Lessons learned from proprietary
HPC cluster software

J. B. White III and R. A. Alexander
Qak Ridge National Laboratory, Oak Ridge, Tennessee

Abstract

Production high-performance-computing (HPC) centers have common needs
for infrastructure software, but different centers can have very different
strategies for meeting these needs. We summarize the basic needs of pro-
duction HPC centers, and we describe the strategies for meeting these needs
used by the Center for Computational Sciences at Oak Ridge National Lab-
oratory. We describe our experience with the infrastructure software for two
proprietary systems, the IBM RS/6000 SP and the Compaq AlphaServer
SC40, in terms of successes the open-cluster community may want to emu-
late and mistakes they may want to avoid.

1 Introduction

Production high-performance-computing (HPC) centers have common needs
for infrastructure software, but different centers can have very different
strategies for meeting these needs. Even within a single center, systems
from different vendors often present very different strategies. The open-
cluster community has the opportunity to define de facto standards for
cluster infrastructure software. To this end, we summarize the basic needs
of production HPC centers, and we describe the strategies for meeting these
needs used by the Center for Computational Sciences (CCS) at Oak Ridge
National Laboratory (ORNL).

The CCS has two large, proprietary clusters, an IBM RS/6000 SP (SP)
and a Compaq AlphaServer SC40 (SC). The SP and SC lines have dom-
inated recent large HPC procurements [32, 26, 24, 10, 25, 37] and they
currently present the most direct competition to high-end open clusters.
We describe our experience with the infrastructure software for these pro-



prietary systems, in terms of successes the open-cluster community may
want to emulate and mistakes they may want to avoid.

HPC centers have a wide range of needs for infrastructure software,
and we attempt to summarize these needs using four categories:

e system administration
e security and account management
o file systems

e resource management

This list is not intended to be exhaustive, but it is meant to provide an
overview of the “big” problems faced by centers trying to provide HPC
resources.

In the following sections, we summarize the needs represented by each
category. We also describe the infrastructure software used by the CCS in
an attempt to meet these needs, along with commentary on the advantages
and disadvantages of our choices.

2 System administration

By definition, clusters for HPC are built from multiple systems, each run-
ning a separate image of an operating system, with different network or
interconnect interfaces, often with separate local file systems storing poten-
tially different software. Automating the per-node system administration
for such arrays of systems is a well-known need, and much of the current
work on system-infrastructure software for open clusters falls in this cate-
gory.

We summarize the needs for system administration in terms of the
following activities: software maintenance, system control and monitoring,
and configuration-file maintenance.

2.1 Software maintenance

IBM AIX and Compaq Tru64 both come with tools for performing system-
software maintenance on individual systems, installp and setld, respec-
tively. Compaq’s set1d allows software modules to be removed and replaced
with newer versions. IBM’s installp is more sophisticated, allowing new
software modules to displace old versions without removing the old ver-
sions. The new software may be removed later if problems arise, or it may
be “committed”, fully replacing old versions. Also, whereas the Tru64 pro-
cess maintains an inventory of installed software, the AIX process maintains
an entire installation history. Both vendors provide tools for performing in-
stalls over networks; IBM supplies the Network Installation Management
tool, nim, and Compagq supplies Remote Installation Services, ris.
Augmenting installp and nim, AIX includes the System Management
Interface Tool, smit. This tool provides a graphical interface for many



system-administration functions, including software maintenance. To fa-
cilitate automation and application across the many nodes of a cluster,
however, a tool must be scriptable; any graphical user interface must be
optional. An important feature of smit is that it fulfills this requirement.
A system administrator can use smit to build a series of commands with the
graphical interface, and smit will produce a script that implements these
commands. This script can be executed across the nodes of an SP.

2.2 System control and monitoring

The need to execute scripts across nodes of a cluster is an impetus for
the dsh tool included in the SP software. The dsh tool is a “distributed
shell”; it implements a command on various nodes like rsh does for a single
remote host. Nodes are selected using a host file; a simple command-line
mechanism for selecting hosts based on node ranges would be a welcome im-
provement. Still, dsh provides a simple, versatile solution to many cluster-
administration tasks.

The SC does not come with an equivalent tool. The SC’s sra tool
can perform a variety of distributed systems tasks, but it is not as general
as dsh. Also, sra uses the serial port on each node, through a bank of
multiplexers. Thus it is not as fast or scalable as dsh, which runs over
TCP/IP on the management Ethernet network of the SP. (The SP also has
s1term for accessing the serial port on each node.) The SC’s prun command
can be used to run commands across nodes, but this is more equivalent to
the SP’s poe; it is intended for running parallel jobs, and running commands
consume resources, making processors completely unavailable for other prun
commands. Jim Garlick of Lawrence Livermore National Laboratory has
written an open-source equivalent to dsh, called pdsh [8], and we have
installed it on the CCS SCs.

Both IBM and Compagq supply graphical tools for system status mon-
itoring, Perspectives on the SP and sra_resmon on the SC. Perspectives
provides greater functionality, including point-and-click selection of hosts
to shutdown or boot. Both of these tools see limited use, however, be-
cause they require constant observation to notice problems on nodes. Of
greater utility is automated monitoring, where problems with a node result
in E-mail to systems staff or messaging to pagers.

Both vendors also supply graphical tools for system-performance mon-
itoring, 3dmon on the SP and Performance Visualizer, pvis, on the SC. The
3dmon tool is more versatile, but pvis seems more robust and easy to use.
The pvis tool is limited to displays of load and memory usage, including vir-
tual memory, but the displays are effective for both system administrators
and users.



2.3 Configuration-file maintenance

With each node of a cluster running a separate system image, often with
separate copies of software and configurations files, avoiding configuration
“skew” can be a challenge. The software-installation tools mentioned above
help synchronize software versions across cluster nodes, but additional capa-
bility is required to synchronize configuration files while allowing for configu-
ration differences among nodes. The ideal mechanism would be maintaining
a single system image, or perhaps a handful of images for groups of nodes
based on function (IO nodes versus compute nodes). Neither the SP nor
the SC provide this view for large systems, though the SC can emulate it
for small systems using the Cluster File System (CFS), which we describe
in a later section.

The SP has a complete copy of the system software and configuration
files on each node. To help manage configuration files, the SP software
includes supper. This tool maintains a central file tree and periodically
copies out any changes to this tree to defined sets of nodes. Such copies can
also trigger events and the running of specified commands.

CFS on the SC reduces the number of distinct copies of system soft-
ware, but the problem of configuration skew remains for large systems. No
utility like supper comes with the SC software, but similar functionality is
available in the open-source package Cfengine [4]. At the expense of greater
complexity, Cfengine provides greater versatility, and it is portable across
systems. We are now using Cfengine for configuration management on our
SCs, and we are moving from supper to Cfengine on our SP.

3 Security and account management

HPC centers like the CCS must manage a changing collection of user ac-
counts across a changing collection of systems. We desire the following
functionality from an account management system.

e All accounts can be managed from a logically centralized database.

e All user information is synchronized across all nodes in each cluster
and all clusters in the center.

e Changes to an account, such as password changes, are immediately
propagated to all systems in the center.

e Though logically centralized, the account database is highly available
and modifiable from any login node.

e All user authentication and account modification is implemented in a
highly secure fashion.

A software infrastructure that meets these requirements has existed for
years, the Distributed Computing Environment (DCE). DCE was designed
to provide a comprehensive, secure development environment for distributed



applications, and it is the result of a number of major vendors collaborating
under the umbrella of the Open Group [29]. DCE includes libraries for
threading and remote procedure calls, a directory service, a security service,
and a distributed time service [11].

The directory service provides the ability to manage all user accounts
from alogically centralized database. DCE clients running on all nodes allow
changes to be made from any node, and they ensure that any changes to the
directory are propagated as needed. Redundant DCE servers provide high
availability, and all sensitive DCE communication is encrypted for security.

User authentication is based on Kerberos 5, and the acquisition of Ker-
beros credentials is typically integrated into login and similar services, such
as rsh and rlogin. This allows users to acquire DCE/Kerberos credentials
automatically. Because all authentication is through DCE servers, user ac-
counts do not appear in local configuration files, such as /etc/passwd. This
eliminates the difficulty of maintaining such files across nodes and clusters.

DCE appears to be an excellent solution for security and account man-
agement. A number of factors decrease its utility, however. DCE is a com-
plex environment, requiring a large investment of time and effort. In addi-
tion, DCE has limited support across vendors, particularly for the highest-
end HPC systems.

DCE has been an IBM product for years, but stability problems re-
main. IBM’s DCE uses daemons on client nodes to provide DCE services.
This allows client-memory caching of server data, speeding many DCE op-
erations. These daemons may die or may fail to start on reboot, however.
When such failures occur, they may happen on a small number of nodes
across the SP. The typical mechanism for discovering such daemon failures
is that parallel jobs that happen to include a “bad” node fail with vague
errors.

Unlike on the SP, DCE has not had years to mature on the SC. DCE
failures on system startup are both more common and more severe.

Because DCE first appeared years ago but has yet to achieve a “crit-
ical mass” in the enterprise-computing community, its future is uncertain.
The HPC community seems destined to reinvent the capabilities of DCE,
though perhaps in a simpler and more acceptable form. We know of no exist-
ing replacement for the DCE functionality used for account management.
Building blocks for such a replacement may exist, however, in the form
of Kerberos [18], OpenLDAP [30], MySQL [23], NetInfo [2], OpenSSL [7],
and/or OpenSSH [31].

4 File systems

We characterize four types of usage of file systems at an HPC center like
the CCS:

e root operating-system (OS) files



e user home directories
e high-performance “scratch” space
e archival storage

A particular file system may be effective at more than one of these types
of usage, or a given type of usage may require more than one kind of file
system.

4.1 Root OS files

To provide root OS files, we expect a file system to support the following
capabilities:

e read-only access to many small files that rarely change
o fast write access for node-specific files and virtual-memory pages

On the SP, these requirements are met through brute force; each node runs
a local Journaled File System (JFS). Having a separate, independent file
system on each node makes critical the need for many of the management
tools described in earlier sections.

The SC uses a more elegant solution, CFS, introduced earlier. CFS
allows various nodes to share much of the root file system, while maintain-
ing special areas for node-specific files. All areas of CFS are available from
all nodes in a given CFS domain. By distributing both the read and write
functionality of the root file system, however, the CFS architecture scales to
only 32 nodes. Large systems must be divided into separate CFS domains.
The effect is that the CFS domains form “super nodes” that have many of
the same management problems as the SP. Because of the increased com-
plexity of CFS over JFS, the current version of CFS also leads to reduced
stability of the SC, though future versions may ameliorate this problem. Fi-
nally, CFS breaks POSIX semantics on some commands, such as rm applied
to node-specific files.

A Dbetter solution might be to meet the two above requirements using
two different file systems. For example, a networked file system with caching
clients could provide the read-only capability, while a local file system pro-
vides the write capability.

4.2 User home directories

To provide user home directories, we expect a file system to support the
following capabilities:

e low-latency access to small-to-medium files
e high-availability access from all systems across the center

o client-side caching



e memory mapping, which is required for compiling and executing files
on some systems

e per-user quotas
e non-intrusive backups
e non-intrusive management of disks and partitions

e security

The story here is similar to the one for account management; a product has
existed for years designed to meet these requirements, the Distributed File
Service (DFS) [12]. DFS is built as a DCE application, taking advantage of
DCE’s secure environment and authorization services.

DFS has extensive support for access-control lists (ACLs), well beyond
Unix permissions, and it provides location-independent naming. This fea-
ture allows disks, partitions, and file sets to be manipulated and moved
among DFS servers without affecting DFS clients.

DFS also has useful features not included in the above list of require-
ments. One such feature is the read-only clone, which we use to produce
a yesterday subdirectory in each home directory. Each night, a read-only
clone of the rest of the home directory is made under yesterday. If a user
accidentally removes or modifies a file, a read-only copy from the day be-
fore is available in yesterday. The clone is implemented efficiently, using
a “copy on write” algorithm.

Despite the ample list of features, DFS is limited by many of the same
problems as DCE. The complexity of DFS inevitably leads to failures that
are subtle and difficult to isolate and solve. Even with error-free software,
the complex interaction between DFS ACLs and Unix permissions leads to
confusion for naive users and seasoned system administrators alike.

The limits of cross-platform support are more apparent for DFS than
for DCE. Though significant unsolved problems remain, DFS is well inte-
grated into the SP software. The same is not at all true for the SC; DFS is
not yet supported. A difficulty with the SC is the interaction between DFS
and CFS. DFS relies on the model of having a local file system associated
with each DFS client, but CFS breaks this model. Conversely, DFS breaks
the CFS model of a single file-system image across a cluster.

To provide DFS to our SCs, we currently use a separate server acting
as a DFS-NFS gateway. DFS is mounted through NFS to CFS! Users must
routinely issue a command, dfs_login, that creates DCE credentials on the
remote DFS-NFS gateway. These credentials must be renewed at regular
intervals and whenever the gateway is rebooted. The perception from users
is that dfs_login is required randomly, whenever DFS access is denied.
The stability of this arrangement is such that dfs_login is not always suc-
cessful at reestablishing access. Even when it all “works”, the performance
is significantly lower than native DFS or NFS.



Since DFS is a DCE application, it has the same uncertain future as
DCE. Unlike DCE, however, DFS has a number of migration paths. The
closest is AFS, which shares its heritage and most of its features with DFS.
AFS is a stand-alone product, however, and does not rely on DCE [1]. AFS
also has the advantage of an open-source distribution from IBM [28].

Of course, much more popular than either DFS or AFS is NFS. The
current version of NFS, 3, lacks many of the most important features of
DFS, including Kerberos security and location-independent naming [3]. The
situation may change dramatically with the next version of NFS, however.
The features expected in version 4 of NFS bare a striking resemblance to
those available today from AFS/DFS [35]

4.3 High-performance “scratch” space

The primary requirement of a file system for high-performance “scratch”
space is high performance. The file system may or may not support backups,
and it may or may not support all types of file manipulation, such as memory
mapping. The file system must provide high-bandwidth reading and writing
of large temporary files, however. We expect all permanent files to be moved
to archival storage soon after the completion of the creating job.

A prominent example of a file system designed for high performance
is IBM’s General Parallel File System (GPFS). GPFS stripes files across
several nodes of an SP, with each node striping files across several disk
arrays. This multi-level striping can give exceptional bandwidth for large
files. In previous versions of GPFS, this bandwidth came at the expense of
high latency for small files and a lack of features.

The current version of GPFS, however, also provides good performance
for small files and metadata operations [17]. It supports memory mapping,
user quotas, and many levels of fault recovery [13]. These improvements
and the prospect for high performance have led the administrators at the
National Energy Research Scientific Computing Center (NERSC) to use
GPFS for home directories [15], despite the lack of some features listed in
the section above.

The SC software also includes a striped file system designed for high
performance, the Parallel File System (PFS). PFS is built on CFS, and each
PFS is currently limited to a single CFS domain. PFS is much earlier in
development than GPFS, and its capabilities reflect this. Many deficiencies
in PFS may be associated directly with CFS, however, and we expect future
improvements to CFS to also improve PFS.

4.4 Archival storage

To provide archival storage, we expect a storage system to provide the
following capabilities:

e high-bandwidth storage of very large (many-gigabyte or terabyte) files



e storage of many such files

o high-availability access from all systems across the center and outside
the center

e password-free access from center systems, for use within scripts and
batch jobs

e non-intrusive backups
e non-intrusive management of storage media

e security

Most large HPC centers use one of two options for archival storage, Cray’s
Data Migration Facility or the High Performance Storage System (HPSS).
The primary development team for HPSS includes IBM and five DOE lab-
oratories, one of which is ORNL.

HPSS is designed specifically to meet the requirements listed above. It
supports a number of interfaces, including FTP, Parallel FTP, and DF'S [36].
The most commonly used interface, the Hierarchical Storage Interface (HSI)
[9], is not an official component of HPSS. It is developed by one person,
Michael Gleicher, but is supported by ORNL and NERSC.

HSI, through the hsi command, provides convenient password-free ac-
cess to HPSS and can be embedded in scripts easily. HPSS itself is im-
plemented internally as a DCE application. Thus, all HPSS servers must
support DCE. HSI provides clients with password-free access using either
DCE or the more-common Kerberos, and it provides secure password access
for other clients.

The primary limitation of HPSS is not the interface, but the availability.
HPSS requires regular maintenance, and this maintenance makes HPSS
unavailable. HPSS down times are more often than the scheduled down
times for the CCS HPC systems, so batch jobs cannot rely on HPSS access.
This lack of synchronization between HPSS and HPC-system down times is
not unique to the HPSS installation at ORNL [6].

We know of no existing general solution for this problem, though a pos-
sible solution would be an HSI implementation that is able to spool requests
to HPSS, much as a print spooler does to a printer. Such a solution could be
integrated with the configuration of the high-performance “scratch” space
on each system.

5 Resource management

We identify the following roles for an HPC resource-management system,
all within the context of parallel user jobs: control, scheduling, monitoring,
and accounting.

We further identify various capabilities needed for a resource-management
system to fulfill these roles. The list is not intended to be exhaustive; it
is intended to highlight important features that may be lacking in existing



resource-management systems. We give specific examples for LoadLeveler
on the SP and the Resource Management System (RMS) on the SC.

5.1 Control over interactive and batch jobs

The system must exert control over both batch jobs and interactive jobs.
This is the case for LoadLeveler, but not for RMS. RMS is strictly an inter-
active resource manager. The Pittsburgh Supercomputer Center (PSC) is
porting OpenPBS to the SC [20], and Compaq has contracted with Platform
Computing to provide LSF [34].

RMS provides a great deal of functionality, which actually makes ports
of existing batch-capable systems more difficult. For example, PBS is de-
signed to manage each node of a cluster directly, but RMS presents a single-
system model. The redundant accounting and scheduling mechanisms of
PBS and RMS also pose integration problems. Both PSC’s port of PBS
and the current integration of LSF [19] have significant mismatches with
RMS. We expect future versions of both packages to dramatically reduce
these mismatches, however.

5.2 Backfill scheduling

With the constraint that every job has a defined wall-clock time limit, back-
fill scheduling allows small or short-running jobs to be inserted into the
“holes” created by the scheduling of other jobs. The LoadLeveler sched-
uler supports backfill, though RMS does not. We have found that backfill
significantly enhances the throughput of the SP.

5.3 Job reservations

The ability to make reservations on resources allows real-time scheduling
of those resources, such as for system maintenance or in conjunction with
remote resources. Reservations are consistent with other forms of scheduling
through the requirement that reservations be made an appropriate amount
of time in advance. Backfill scheduling can and should occur within the
context of reservations.

Neither LoadLeveler nor RMS comes with a scheduler capable of mak-
ing reservations. Both LoadLeveler and PBS can use Maui, an open-source
scheduler that supports reservations [22]. Maui does not yet support the
RMS port of OpenPBS, however.

5.4 Fair-share scheduling

Fair-share scheduling allows “percentages” of a given HPC system to be
allocated to a particular user or group of users. The percentage usage of a
system is typically based on node usage integrated over a standard amount
of time, such as a week. Jobs may receive higher priority if recent usage is



below the user’s “share”, or jobs may receive lower priority if recent usage is
high. A “share” may represent a target usage or an upper or lower bound.
The Maui scheduler provides fair-share scheduling [22].

5.5 Event-driven scheduling

With event-driven scheduling, the scheduler runs whenever a relevant event
occurs. In particular, the scheduler responds immediately to job submis-
sions. Users can then get accurate status information immediately after
submission. The built-in LoadLeveler scheduler is event driven, but the in-
terface LoadLeveler uses for external schedulers, such as Maui, is not [14].
The external scheduler must run at a set time interval, leading to an in-
evitable time lag between submission and job startup or accurate status
information.

5.6 Full integration with HPC resources

The resource manager needs to “understand” all aspects of the HPC re-
sources that affect job scheduling. For example, though LoadLeveler is
tightly integrated into the SP software, a running LoadLeveler system may
not behave as though it “understands” the configuration of a given SP. If
a user accidentally submits a job requesting 8-processor nodes to a system
that only has 4-processor nodes, LoadLeveler quietly waits for 8-processor
nodes to become available, even if such nodes will never exist. Jobs may
wait for days before an administrator notices and investigates.

The situation is worse for the PBS port to the current version of RMS.
The interface between PBS and RMS is such that jobs are only allocated
consecutive nodes on the SC. The PBS scheduler is unaware of this, however,
and schedules jobs based on the total number of available processors, not
on the number of available consecutive processors. We expect the severity
of this problem to decline with future versions of RMS.

RMS does not actually require jobs to have consecutive nodes, although
the SC interconnect can perform higher-performance collective operations
with consecutive nodes. To meet the other requirements listed here, a re-
source manager must be able to incorporate system-specific requirements,
such as performance-based requests for consecutive nodes, into the schedul-
ing algorithm.

5.7 An effective range of default values and limits

For a given resource, the resource manager should allow specification of an
effective range of default values and limits. These default values and limits
should work on a per-job, per-user, per-group, and per-queue basis.

In a counter-example, LoadLeveler allows limits on the number of jobs
and the maximum size of a job for a given user. The relevant resource
for parallel jobs is the total number of nodes allocated to a user, however,



whether these nodes represent one large job or many small jobs. LoadLeveler
provides no mechanism to directly limit this use, independent of job count
or maximum job size.

5.8 System and user prologs and epilogs

An HPC center may want to define site-specific prologs or epilogs for each
parallel job. A prolog runs on each node of a parallel job before the job
starts, and an epilog runs on each node after the job finishes. Some com-
mands may need to run as the user, while others must use a system account.
LoadLeveler provides for all of these options, and we in the CCS make ex-
tensive use of them. RMS, with it’s interactive emphasis, does not support
prologs and epilogs directly.

5.9 A common interface across systems

Ideally, the same commands and job command language should work for
parallel jobs on all HPC systems in a center. With portable resource man-
agers like PBS and perhaps LSF, this is possible. With LoadLeveler, this is
currently only possible if all the systems are IBM RS/6000s.

5.10 Centralized management and accounting

Ideally, one logical resource manager should control all the HPC systems
in a center. This allows a unified suite of commands and tools for man-
agement, accounting, and usage analysis. Again, this currently eliminates
LoadLeveler for sites with more than just IBM systems. Even within a sin-
gle SP, LoadLeveler requires separate copies of configurations files on each
node.

5.11 Resource “banking”

Resource “banking” closes the loop between job scheduling and accounting.
Account information can be used to manipulate priorities, as in fair-share
scheduling, or restrict usage for those who have run out of “credit”. The
need for this capability is common among HPC centers, but each center typ-
ically creates an individual solution. One solution that is generally available
is QBank [16], developed by Scott Jackson for Pacific Northwest National
Laboratory.

5.12 Distribution of DCE/Kerberos credentials

In previous sections, we described the use of DCE, DFS, and HPSS. The
processes of a parallel job must have valid DCE or Kerberos credentials
to access DFS and HPSS. Therefore, the resource manager must acquire



credentials at submit time and propagate them to the parallel processes
when they start.

One mechanism for this credential propagation is through the use of
“keytab” files that contain the user’s encrypted password. The use of such
files immediately demotes the level of security from the Kerberos level to
the standard Unix level.

The “right” mechanism is the following.

e Automatically create forwardable, renewable credentials when the user
logs in. The lifetime of the credentials should be at least as long as
the job time limit. The credentials should be renewable for up to the
maximum lifespan of a related series of jobs, where one job in the
series may checkpoint and resubmit itself to the resource manager.

¢ Forward these credentials to a secure server upon job submission. Use
the DCE or Kerberos API for communication.

¢ Renew the credentials as necessary while the job waits.

e Forward the credentials to each node of the job using the DCE or
Kerberos API.

Despite years of integration with DCE, LoadLeveler does not use the
“right” mechanism until the most recent release [14]. Earlier versions copy
credentials directly between nodes, a mechanism that works for IBM’s DFS
but does not work for the Kerberos version of HSL

LSF documentation lists support for DCE and Kerberos among its
features [21], but we are not aware of the specifics of the implementation.

6 Conclusions

We summarized the basic needs of production HPC centers, and we de-
scribed the strategies for meeting these needs used by the CCS at ORNL.
We also described our experience with the infrastructure software for two
proprietary systems, the IBM RS/6000 SP and the Compaq AlphaServer
SC40, in terms of successes the open-cluster community may want to emu-
late and mistakes they may want to avoid.

We used the categories of system administration, security and account
management, file systems, and resource management. Based on the expe-
riences we described, we now provide the following suggestions for develop-
ment of software in each of these categories for open clusters.

In the area of system administration, we suggest an emphasis on the
following attributes:

o simplicity

scriptability
e automation

fault tolerance



The tendency towards complex graphical interfaces and extraneous features
should be avoided.

In the area of security and account management, we hope to stimulate
development of a replacement for DCE functionality. DCE provides a com-
pelling set of features, but a replacement should emphasize the following
modifications:

e integration, integration, integration
e incorporation of existing industry standards
o fault tolerance, favoring client availability over server capability

In the area of file systems, we again hope to stimulate development. We
can envision a “Holy Grail” of file systems, with the performance scalability
of GPFS, the security and maintenance scalability of DFS, and the cross-
platform support of NFS, all integrated with an automatic data-migration
capability.

In the area of resource management, we have already seen years of sig-
nificant development, with LoadLeveler, PBS, LSF, Condor [5], NQE [27],
DQ@QS [33], etc., though no single package currently meets the list of require-
ments we presented. The resource-management needs of HPC centers are
fairly uniform and well defined, favoring the creation or emergence of a
de facto standard for resource management. Again, we promote the val-
ues of simplicity and fault tolerance over complex graphical interfaces and
extraneous features.

Acknowledgments

We wish to thank Don Maxwell and Ken Matney of the CCS for insightful
discussions on the features and faults of the various tools, commands, and
software systems described in this work.

This work used resources of the CCS at ORNL, which is supported by
the Office of Science of the U. S. Department of Energy under Contract No.
DE-AC05-000R22725.

The submitted manuscript has been authored by contractors of the
U. S. Government under Contract No. DE-AC05-000R22725. Accordingly,
the U. S. Government retains a non-exclusive, royalty-free license to publish
or reproduce the published form of this contribution, or allow others to do
so, for U. S. Government purposes.



References

[1] AFS Administration Guide, Version 3.6, International Business
Machines Corporation, Apr 2000.

[2] AppleCare Tech Info Library—Mac OS X Server: What Is NetInfo?
[web page] 22 Nov 2000;
http://til.info.apple.com/techinfo.nsf/artnum/n60038.
[Accessed 1 May 2001].

[3] Callaghan, B., B. Pawlowski, and P. Staubach. NFS Version 3
Protocol Specification. [web page] Jun 1995;
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1813.html.
[Accessed 1 May 2001].

[4] Cfengine. [web page] http://www.iu.hioslo.no/cfengine/.
[Accessed 1 May 2001].

[5] Condor Project Homepage. [web page]
http://www.cs.wisc.edu/condor/. [Accessed 1 May 2001].

[6] Deboni, T. HPSS Overview. [web page] 20 Apr 2001;
http://hpcf.nersc.gov/storage/hpss/. [Accessed 1 May 2001].

[7] Engelschall, R. OpenSSL: The Open Source Toolkit for SSL/TLS.
[web page] 5 Apr 2001; http://www.openssl.org/. [Accessed
1 May 2001].

[8] Garlick, J. Home Page for Jim Garlick. [web page] 31 Aug 2000;
http://wuw.ecst.csuchico.edu/garlick/. [Accessed 1 May 2001].

[9] Gleicher, M. HSI—Hierarchical Storage Interface. [web page]
20 Sep 2000; http://www.sdsc.edu/Storage/hsi/. [Accessed
1 May 2001].

[10] IBM Builds World’s Fastest Supercomputer to Simulate Nuclear
Testing for U. S. Energy Department. LLNL press release,
29 Jun 2000.

[11] IBM Distributed Computing Environment for AIX, Version 2.2:
Introduction to DCE, International Business Machines Corporation,
Feb 1998.

[12] IBM Distributed Computing Environment for AIX, Version 2.2:
Distributed File Service Administration Guide and Reference ,
International Business Machines Corporation, Feb 1998.



[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

IBM General Parallel File System for AIX: Concepts, Planning, and
Installation Guide, International Business Machines Corporation, Dec
2000.

IBM LoadLeveler for AIX: Using and Administering, Version 2
Release 2, International Business Machines Corporation, Apr 2000.

IBM SP File Systems. [web page] 30 Nov 2000;
http://hpcf.nersc.gov/storage/ibm/. [Accessed 1 May 2001].

Jackson, S. QBank 2.8. [web page]
http://www.emsl.pnl.gov:2080/docs/mscf/qbank-2.8/. [Accessed
1 May 2001].

Jones, T. Using GPFS. [web page] 15 Aug 2000;
http://www.spscicomp.org/2000/presentations/Jones.ppt.
[Accessed 1 May 2001].

Kerberos: The Network Authentication Protocol. [web page]
9 Dec 2000; http://web.mit.edu/kerberos/www/. [Accessed
1 May 2001).

Klingner, C. T. Personal communication, 6 Mar 2001.
Kochmar, J. Personal communication, 15 Dec 2000.

LSF Administrator’s Guide, Version 4.1, Platform Computing
Corporation, Feb 2001.

Maui Scheduler. [web page]
http://supercluster.org/projects/maui/index.html. [Accessed
1 May 2001].

MySQL. [web page] 30 Apr 2001; http://www.mysql.com/. [Accessed
1 May 2001).

National Energy Research Scientific Computing Center Accepts New
IBM Supercomputer. NERSC/IBM press release, 28 Mar 2000.

National Science Foundation Selects Pittsburgh Supercomputing
Center and Compaq to Offer Scientists Access to World’s Largest
Non-Military Supercomputer. Compaq press release, 3 Aug 2000.

NPACI, IBM Usher in New Age of Scientific Discovery with the
Dedication of Blue Horizon at SDSC. SDSC/IBM press release,
9 Feb 2000.

NQE Work Load Management. [web page]
http://www.cray.com/products/software/nqge/. [Accessed
1 May 2001].



[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

OpenAFS. [web page] 26 Apr 2001; http://openssh.org/. [Accessed
1 May 2001].

The Open Group Portal to the World of DCE. [web page]
http://www.opengroup.org/dce/. [Accessed 1 May 2001].

OpenLDAP. [web page] 1 Oct 2000; http://www.openldap.org/.
[Accessed 1 May 2001].

OpenSSH. [web page] 1 May 2001; http://openssh.org/. [Accessed
1 May 2001].

ORNL Joins Computing Elite, Surpasses 1 Teraflop. HPCWire,
23 Jul 2000.

Pasko, J. DQS—Distributed Queueing System. [web page]
http://wuw.scri.fsu.edu/ pasko/dqgs.html. [Accessed
1 May 2001].

Platform Computing Signs Strategic Agreement With
Compag—Platform’s LSF Software for Distributed Computing to
Enhance Compagq’s AlphaServer SC Systems. Compaq press release,
12 Mar 2001.

Shepler, S., B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M.
Eisler, and D. Noveck. NFS version 4 Protocol. [web page] Dec 2000;
http://wuw.ietf.org/rfc/rfc3010.txt. [Accessed 1 May 2001].

Teaf, D. HPSS Tutorial. [web page]
http://www.sdsc.edu/hpss/hpss1.html. [Accessed 1 May 2001].

U.S. Department of Energy Selects Compaq to Build World’s Fastest
and Most Powerful Supercomputer. Compaq press release,
22 Aug 2000.



