)
BWPFS

− 1
BWbusylink

(m·d
titer

+Ra node · (αλa +λc))

Next, we account for the energy overhead of the dif-
ferent components, starting with data movement costs,
which are:

Einterconnect = tsim ·N · (e(da node
s ) · (λa +λc)+

e(d) · (α ·λa +λc)) (29)
where da node

s is the average number of hops from the
simulation nodes to the analysis nodes. Next, we ac-
count for the energy cost when analysis nodes are busy.
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This comprises of three components: (1) transferring
data from the simulation nodes to the data analysis node
(Esim−a node), (2) processing the analysis data (Ea node),
and (3) transferring the data to the PFS (Ea node−PFS).

Let Pa node
busy and Pa node

idle be the data analysis node’s busy
and idle power level, respectively. Then, we can modify
Equations 15 to 19 to get the corresponding equations
for data analysis energy overheads:

Esim−a node = Pa node
busy · ( 1

BWmem
+

1
BWbusylink

) ·datatotal

(30)

Ea node =
Pa node

busy ·N ·λa

Ta node k
· tsim (31)

Ea node−PFS = (32)

Pa node
busy ·datatotal · (

1
BWPFS

+
1

BWbusylink
)

Eidle−a node = (33)

Pa node
idle · ( N

Ra node
· tsim−

Ea node +Ea node−PFS

Pa node
busy

)

Finally, we estimate the per simulation node idle time
reduction due to analysis nodes as:

Tiosaving−a node =
N · (λa +λc)

BWPFS
−

(Ra node · (λa +λc)) · (
1

BWmem
+

1
BWbusylink

)

and total energy savings for this approach is:
Eiosaving−a node = N ·Tiosaving−a node · tsim ·Psim

idle (34)

4 Experimental Methodology
We evaluate our models using the data production rates
from extreme-scale applications on the Jaguar machine
at ORNL (Table 1).

Our model is generic and applies to common super-
computer configurations seen today. Our evaluation is
driven by parameters from the Cray XT5 Jaguar super-
computer [8], as shown in Table 2. In the current SSD
landscape, there is no support for active computation
on the device. To study the viability of active flash,
we model after a contemporary SSD such as Samsung
PM830, which has a multicore SSD controller based on
the ARM processor [6]. Although such a controller has
three ARM-based cores, we adopt a conservative ap-
proach, and propose to use only one core for active com-
putation, while leaving the other cores free for typical
SSD activities (e.g. error-checking, garbage collection).
In the future, more cores are likely to be placed on the
same chip, making active computation more promising
than what is projected in this study.

To emulate the computing speed of the ARM-based
SSD controller, we use an ARM Cortex-A9 processor
in the Pandaboard mobile software development plat-
form [38]. We model the data transfer times as follows.
We assume 8 flash memory channels, each with 40MB/s

No. of compute nodes (N) 18,000
PFS bandwidth (BWPFS) 240 GB/s [35]
Output frequency (titer) 1 hour
Simulation duration (tsim) 24 hours
Overprovisioning factor ( fop) 1.50
Data reduction factor (α) 1 (no reduction)
Time between upgrades (Utime) 2 years
Restart I/O threshold ( frestart ) 0.05 [1]
Interconnect bandwidth (BWbusylink) 814 MB/s
Flit size (m) 32 bytes
Hop count (d, ds, da node

s ) 3 hops, 1.5 hops,
1.5 hops

e(d), e(ds), e(da node
s ) 10 pJ/bit, 5 pJ/bit,

5 pJ/bit [9, 14]
SSD model Samsung PM830
BWsim−ssd 400 MB/s [20]
BW f m2c 320 MB/s [20]
BWc2m 3.2GB/s [4]
SSD power (Pbusy, Pidle) 3 W, .09 W [6]
SSD write endurance (Wendurance) 300 TB written [6]
Offline model / analysis node model 2 Intel Core i7 [3]
BWmem 30 GB/s
Node power (Pbusy, Pidle) 190 W, 63 W
Price: SSD (64 GB), $ 100 [7],
node (2 quad cores), DRAM (64 GB) $ 610 [5], $ 400 [2]

Table 2: Parameters for performance and energy models.

bandwidth, to transfer data from the NAND Flash to the
chip controller (BWf m2c) [20]. Our numbers are conser-
vative, and modern devices usually have higher channel
bandwidth or more channels. Similarly, while the DDR2
SDRAM cache used in these SSDs may have a band-
width of up to 5.3GB/s [4], we conservatively set BWc2m
to 3.2GB/s.

For a comparison with the offline and analysis nodes
models, we use two Intel Core i7 2600 processor
(3.4GHz with eight hardware contexts) [3] as the data
processing node. We use an input file of 100MB to mea-
sure the analysis throughput.

The chosen data analytics kernels cover a wide va-
riety of representative analytics operations on scientific
data, including pattern matching, clustering, changing
data layout, and compression [23, 24, 21]. We mea-
sured their processing throughput on both the ARM-
based SSD controller and the Intel server (Table 4). Note
that the throughput of the analysis kernels may be input-
dependent as well (e.g. number of clusters, dimensions,
and search expressions). Therefore, choosing a wide va-
riety of kernels, whose throughput varies from less than
one MB/s to a few GB/s helps better understand the lim-
its, and the potential of active flash.

For energy calculations we use the thermal design
power (TDP) of 190W (2 × 95W per machine) as the
busy-state power for each offline node; we conserva-
tively estimate idle power at one third of TDP and cool-
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Data Analytics Kernels ARM
Cortex-A9

Intel core i7-
2600

Statistics (mean) 416 MB/s 54.2 GB/s
Pattern Matching (grep) 123 MB/s 9.65 GB/s
Data formatting (transpose) 76 MB/s 3.25 GB/s
Dim. reduction (PCA) 10.2 MB/s 549 MB/s
Compression (gzip) 4.1 MB/s 225 MB/s
Dedup. (Rabin fingerprint) 1.81 MB/s 143 MB/s
Clustering (k-means) 0.91 MB/s 27.3 MB/s

Table 3: Processing throughput of common data analytics ker-
nels on different devices. Our offline compute node consists of
two Intel core i7-2600 machines.

ing cost as zero.
In addition, we ignore the power required for mem-

ory and network traffic for the offline approach, which is
clearly higher compared to active flash due to additional
reading of the analysis data.

We computed the hop counts, d for Jaguar as follows.
Jaguar has 200 cabinets in 8 rows and 25 columns, with
3 cages per cabinet, 8 blades per cage, and four com-
pute nodes per blade. Every node is connected via the
3D torus Cray Gemini network, with routing on X, Y, Z
directions [19]: X is across cabinets within a row, Y is
across cabinets within a column, and Z is across nodes
within a cabinet. Average cable lengths are 1.8 m and
7.5 m for the X and Y directions respectively. Based on
the coordinate information, we can infer node-to-node
hop count in distance, and also determine the number of
cabinets traversed. To account for the energy cost in our
experiments, we are particularly interested in the hop dis-
tance from the compute nodes to the I/O nodes and con-
sequently, the number of cabinets traversed. We estimate
ds and da node

s to be half of d (Table 2). This, however,
is a conservative estimate since the number of analysis
nodes or SSDs (e.g., at a staging ratio of 10) is approxi-
mately 9 times the number of I/O nodes (192) in Jaguar.

We have validated the busy link bandwidth model,
BWbusylink, against the actual link bandwidth measure-
ment on Jaguar by performing all-to-all MPI communi-
cation between N node pairs; measured busy link band-
width based on 1024 nodes is 814 MB/s.

5 Evaluation
Our evaluation aims to answer three questions: (1) What
is the staging ratio for SSD provisioning, based on differ-
ent constraints for representative applications? (2) Will
these staging ratios support in-situ data processing on
SSDs? (3) If so, what energy savings may be achieved
with active flash?

Staging ratio: Table 4 shows the staging ratio for the
active flash, and the analysis node models, based on con-
straints from Equations 1-4 and 22-23; higher staging

Active Flash Model
CHIMERA VULCAN POP S3D GTC GYRO

Rcapacity(32GB) 1 2571 233 18 6 166
Rcapacity(64GB) 1 4500 461 36 12 333
Rbandwidth 29 29 29 29 29 29
Rendurance 1 2268 245 20 10 204
Rrestart 4 896218 4054 240 42 1758

Analysis Node Model
CHIMERA VULCAN POP S3D GTC GYRO

Rcapacity(16GB) 1 1285 117 9 3 83
Rcapacity(32GB) 1 2571 233 18 6 166
Rcapacity(64GB) 1 4500 461 36 12 333
Rbandwidth 2250 2250 2250 2250 2250 2250

Table 4: Staging ratio derived from capacity, bandwidth, and
endurance and restart (flash only) constraints for applications
on Jaguar. The most restrictive ratio is shown in bold.

ratios correspond to more compute nodes per SSD or
analysis node. Capacity constraints are identical for both
models, while bandwidth constraints differ due to higher
memory bandwidth (for analysis nodes) than SSD band-
width (for active flash), and are application independent
constants of 2250, and 29, respectively. For active flash
the bandwidth constraint is most restrictive for applica-
tions with high data rates relative to overall data vol-
ume, capacity is not restrictive for 64GB SSDs, and write
endurance is a limitation for applications like S3D, and
GTC with large output volumes.

Inference: The limiting factor for active flash seems
to be workload dependent, whereas capacity is the over-
riding concern for analysis nodes.

Infrastructure cost: As stated above (Section 2), SSDs
are currently deployed in HEC systems as burst buffers to
alleviate I/O bandwidth bottlenecks when checkpointing.
As active flash piggybacks computation on this existing
infrastructure, we argue that its cost may be ignored, un-
like that of analysis nodes; however to be conservative
our analysis considers both costs in Figure 3(a) (cost de-
tails in Table 2). At low staging ratios the analysis node
approach is rather expensive—e.g. $1,818,000 to provi-
sion Jaguar with 64 GB DRAM analysis nodes at a stag-
ing ratio of 10, vs. $180,000 for SSDs at the same ratio.
However, analysis nodes might enjoy a higher staging ra-
tio in certain cases due to its higher memory bandwidth.

One example is the application POP, where the staging
ratio is limited to 29 by bandwidth for active flash, but
is capacity-limited to 461 for analysis nodes (Table 4).
Provisioning cost is estimated at roughly $62,000 and
$39,390 for active flash and analysis nodes, respectively.

Inference: Analysis nodes can sustain a higher stag-
ing ratio at higher capacities, which can help reduce the
infrastructure costs. However, as active flash piggybacks
on existing infrastructure, its cost is already paid for.

Feasibility analysis: A higher staging ratio lowers the
infrastructure cost, but not all analysis kernels are feasi-
ble above certain staging ratios. Figure 3(b) shows the
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Figure 3: (a) Cost of provisioning SSDs, and analysis nodes. The SSD capacity is 64GB; the analysis node is a dual quad-core
machine with 64GB of DRAM. (b) Feasibility of running analysis kernels using different staging ratios. A kernel line higher than
a dot point on the application’s slope line is suitable for active flash (left figure), and the analysis node approach (right figure).

computational throughput of the analysis kernels as flat
horizontal lines and the application throughput require-
ment as sloped lines with dots. A data analysis kernel
is able to run on the SSD without any penalty to the
simulation performance if its computational throughput
is higher than the required throughput of the application
(TSSD k in Equation 12, and Ta node k in Equation 28). As
the staging ratio increases, the processing requirements
for both active flash devices and analysis nodes increase.

For example, all of the data analysis kernels can be run
on active flash (left graph in Figure 3(b)) for the fusion
application S3D, when the staging ratio is 5, i.e. 3,600
SSDs for 18,000 compute nodes. As we increase the
staging ratio to 50, the gzip, fingerprinting, and
kmeans analysis kernels cannot be run on the SSD for
this application’s output, as the threshold throughput of
S3D is higher than the compute throughput of these ker-
nels. Figure 3(b) shows that a staging ratio as high as
300 can accommodate all data analysis kernels for most
applications, with the exception of the S3D application.

For the analysis node model with 64GB of DRAM, a
staging ratio of 10 can accommodate all of the kernels
for all of the applications, but incurs $1.8M infrastruc-
ture cost. To reduce provisioning costs the staging ratio
may be increased beyond this point, reducing the number
of analysis kernels which may be used with certain appli-
cations. For example, if the staging ratio is increased to
30, the cost falls 67%, to $606,000, while eliminating
support for running data analysis kernels on the output
of GTC (Table 4).

Inference: Both active flash and analysis node tech-
niques can support most of the kernels and applications
at low staging ratios, but at a higher infrastructure cost.
High infrastructure cost can be reduced by increasing the
staging ratio, but that scarifies the analysis kernels that
can be run on active flash or analysis nodes.

Energy consumption: Next, we discuss the energy con-
sumption of the models, and its effect on the overall cost.
Figure 4 shows the energy costs of active flash, offline,
and analysis nodes. We assume a staging ratio of 10, al-

lowing almost all application/analysis kernel pairings to
be executed except for CHIMERA(Figure 3(b)). Addi-
tionally, active flash can not support kmeans kernel for
S3D application. For this ratio we need 1800 staging or
analysis nodes, each with 64GB of SSD or DRAM, to ac-
commodate the next most restrictive application, GTC.

We define the configuration baselinePFS (y = 0) to be
the case where the simulation is run without SSDs: all
checkpoint and output data are written to the PFS, and no
further data analysis is performed after simulation. Re-
sults are given as the difference between energy usage for
a configuration vs. that for baselinePFS; negative num-
bers indicate energy savings. We observe that deploy-
ing SSDs just for higher I/O throughput (baselineSSD, the
dotted horizontal line in Figure 4), saves significant en-
ergy by shortening application run time.

It is not surprising that active flash consumes extra en-
ergy compared to baselineSSD; however, it still results
in savings compared to baselinePFS for almost all appli-
cation / kernel pairs (except VULCUN, which performs
little I/O). In contrast, the offline model consumes more
energy due to the I/O wait time on the offline compute
nodes. For example, for S3D with fingerprinting, active
flash conserves more than 800 kWh per simulation run
vs. offline processing, due to the volume of analysis data.

Active flash also results in significant energy savings
over use of analysis nodes. For the same S3D with finger-
printing, we observe more than 2500 kWh of energy sav-
ings per run. Note that these energy savings are per sim-
ulation run, and will compound over the lifetime of the
machine, potentially helping to defray the cost of the ini-
tial deployment. Although analysis nodes offer increased
performance, they are seen to consume more energy at
low staging ratios than offline processing, as they spend
significant time idle; this idle time (and energy expendi-
ture) is reduced at higher staging ratios.

Inference: Overall, active flash makes data analysis
virtually “free” in most cases when it is piggybacked on
the SSDs, because performing computation at SSD con-
troller avoids the infrastructure cost of analysis or offline
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Figure 4: Comparing the energy expenses of all applications
for Active Flash, offline, and analysis nodes techniques. Ex-
penses are w.r.t. running only the simulation job using PFS,
without SSDs (baselinePFS.) Dotted line denotes energy sav-
ings due to running only simulation using SSDs without active
computation (baselineSSD.) Active flash and offline are plot-
ted on the primary y-axis (y1), and the analysis nodes model is
plotted on the secondary y-axis (y2).

nodes, and also results in performance improvement and
energy savings.

Overall cost: To better understand the overall costs we
examine active flash and analysis nodes (both of which
offer better performance than offline) at various staging
ratios (Table 2) across our portfolio of HPC applications,
comparing the up-front (capital) costs as well as the en-
ergy expenditure over time. We study the trade-off be-
tween these costs, displaying infrastructure and 2-year
energy costs in Table 5 for running our application port-
folio continuously at staging ratios of 10, 30, and 300.

At a staging ratio of 10, both active flash, and analysis
nodes can support all of the application/kernel combi-
nations. In Table 5 we see that active flash is the most
energy-efficient, saving $19,131 (at $0.30 per kWh) to
support the five applications for a period of two years and

thereby defraying almost 11% of the deployment cost of
$180,000. In contrast, the analysis node approach results
in energy costs of $566,375, or an additional 31% on top
of the initial provisioning cost of $1,818,000.

At staging ratios of 30 and 300 active flash cannot
be used with any applications, while analysis nodes are
more cost effective, while failing to run GTC (at 30 and
300) and S3D (at 300). At a ratio of 30 the infrastructure
and energy expenses decrease to roughly $606,000 and
$158,193, respectively; at 300 the infrastructure and en-
ergy expenses decrease even further to roughly $60,600
and $31,072, respectively.

Inference: Energy costs for analysis nodes decrease
at higher staging ratios, but may not support certain ap-
plications, and the cost reduction fails to defray any of
the initial infrastructure expense, unlike active flash.

Staging Infrastructure Energy Total Feasible
Ratio Cost ($) Bill ($) Cost ($) Applications

Active Flash Model
10 180,000 −19,131 160,866 all
30 & 300 − − − none

Analysis Node Model
10 1,818,000 566,375 2,384,375 all
30 606,000 158,193 642,993 all, w/o GTC
300 60,600 31,072 67,432 all, w/o GTC, S3D

Table 5: Capital and energy costs to support a portfolio of five
leadership applications for 2 years. Assumptions: continuous
usage, equal number (146) of 24-hour simulation runs per ap-
plication, electricity $0.30 per kWh.

Summary of results: In summary, for most of the ap-
plications, and all of the analysis kernels, active flash
is effective at low staging ratios, while being efficient
in terms of both deployment cost and energy; however
for higher staging ratios it is unable to support certain
applications. Active flash is limited by the bandwidth
and write endurance constraints. In contrast, analysis
node performs well at higher staging ratios, especially
for compute-intensive analytics kernels; however it is
limited by capacity constraints on DRAM and suffers
from higher cost and energy consumption. A hybrid ap-
proach, deploying analysis nodes with active flash might
be feasible, but is beyond the scope of this paper.

6 Active Flash Prototype
To demonstrated feasibility of the active flash ap-
proach, we have implemented a prototype on the Jas-
mine OpenSSD development platform [26], extending
the OpenSSD flash translation layer (FTL) with data
analysis functions. This platform uses the Indilinx Bare-
foot controller, an ARM-based SATA controller with pa-
rameters shown in Table 6.

An overview of our implementation is shown in Fig-
ure 5. Active flash functionality is requested via out-of-
band commands, distinguished by LBA range. An ac-
tive flash operation comprises: (a) write: analysis input
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Parameter Value
Controller ARM Indilinx BarefootTM at 87.5 MHz
Host Interface SATA 2 at 3 Gbps
SDRAM 64 MB
Flash Memory 64 GB

Table 6: SSD parameters on the OpenSSD platform.

Host LBA on Flash

read / write

data analysis
requests

SSD
SSD controller

data analysis

FTL

Figure 5: Active Flash prototype.

data is written by the host to the SSD, e.g. as part of a
checkpoint operation, (b) request: data analysis request
sent in the form of write to a reserved LBA, (c) process:
the analysis kernel running on the SSD controller, read-
ing input data from internal flash (where it was written
in step (a)), (d) result: output data is written to internal
SSD storage, and the host notified via polling or comple-
tion of a pending command.

6.1 Data analysis commands

The command format is simple and general, as shown in
Figure 6, specifying an operation, a list of LBA extents,
and operation-specific options.

Data for analysis is transferred to the controller by (a)
writing to a file in the host file system, (b) flushing data
from RAM to storage, (c) translating offsets within the
file into physical LBAs, and (d) passing the sequence of
LBA extents in the analysis command. Analysis results
are returned by creating and pre-allocating a file for anal-
ysis output, then again translating file offsets to LBAs
and passing an LBA extent list to the controller.

Simple analysis requests such as the statistical ker-
nels described below (mean, max, standard deviation,
linear regression) are fully specified by the command
type; input is retrieved from the locations identified in
the extent list. A variable-length options field is available
for more sophisticated kernels like K-means clustering,
which may require additional parameters.

The analysis input typically represents a multi-
dimensional numeric array; in the current implementa-
tion this data layout is either known implicitly by the
analysis kernel or is specified in the Options field. In
practice this information is expected to be conveyed
via the use of self-describing data formats such as
NetCDF [41] or HDF5 [25]: metadata in these scientific
data storage formats include information such as array
shape and precision needed to interpret the raw data.

Command

Nextents

Options

Nextents

LBA

length

Identifies data analysis kernel

Extent list - identifies input (or output) file

Analysis kernel-specific options

Figure 6: Data analysis command format.

6.2 Scheduling I/O and data analysis tasks

As part of servicing read and write requests, SSD con-
trollers must perform a number of overhead functions,
such as garbage collection, wear leveling, bad block
management, and error correction-related tasks. Some of
these are performed at request time, while others may be
deferred to background processing. In either case, such
tasks will compete for CPU time with analysis tasks. To
minimize impact on SSD performance on our single-core
prototype, we implement a preemption-based scheme:
data analysis is interrupted when I/O requests arrive, re-
suming after they finish.

The OpenSSD-based prototype implements a simple
event loop, with CPU-bound tasks processed to comple-
tion. This preemption is performed by polling for re-
quests at periodic intervals, implemented by processing
B bytes at a time between checks. I/O requests may thus
have to wait until the current interval is finished, incur-
ring a mean delay of half that interval. Suppose TSSD k is
the throughput of the data analysis kernel k, this delay is:

Delay k =
1
2
· B

TSSD k
In our prototype B is currently set to 32 KB, the hard-

ware flash controller read size; for the analysis kernels
shown in Table 7 below, this results in a mean delay of 3
to 8 ms. When I/O service requests are received in bursts,
this delay should only be incurred once, achieving an ac-
ceptably low level of interference; on multi-core SSDs it
may be avoided entirely.

6.3 Results

The host-controller communication mechanism de-
scribed above, plus four data analysis kernels, have
been implemented in our prototype as part of the SSD
firmware. The kernels represent statistical computation
common for scientific data processing: max, mean, stan-
dard deviation and linear regression. Input for all exper-
iments consisted of 100 MB of 32-bit integers, stored on
the SSD in binary. For comparison, each kernel compu-
tation was performed on the host CPU, an AMD Phenom
9550 quad-core at 2200 MHz with 2 GB of DRAM.

Throughput: Analysis throughput is shown in Ta-
ble 7. We see that the statistical data analysis kernels
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Throughput (MB/s) Time (s) Energy (Joules)
Data analysis Active Flash Host Active Flash Host Active Flash Host
kernel I/O compute I/O compute
Max 4.5 33.3 2.4 19.8 2.6 0.4 31 288
Mean 4.0 33.1 2.4 22.1 2.6 0.4 34 290
Standard Deviation 3.3 32.0 2.4 27.7 2.6 0.5 42 300
Linear Regression 1.9 26.8 2.4 49.6 2.6 1.1 73 357

Table 7: Performance of data analysis kernels on active flash controller and host: throughput, I/O and computation
time, and energy consumption. Input size = 100 MB; host CPU = AMD 2200 MHz, active flash CPU = ARM 87.5 MHz

achieve about 2–4.5 MB/s on the SSD controller (sec-
ond column), and run about 7–14 times faster on the host
CPU (third column). The OpenSSD CPU runs at only
87.5 MHz; active flash performance is expected to scale
with faster cores in today’s higher-end SSDs (e.g. the
OCZ RevoDrive X2, with four 780 MHz Tensilica cores).

Division of I/O and computation time: Analysis run
time consists of I/O and computation:

t = tio + tcomp (35)

For active flash, tio = t f m2c + tc2m represents the time
to read the data from flash to the controller’s DRAM.
For host–resident data analysis, tio = t f m2host is the time
to read the data from flash to the DRAM on host.

In Table 7 I/O and computation time is presented in
each case for 100 MB of input data; as expected, with
active flash, tcomp is dominant, while the host–resident
analysis time is dominated by tio. Since the controller is
optimized to deliver full internal flash bandwidth to the
host, the two cases generated very similar I/O time with
32 KB reads. However, if less well-aligned read sizes are
used by the host application, the SSD-to-host I/O time
will increase (e.g., to 9 seconds with 4 K reads).

Power and energy consumption: The active flash pro-
totype and host were measured in idle (1.35 W, 79 W),
sustained write (1.5 W, 80 W) and data analysis (1.4 W,
96 W) states. Note that the relatively flat power con-
sumption of OpenSSD is typical of low-end CPUs;
higher-end embedded cores may incorporate power-
saving idle modes similar to those of the host CPU. En-
ergy consumption for processing 100 MB of data is also
shown in Table 7; the active flash prototype is seen to use
5 to 9 times less energy than host-resident processing.

7 Related Work
Active Disk [42] and IDISK [27] were early proposals
for shifting computation to the disk-resident CPU, with
target applications including image processing and data
filtering. Active storage concepts have been explored
in the context of PFS [39, 43], where the computation
is performed on the I/O nodes. Kim et al. [20] stud-
ied the feasibility of offloading database scan operations
on the SSD controller. Cho et al. [17] have proposed
hardware changes (adding reconfigurable stream proces-
sors) to the SSD for offloading data-intensive tasks. In

contrast, our approach does not require any hardware
changes. Boboila et al. have proposed Active Flash [13],
which takes advantage of the higher internal bandwidth
and lower power; Boboila’s work, however, models a sin-
gle active flash device rather than a workflow. In contrast,
we evaluate the active computation paradigm on SSDs in
a supercomputing environment for a class of HPC sim-
ulations and data analyses (preliminary results appeared
here [44]). Additionally, in comparison to prior work,
we are unique in considering a case where data output
rates impose real-time constraints on active computation
to avoid overall performance degradation.

8 Conclusion
We have proposed active flash, an approach to perform
in-situ scientific data analysis on SSDs, in HEC ma-
chines. We have presented detailed performance and en-
ergy models for active flash, offline, and analysis nodes,
and studied their provisioning cost, performance, and
energy consumption. Our modeling and simulation re-
sults indicate that active flash is better than the other ap-
proaches in helping to reduce both data movement, and
energy consumption, while also improving the overall
application performance. Interestingly, our results sug-
gest that active flash can even help defray part of the capi-
tal expenditure through energy savings. Further, we have
demonstrated the feasibility of active flash through the
construction of a prototype, based on the OpenSSD de-
velopment platform, extending the OpenSSD FTL with
data analysis functions. Finally, our experience suggests
that active flash is a viable, cost-effective approach for
future in-situ scientific data analysis.
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