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Kathy Yelick’s Processor Trends
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Moore’s Law Continues
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Power & Frequency Stagnating
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Cores Per Socket Increasing
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Performance Increasing (Some)
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Scaling Out

More cores

More memory
More performance
More space

More power
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Scaling Out = Scaling In

More transistors
More computational need
Limited space

Limited power



Scaling In

More cores per chip

More threads per core

Longer vector registers (24+ doubles)
Block multithreading (GPUs)

Heterogeneity on a chip
— |IBM Cell
— CPU & GPU

Power efficiency
More architectural uncertainty
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Portable-Performance Engineering of
Community Earth System Model

Block-oriented computation
Hybrid parallelism

Modular parallel communication

Flexible task parallelism

Modular built-in timers



Block-Oriented Computation

Pass blocks as procedure arguments
Operate on a block at a time

More than one element

— Vectorization (SSE, Altivec, double hummer, etc.)
— Pipelining

— Loop unrolling

Less than whole domain

— Cache blocking

— Load balancing

Tunable block size



Hybrid Parallelism

MPI and OpenMP

OpenMP can target different parallelism
— 3" dimension in 2D decomposition

— Too tightly coupled for distributed memory
— Allows use of more cores

Or same parallelism
— Aggregate MPI messages
— Fewer, larger messages can be more efficient

Tunable number of threads/task



Modular Parallel Communication

* |solate parallel communication

* Allow different programming models
— MPI, Co-Array Fortran, SHMEM

e Allow different algorithms
— Performance tuning
— Workarounds for system limitations



Different Algorithms

Sends before receives or vice versa
Reproducible dot products

Load balancing options:
on task, on node, nearby nodes, global

Flow control (critical on largest computers)



Modular Parallel I/0

Tunable number and location of I/O tasks

Choices for underlying implementation:
NetCDF3, NetCDF4, pNetCDF, binary

Potential for asynchronous 1/0
Potential for in-memory checkpoint/restart



Flexible Task Parallelism
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Modular Built-In Timers

* Portable performance tuning
— Don’t depend on vendor tools
— Use newest computers

* Configurable level of detail
— Load balance components
— Choose tuning parameters for a given component
— Find tuning “opportunities” and performance bugs
— Optionally report hardware counters (PAPI)

* Opportunity for automatic tuning
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IPCC AR5/CMIP5 Workflow

Simulations output history files
— Each file has many fields at a given time

Post-processing scripts generate time series
— One field over a long time

Diagnostics use time series

Earth System Grid hosts history and time
series files

Scientists worldwide download files and
perform analysis



Workflow Obstacles

* Much more data
— Multiple PB for CMIP5
— Higher resolution
— More physical, chemical, and biological processes
— More kinds of simulations

e Petascale simulation, gigascale analysis tools

* Unforeseen types of analysis
— When in doubt, output



Workflow Opportunities

Parallel I/0O

Asynchronous I/O

Output time series directly from simulation
Parallel analysis tools

Remote analysis tools



Operational Workflow Opportunities

* Optimize number & frequency of output fields
e Perform analysis “near” simulation
* Move analysis into simulation
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Scaling Out CESM

Flexible, hybrid parallelism

Parallel I/O

More-scalable atmosphere grids and dynamics
Higher resolution

More physical processes per grid point

— Higher computational intensity



Simulation Years per Day
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Simulation Years per Day
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Low resolution  CESM Performance

Cray XT5 (2 hex-core processors per node)

FV 1.9x2.5, B_1850_CAM5

FV 0.9x1.25, B1850CN

FV 0.9x1.25, B_1850_CAM5

_ _ FV 0.23x0.31, B1850CN
Low computat'lonal lntenSIty

111

Higher computational intensity

~Very high resolution

AP

D —
| ] ] ] | ]

5000 10000 15000 20000 25000 30000
Processor Cores

Courtesy of Pat Worley, ORNL

35000



Simulation Years per Day

CESM Performance
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Time-Integration Barrier

* Explicit methods
— Scalable and cheap per time step
— Resolution goes up, time step must go down
— Single-thread performance no longer improving

* Implicit methods
— Stable for large time steps

— Expensive: linear and often nonlinear solvers
— Less scalable: global reductions, latency bound
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Performance Obstacles

Stagnant single-thread performance

Staghant memory and communication latency
Computer architectural uncertainty

Software complexity

Time-integration barrier

/O and metadata volume



Performance Opportunities

Increasing aggregate computing power

Portable-performance engineering

— Block-oriented computation

— Hybrid, flexible parallelism

— Modular parallel communication and timers

Targeted 1/0O and/or embedded analysis
Algorithms



Questions?
Performance Opportunities

* Increasing aggregate computing power

* Portable-performance engineering
— Block-oriented computation

— Hybrid, flexible parallelism
— Modular parallel communication and timers

e Targeted I/O and/or embedded analysis
e Algorithms
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