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Abstract� The MPI ��� de�nition includes routines for

nonblocking point�to�point communication that are in�
tended to support the overlap of communication with com�
putation� We describe two experiments that test the abil�

ity of MPI implementations to actually perform this over�
lap� One experiment tests synchronization overlap� and the
other tests data�transfer overlap� We give results for vendor�

supplied MPI implementations on the CRAY T�E� IBM SP�
and SGI Origin���� at the CEWES MSRC� along with re�

sults for MPICH on the T�E� All the implementations show
full support for synchronization overlap� Conversely� none
of them support data�transfer overlap at the level needed

for signi�cant performance improvement in our experiment�
We suggest that programming for overlap may not be worth�
while for a broad class of parallel applications using many

current MPI implementations�
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I� Introduction

O
VERLAPPING interprocessor communication with
useful computation is a well�known strategy for im�

proving the performance of parallel applications� and the
Message�Passing Interface �MPI� is a popular program�
ming environment for portable parallel applications ����
The MPI ��� de�nition includes routines for nonblocking
point�to�point communication that are intended to support
the overlap of communication with computation �	�� Sep�
arate routines for starting communication and completing
communication allow the passing of messages to proceed
concurrently with computation�

Though such overlap of communication and computa�
tion motivated the design of nonblocking communication
in MPI� the MPI ��� standard does not require that an
MPI implementation actually perform communication and
computation concurrently �	�� We describe experiments
that illustrate the degree to which MPI implementations
support overlap and the degree to which programming for
overlap can improve actual performance� We present re�
sults for popular MPI implementations on parallel systems
available at the CEWES MSRC�
 the Cray Message Pass�
ing Toolkit �MPT� and MPICH on the CRAY T�E� the
IBM Parallel Environment �PE� on the IBM SP� and MPT
for IRIX on the SGI Origin	����
The two experiments we describe are intended to repre�
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sent two broad categories of parallel applications
 asyn�
chronous and synchronous� Asynchronous applications
are those where di
erent processes perform communica�
tion at signi�cantly di
erent times or rates� Examples
of asynchronous applications include boss�worker� client�
server� metacomputing� and other MPMD� applications�
Conversely� synchronous applications are those where all
the processes perform communication at approximately the
same time and rate� SPMD� applications often qualify as
synchronous�

Just as parallel applications can fall into two categories�
MPI implementations can support two di
erent levels of
overlap
 synchronization overlap and data�transfer over�
lap� Point�to�point message passing is explicitly two sided�
one side sends a message� and the other side receives it�
If an MPI implementation can send a message without re�
quiring the two sides to synchronize� it supports overlap
of synchronization with computation� This level of overlap
does not necessarily imply that the implementation per�
forms useful computation while data are actually in tran�
sit between processes� If an implementation performs this
physical transfer of data concurrently with computation� it
supports overlap of data transfer with computation�

For each of these two levels of overlap� we describe an
experiment used to evaluate the MPI implementations at
the CEWES MSRC� We analyze the results for each exper�
iment� describe each system and MPI implementation� and
discuss the implications for asynchronous and synchronous
applications� We conclude with a summary of the results
and comments on the e
ectiveness of programming explic�
itly for overlap�

II� Overlap of Computation with

Synchronization

MPI implementations that do not support the overlap
of computation with synchronization must require the two
processes involved in a message to synchronize� Figure �
presents a schematic of an experiment to test support for
synchronization overlap in MPI implementations� The ex�
periment measures the completion time for a single mes�
sage�

Immediately after a mutual MPI Barrier� the sending
process issues an �immediate� send� MPI Isend� As the
name implies� the immediate send returns immediately� al�
lowing execution to continue� This process �computes� for
� seconds before issuing an MPI Wait� which blocks exe�
cution until the message is actually sent� The receiving
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Fig� �� An experiment to test support for synchronization overlap�
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Fig� �� Results of the synchronization�overlap experiment in the
default execution environment of each system�

process waits for 	 seconds after the MPI Barrier before
issuing an MPI Recv� which blocks execution until the mes�
sage arrives�

The �result� of the experiment is the completion time of
the MPI Recv after the MPI Barrier� For MPI implemen�
tations that support synchronization overlap� the MPI Recv

completes almost immediately� yielding a time of about 	
seconds� For MPI implementations that do not support
this overlap� the two processes must synchronize� The
MPI Recv does not complete until the MPI Wait executes�
yielding a time of about � seconds�
Figure 	 displays the results of the experiment for a range

of message sizes� The results represent the default envi�
ronment on each machine� no environment variables have
been modi�ed� For all message sizes in the �gure� the time
for data transfer is at least an order of magnitude smaller
than the multiple�second delay in the experiment� There�
fore� any time for data transfer does not contribute signif�
icantly to the MPI Recv time� The change from a 	�second
to a ��second delay indicates a change from synchronization
overlap to no overlap�
Each system shows a distinctive range of message sizes

where overlap is supported by default� The di
erences in
the ranges re�ect di
erences in the MPI implementations�
In addition� each system has a unique method for increasing
the range of overlap well beyond the default range shown
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Fig� 	� Synchronization overlap on the CRAY T	E for messages
smaller than available memory�
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in �gure 	�

A� Cray MPT and MPICH on the CRAY T�E

The CRAY T�E is a multiprocessor with a single system
image and distributed� globally addressable memory ����
Both the vendor�supplied MPI and MPICH support syn�
chronization overlap up to very large message sizes� Fig�
ure � models how the vendor�supplied MPI implements
synchronization overlap� The CRAY T�E supports one�
sided communication� each processing element can access
the memory of a remote processing element without the
involvement of the remote CPU ���� Using this one�sided
communication� the MPI Isend writes a message header in
memory local to the receiving process ���� It also make a
copy of the message in a local bu
er� The MPI Recv then
uses the header information and one�sided communication
to read the contents of the remote bu
er�
For this procedure to work� the sending process must

have enough free memory to allocate the bu
er� Figure �
models how the vendor�supplied MPI implements message
passing when the message is too large to copy into a bu
er�
As before� the MPI Isend writes a header to the receiv�
ing process� The MPI Recv blocks until the sender calls
MPI Wait� however� eliminating the opportunity for over�
lap�
The range of message sizes allowing overlap is limited

only by available bu
er space� and thus only by available
memory� Increasing available memory increases the range
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accordingly�
It is interesting to ask why the vendor�supplied MPI

bothers to bu
er the outgoing message� A cynical�though
possibly accurate�answer is that the bu
ering makes the
MPI implementation �streams safe�� Early models of the
T�E have a limitation on the use of the interprocessor com�
munication hardware with the unique stream�bu
er hard�
ware used to improve memory bandwidth ���� These early
T�Es can crash if both these hardware subsystems attempt
to access nearby memory locations at the same time� The
vendor�supplied MPI either bu
ers each message or blocks
execution� avoiding all dangerous memory accesses� More
modern T�Es� such as the one at the CEWES MSRC� do
not have this hardware limitation and do not require mes�
sage bu
ering for safety� Communication�bandwidth ex�
periments described in ��� imply that the vendor�supplied
MPI has not been modi�ed for the improved hardware�

B� IBM PE on the IBM SP

The IBM SP is a multicomputer� each node has its
own system image and local memory ���� By default� the
vendor�supplied MPI implementation on the SP supports
synchronization overlap only for messages up to tens of
kilobytes� The support for overlap ends at the �eager
limit�� which is de�ned by the environment ���� Figure �
models how the vendor�supplied MPI implements synchro�
nization overlap through �eager� communication� Each
process allocates a bu
er in local memory for messages
from each of the other processes� The MPI Isend writes
the message to the bu
er space assigned to the sending
process in the local memory of the receiving process� The
MPI Recv then copies the message from this bu
er�
Figure � models how the vendor�supplied MPI imple�

ments message passing for messages larger than the eager
limit� in the default environment� The MPI Isend con�
tributes little to actual data transfer� and the MPI Recv

simply blocks until the MPI Wait executes� In other words�
the processes must synchronize�
One method of increasing the range of overlap is sim�

ply increasing the eager limit using the MP EAGER LIMIT

environment variable ���� Increasing the eager limit is not
a scalable solution� however� To receive eager sends� each
process must have separate bu
er space for every other pro�
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Fig� �� No overlap on the IBM SP for messages larger than the eager
limit�
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Fig� 
� Synchronization overlap on the IBM SP with
MP CSS INTERRUPT set to yes�

cess� Therefore� the total bu
er space grows as the square
of the number of processes� Even if more than enough
bu
er space is available� the IBM Parallel Environment
imposes a hard limit of �� kB on the eager limit ����
A more scalable method of increasing the range of

overlap is to allow the SP�s communication subsystem
to interrupt execution ���� If the environment variable
MP CSS INTERRUPT is set to yes� the communication sub�
system will interrupt computation to send or receive mes�
sages� The default setting is no�
Figure � models how the vendor�supplied MPI imple�

ments synchronization overlap when interruption is al�
lowed� The MPI Recv causes the communication subsys�
tem to interrupt the sending process� and a communication
thread becomes active and completes the send� Computa�
tion resumes once the message is sent�

C� MPT for IRIX on the SGI Origin����

The SGI Origin	��� is a multiprocessor with one system
image and physically distributed� logically shared mem�
ory ����� By default� the vendor�supplied MPI implemen�
tation on the CEWES MSRC Origin supports synchroniza�
tion overlap for messages up to about a megabyte� Other
Origins may have di
erent defaults�
Within a single Origin system� all MPI messages move

through shared bu
ers ���� Figure � models how the
vendor�supplied MPI implements synchronization overlap
when the message �ts within the shared bu
er� The
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Fig� �� Incomplete synchronization overlap on the SGI Origin����
for messages larger than the shared bu�er�

MPI Isend copies the message to the shared bu
er� and
the MPI Recv copies it back out�

Figure � models how the vendor�supplied MPI imple�
ments message passing when the message does not �t
within the shared bu
er� The MPI Recv does not complete
until the MPI Wait transfers the remaining blocks of the
message through the shared bu
er� As a side e
ect� the
two processes must synchronize�

A straightforward method for increasing the range of
overlap is simply increasing the size of the shared bu
ers
using the MPI BUFS PER PROC environment variable� where
the value of the variable indicates the number of mem�
ory pages ���� Unlike eager�bu
er space on the IBM SP�
the total shared�bu
er space on the Origin varies with the
number of processes� not with the square of that number�
Therefore� this method of increasing the range of overlap
does not su
er from such poor scalability�

D� Summary

Each of the tested implementations support the over�
lap of computation and synchronization over a wide range
of message sizes� either by default or with minor changes
to the environment� Therefore� all the implementations
should support the e�cient execution of asynchronous ap�
plications� The experiment itself is asynchronous to an
extreme� The bene�ts� if any� of synchronization overlap

for synchronous applications are not so obvious�

III� Overlap of Computation with Data Transfer

MPI implementations that support synchronization
overlap may or may not support data�transfer overlap�
Support for synchronization overlap can fall into three cat�
egories according to the type of data transfer
 two sided�
one sided� and third party�
An MPI implementation may support synchronization

overlap without any support for data�transfer overlap� This
corresponds to two�sided data transfer� where one process
must interrupt the execution of another process for transfer
to occur�
This interruption can be avoided in implementations

that support one�sided data transfer� In this case� only
one of the two processes sharing a message must be in�
volved in data transfer at a time� The other process is
free to continue computing� resulting in a limited form of
data�transfer overlap�
In contrast� third�party data transfer allows full data�

transfer overlap� The computing processes operate concur�
rently with a third party that handles the communication�
The experiment described in the previous section does

not di
erentiate between these three possible implementa�
tions of synchronization overlap or the corresponding levels
of data�transfer overlap� The experiment does not directly
measure the time for data transfer� Even if it did� this
time would often be orders of magnitude smaller than the
computation time�
To di
erentiate between implementations of synchro�

nization overlap and to test support for data�transfer over�
lap� we employ a larger experiment based on a semicon�
ductor device simulation� This application is described in
detail in ����� It uses an unstructured two�dimensional grid
that is partitioned among parallel processes� and it relies
on a Krylov subspace iterative solver� The runtime is dom�
inated by the many sparse matrix�vector multiplications
executed by the solver� Each parallel multiplication re�
quires the communication of values at the interfaces of the
distributed grid partitions� With carefully chosen parti�
tions� the computation and communication are both load
balanced� resulting in a synchronous application�
The experiment uses two versions of this application that

di
er only in the implementation of the parallel matrix�
vector multiplication� One version has separate phases of
communication and computation� and the other tries to
overlap communication with computation�
Figure �� presents a schematic of the version with

separate phases of communication and computation� the
nonoverlap version� Each process �rst computes its share of
the matrix�vector multiplication� It then issues MPI Irecvs
and MPI Isends to share partition�interface values� fol�
lowed immediately by an MPI Waitall that blocks until
communication completes�
Figure �� presents a schematic of the version of paral�

lel multiplication designed to overlap communication with
computation� The computation is split into two pieces�
Each processor �rst calculates the multiplication results



MPI_Irecv’s
MPI_Isend’s

MPI_Waitall

Computation

Fig� ��� Parallel matrix�vector multiplication with separate phases
of communication and computation�

MPI_Irecv’s
MPI_Isend’s

Interior
Computation

Boundaries

MPI_Waitall

Fig� ��� Parallel matrix�vector multiplication programmed explicitly
to overlap communication with computation�

for the points at the interfaces of its partition of the grid�
The bulk of the computation� the interior of the partition�
occurs after the MPI Irecvs and MPI Isends but before the
MPI Waitall� The intent of this design is to allow commu�
nication to occur concurrently with the interior computa�
tion�

A� Expected results

Common wisdom suggests that the overlap version of
parallel sparse matrix�vector multiplication should provide
better performance �	�� The caveat in �	� of �suitable hard�
ware� should not be underestimated� however� The degree
to which any performance improvement is realized depends
on the level of overlap supported by the MPI implementa�
tion and the underlying system� All the implementations
tested here support synchronization overlap� but they di
er
in their speci�c implementation of this overlap�
Consider what might happen with the parallel multipli�

cation experiment for synchronization overlap that uses
two�sided communication� This case corresponds to the
MPI implementation on the IBM SP for messages larger

than the eager limit when MP CSS INTERRUPT is set to yes�
In both versions of the application� no data�transfer over�

lap can occur for any one message� The runtime is at least
the sum of computation time and maximum per�process
data�transfer time� Any advantage of the overlap version
is a higher�order e
ect related to inherent asynchrony of
the application� load imbalance in the communication pat�
tern may cause synchronization overhead that the overlap
version can avoid� For a primarily synchronous applica�
tion such as this� the performance improvement should be
minimal�
A similar result is likely for synchronization overlap that

uses one�sided communication� Though one�sided commu�
nication can provide partial data�transfer overlap� the syn�
chronous nature of the application avoids overlapping data
transfer with actual computation� In both versions of the
application� all the processes communicate at roughly the
same time� Therefore� each one�sided data transfer over�
laps with other one�sided data transfers� not with compu�
tation� Again� any advantage of the overlap version is a
higher�order e
ect� and performance improvement should
be minimal� All the tested MPI implementations corre�
spond to this one�sided case for some range of message
sizes
 under the eager limit on the SP� smaller than the
shared bu
ers on the Origin� and smaller than available
memory on the T�E�
For no message sizes� however� do any of the tested im�

plementations correspond to the remaining category of syn�
chronization overlap� where data transfer is handled by a
third party� Yet it is just this category that o
ers the great�
est promise for the overlap version of the application� In the
nonoverlap version� the processes block at the MPI Waitall

while the third party completes the communication� Con�
versely� the overlap version performs useful computation
while the third party transfers data� If the computation
and communication take comparable time� the overlap ver�
sion can take as little as half the time of the nonoverlap
version�

B� Actual results

Table I presents the results for the performance improve�
ment of the overlap version of the test application over the
nonoverlap version� The results are for a speci�c data set of
about ��� ��� grid points run on �� processors� Other prob�
lem and system sizes found in ���� show similar results� The
performance improvement is calculated as follows� where
Toverlap and Tnonoverlap are the execution times for the over�
lap version and nonoverlap version� respectively


Improvement �
Toverlap �Tnonoverlap

Tnonoverlap

� �����

As predicted� the overlap version shows little improve�
ment over the nonoverlap version on the SP and the Origin�
On the T�E� however� the overlap version runs dramatically
faster� contradicting the prediction� More surprisingly� the
improvement of almost ��� is signi�cantly higher than the
theoretical peak improvement of ��� given by perfect over�
lap�



TABLE I

Performance Improvement of Programming for Overlap

MPI implementation Improvement

IBM PE on IBM SP ����
MPT for IRIX on SGI Origin	��� ����
Cray MPT ��	���� on CRAY T�E �����

TABLE II

Comparison of MPI Implementations on the CRAY T�E

Implementation Tnonoverlap Toverlap Improvement

MPT ��	���� ����� ����� �����
MPT ��	���	 ����	 ����� ����
MPICH �	��� �	��� �����

Times are in seconds�

Table II presents newer results for the T�E that in�
clude di
erent implementations of MPI
 MPT ��	�����
MPT ��	���	� and the MPICH implementation available
from Mississippi State University ��	�� Unlike MPT ��	�����
MPT ��	���	 validates the prediction by almost elimi�
nating the advantage of the overlap version� MPICH
goes a step further by completely eliminating this advan�
tage� in addition to providing better absolute performance�
The dramatic �improvement� shown by MPT ��	���� and
MPT ��	���� appears to be a result of a bug that has been
removed from MPT ��	���	�

IV� Conclusions

MPI implementations provide di
erent levels of support
for the overlap of computation with communication� The
implementations tested here all support the overlap of com�
putation with synchronization� a capability particularly
useful for asynchronous parallel applications� In contrast�
these MPI implementations provide only limited support
for the overlap of computation with data transfer�
This limitation has important implications for applica�

tions programmed explicitly for overlap� For synchronous
applications� �programming for overlap� actually implies
a speci�c level of overlap
 full data�transfer overlap� This
level is only provided by implementations using third�party
communication� not two�sided or even one�sided communi�
cation�
The parallel systems and MPI implementations tested

here are common targets for large�scale parallel computa�
tions� None of them provide third�party communication�
and none show signi�cant performance improvement for
the overlap experiment modeled in �gures �� and ��� This
negative result shows that programming explicitly for over�
lap is clearly not a portable performance enhancement for
the synchronous application used in the experiment�
According to the same arguments used to predict this

result� programming for overlap may be of little bene�t for
synchronous applications in general� Many current MPI
implementations�all those tested here�do not support

the required level of overlap� The additional development
e
ort and code complexity required to program for overlap
seem unjusti�ed�
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