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SUMMARY

The design of the Parallel Ocean Program (POP) is described with an emphasis on
portability. Performance of POP is presented on a wide variety of computational
architectures, including vector architectures and commodity clusters. Analysis of
POP performance across machines is used to characterize performance and identify
improvements while maintaining portability. A new design of the POP model, including
a cache blocking and land point elimination scheme is described with some preliminary
performance results.
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1. Introduction

High-performance computing is an important tool for understanding ocean circulation and its
role in the Earth’s climate system. Accurate simulations of global ocean circulation require
high spatial resolution to resolve energetic mesoscale eddies and to adequately represent
topographic features [16, 8]. Simulations must also be integrated for long times in order to
study century-scale climate change scenarios. Study of the thermohaline circulation, the deep
ocean circulation driven by density differences due to heat and salt content, also requires multi-
century integrations. This combination of fine spatial scales and long time scales requires very
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high-end computational resources and the ability to utilize new architectures as they become
available.

The Parallel Ocean Program (POP) was developed at Los Alamos National Laboratory to
take advantage of high-performance computer architectures. POP is used on a wide variety of
computers for eddy-resolving simulations of the world oceans [16, 8] and for climate simulations
as the ocean component of coupled climate models [1, 12]. In the next section, we will describe
the POP model with particular emphasis on software design for performance portability. Later
sections will describe the performance achieved on a variety of architectures and analysis of
that performance. Descriptions and preliminary results of some recent performance-related
improvements will then be described and conclusions presented.

2. POP Description

2.1. Model and Methods

POP is an ocean circulation model derived from earlier models of Bryan [2], Cox [4],
Semtner [13] and Chervin [3] in which depth is used as the vertical coordinate. The model
solves the three-dimensional primitive equations for fluid motions on the sphere under
hydrostatic and Boussinesq approximations. Spatial derivatives are computed using finite-
difference discretizations which are formulated to handle any generalized orthogonal grid on a
sphere, including dipole [15] and tripole [10] grids which shift the North Pole singularity into
land masses to avoid time step constraints due to grid convergence.

Time integration of the model is split into two parts. The three-dimensional vertically-
varying (baroclinic) tendencies are integrated explicitly using a leapfrog scheme. The very fast
vertically-uniform (barotropic) modes are integrated using an implicit free surface formulation
in which a preconditioned conjugate gradient solver is used to solve for the two-dimensional
surface pressure.

A wide variety of physical parameterizations and other features are available in the model
and are described in detail in a reference manual distributed with the code. Because POP
is a public code, many improvements to its physical parameterizations have resulted from
external collaborations with other ocean modeling groups and such development is very much
a community effort. Detailed descriptions of the numerical discretizations and methods are
described in the reference manual and in previous publications [5, 6, 7].

2.2. Software

Although POP was originally developed for the Connection Machine, it was designed from the
start for portability by isolating all routines involving communication into a small set (5) of
modules which can be modified for specific architectures. Currently, versions of these routines
exist for MPI [9] and SHMEM [14] communication libraries and also for serial execution. For
the Cray X1, a Co-array Fortran [11] version was created. The appropriate directory is chosen
at compile time and no pre-processor directives are used to support different machines. Support

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 1:1–1
Prepared using cpeauth.cls



PERFORMANCE PORTABLE POP 3

for hybrid programming using threads and message passing has recently been added and will
be described in a later section.

The original code was written in CM Fortran with extensive array syntax in a data-parallel
programming model. Although it still retains much of the array syntax, some inefficient uses
of array syntax have been replaced with more efficient loop constructs. POP has also evolved
into a more traditional message-passing code using two-dimensional data decomposition
of the horizontal domain with ghost cells to reduce communication. To maintain single-
source portability with vector computers, the longer horizontal axes remain innermost. Early
experiments with swapping indices to make the short vertical axis innermost for better cache
performance did not show enough performance improvement to justify the additional code
complexity and inhibited portability. Instead, a new domain decomposition scheme has recently
been implemented to address cache issues and will be described in a later section.

The baroclinic portion of the code is the most computationally intensive, computing all of
the three-dimensional tendency terms. To reduce memory use, most tendencies are computed
on two-dimensional horizontal slices. The baroclinic computation has been designed so that
only one ghost cell update is required and the calculation of baroclinic terms can proceed
completely in parallel.

In contrast, the barotropic solver is a preconditioned conjugate gradient (PCG) algorithm
that consists of a single application of a nine-point stencil operator followed by global
reductions to perform the necessary inner products in the PCG method. Because it is only
a two-dimensional mode, there are relatively few operations and the solver is dominated by
many very small messages corresponding to inner product global sums. The solver is therefore
very sensitive to message latency.

3. Performance

3.1. Benchmark configurations

In order to assess the performance of POP across various machine architectures, two benchmark
configurations were set up which accurately reflect two common production configurations.

The first configuration (called x1) is a relatively coarse resolution that is currently used in
coupled climate models. The horizontal resolution is roughly one degree (320x384) and uses a
displaced-pole grid with the pole of the grid shifted into Greenland and enhanced resolution in
the equatorial regions. The vertical coordinate uses 40 vertical levels with a smaller grid spacing
near the surface to better resolve the surface mixed layer. Because this configuration does not
resolve eddies, it requires the use of computationally-intensive subgrid parameterizations. This
configuration is set up to be identical to the actual production configuration of the Community
Climate System Model [1] with the exception that the coupling to full atmosphere, ice and
land models has been replaced by analytic surface forcing.

The second configuration (0.1) is nearly identical to current 0.1◦ global eddy-resolving
production simulations. The horizontal grid is 3600x2400 and varies in spacing from 10km
in equatorial regions to as low as 2.5km in the Arctic. The pole in this grid is displaced into
the North American continent near Hudson Bay. The vertical grid again uses 40 levels with finer
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spacing near the surface. Because the grid resolution is fine enough to resolve eddies, the most
expensive parameterizations are not required; computational complexity comes entirely from
the size of the simulation. As above, the benchmark is configured identically to the production
simulations with the exception of using analytic forcing rather than the data-intensive daily
surface forcing.

3.2. Results

Results for the x1 configuration were obtained on all the machines shown in Table 1. Cheetah,
Eagle, and Phoenix are located in the Center for Computational Sciences at Oak Ridge
National Laboratory. Lemieux is located at the Pittsburgh Supercomputer Center. Guyot
is located in the Advanced Computing Laboratory at Los Alamos National Laboratory.
Seaborg is located in the National Energy Research Scientific Computing Center at Lawrence
Berkeley National Laboratory. The Earth Simulator is housed in the Earth Simulator Center
in Yokohama, Japan.

The 0.1 configuration was too large to run on many of the machines, but results for the
Earth Simulator and large IBM configurations were obtained. While most of the machines are
very stable and mature systems, the Cray X1 system is very new and software continues to
evolve rapidly. Software upgrades are expected to continue to improve POP performance in
the near future.

The POP code used for all of these benchmarks is the 1.4.3 version. It was used without
modification on all but the two vector machines. For vector machines, a few minor modifications
were required. Two routines which perform a tridiagonal solve in the vertical had been
optimized for cache-based machines by placing the loops over the short vertical index innermost
with outer loops over the horizontal domain. For vector machines, some interchanging of
loops was required to move one or both of the horizontal loops inside to enable vectorization
over horizontal loops. These modifications affected less than 100 lines of code and we are
investigating ways to incorporate these changes in a way that does not affect performance on
cache-based microprocessors.

With the exception of the Cray X1, all of the simulations used MPI for the message passing
between processors. As mentioned earlier, a Co-array Fortran form of the communication
routines used in barotropic solver was used on the Cray X1, requiring only the change of a
directory in the makefile.

Figure 1 shows POP performance on the x1 problem in simulated model years per wall-clock
day, a preferred metric in the climate community that emphasizes production throughput.
POP performs much better on either vector machine than on any of the other commodity
microprocessor-based machines, indicating that POP performance is improved by the increased
memory bandwidth available on vector machines. Event counters on SGI processors show
that the ratio of load/stores to floating point operations is a little over two, providing
additional evidence that memory bandwidth is important for POP performance. On the
SGI, performance on 32 processors averages 104 Mflops/processor, approximately ten percent
of peak performance. Such performance is similar on all machines built with commodity
microprocessors and is also typical of many other scientific simulation codes on such machines.
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Figure 2 shows the efficiency relative to performance on 4 processors: [T4/PTp] where Tp

is the execution time when using P processors. (The IBM SP results are not shown as their
inclusion makes it difficult to distinguish between the different curves.) Note the superlinear
speed-up (efficiency greater than 1) on the SGI and HP platforms for moderate processor
counts, indicating the improved performance due to better cache locality, and decreased
demands on memory performance, as the per process problem granularity decreases. The
cache-less Earth Simulator, the small cache Cray X1 and IBM p690 do not show this behavior.
This effect disappears on the SGI and the HP systems as the communication costs and other
parallel overheads become dominant.

Figures 3 and 4 illustrate the scaling of the baroclinic and barotropic parts of the model. The
IBM SP results are again not shown in order to more easily understand the figures. In these
figures, seconds per simulated day is used as the metric to emphasize scalability and because
a throughput metric has little meaning when measuring portions of the code. As mentioned
previously, the baroclinic part of POP contains very few communications and scales well on
all machines, as shown in Fig. 3 where the curves are all nearly linear with similar slopes.
The relative positions of the curves is due to differences in single-processor performance. The
Earth Simulator shows some signs of slowing down on the x1 configuration at high processor
counts because the subgrid size on each processor is becoming a relatively small multiple of
the vector length. In contrast, the Cray X1 is able to maintain good vector performance for
smaller vector lengths than the Earh Simulator.

Contrary to the baroclinic part, the barotropic is dominated by communication, particularly
by global reductions. As mentioned previously, the communication consists of very small
messages and global reductions and performance of the barotropic solver is dominated by
message latency. Figure 4 shows that scaling on many machines for the x1 configuration is
very poor above 16 processors where the subgrid has dropped to a size of 80x96 and there is
not enough computational work to mask message latency. The exception to this is the SGI
which has a very low-latency network in order to support the single-system-image shared
memory. Because the barotropic solver is generally a small fraction of the simulation time, the
lack of scaling doesn’t begin to affect the total simulation time until using 64 or 128 processors.

The poor scaling of the barotropic solver prevents large numbers of processors from being
utilized for coarse or moderate resolution problems. In most cases, production simulations
of this size do not utilize such large processor counts due to other constraints like resource
scheduling or scaling of other component models of the coupled system so the poor scaling has
not been an impediment to such simulations. A search for alternative solvers continues, but
alternative solvers have either had difficulties with irregular boundaries or have had slower
convergence rates. Recent successes with an explicit subcycling of the barotropic mode may
lead to use of a subcycling scheme in a future version of POP. Note that even a subcycling
scheme will require communication at each subcycling step, but should avoid global reductions
common in many iterative solvers.

The high resolution (0.1) benchmark configuration is ideally suited for the Earth Simulator,
where the large problem size requires high memory bandwidth and high single-processor
performance. POP simulations at this resolution on the Earth Simulator perform an order of
magnitude faster than the IBM machine on similar numbers of processors as seen in Figure 5.
Even at this resolution however, the poor scaling of the barotropic solver affects performance
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at high processor counts, as can be seen in the relative efficiency curves in Figure 6. (Unlike
the earlier figure, the Earth Simulator and p690 efficiencies are calculated relative to different
baselines, 16 and 128 processors, respectively.) A direct comparison of these results with the
x1 configuration is difficult because the configuration for the two cases are quite different. The
0.1 case uses a factor of ten smaller timestep and 70 times as many grid points, but the simpler
parameterizations in the 0.1 configuration require a factor of 2.5 fewer flops per grid point.
For an equivalent processor setup, this would mean the 0.1 case would take approximately
300 times longer to integrate a year-long simulation. The IBM results are roughly consistent
with that estimate. The Earth Simulator is far more efficient at the larger problem size. At
the smaller x1 problem size, the vector lengths are too short for maximum vector efficiency on
the Earth Simulator. The Cray X1 architecture, with each processor consisting of four units
of two vector pipes each, can perform efficiently with shorter vector lengths and performance
on the smaller problem size competes favorably with the Earth Simulator.

4. New decomposition scheme

In the previous section, POP is shown to perform well on vector machines. Performance on
cache-based microprocessors is typical of many scientific codes, but is limited by memory
bandwidth. In an attempt to achieve better performance on cache-based microprocessors, a
recent new release of the POP code (2.0, not the version 1.4.3 used to obtain the results in
the previous section) implements a new decomposition scheme. In version 2.0, the horizontal
domain is still decomposed into Cartesian blocks. However, the block size can be adjusted based
on machine architecture. For example, block size can be small to fit into cache or can be large
on vector machines. Once the domain has been decomposed into blocks, blocks which consist
only of land are dropped from the simulation, reducing the overall work load. The remaining
blocks are then distributed across nodes using a static load-balancing scheme. The use of a
Cartesian decomposition for the blocks rather than a more complicated partitioning scheme was
to preserve the current structure of the code (many routines required only minimal changes)
and minimize the burden on a large user and developer base. The block decomposition scheme
described above provides a means of performing load balancing and land point elimination
while retaining some back compatibility.

The new block decomposition scheme also provides a mechanism for a hybrid programming
model using threads and message passing. If many blocks are assigned to each node, threading
(eg OpenMP) can be used to assign blocks to threads within a node and message-passing is
used between nodes. The threaded loop over blocks on a node is at a very high level in the
code, ensuring a large amount of work within threaded loops to amortize overhead.

Finally, a different decomposition of blocks and different number of processors can be used
for the barotropic solver. In particular, if the barotropic solver begins to slow down at high
processor counts, a fewer number of processors can be assigned. While this does not completely
eliminate the scaling problems, it can reduce the effects for those cases where the solver takes
longer at high processor counts.

This new decomposition strategy combines cache-blocking, land point elimination, load
balancing and hybrid parallelism to help improve performance. Initial results indicate that the
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new decomposition can improve performance by 30% or more in cases like the 0.1 case above.
The improvement is due both to improved use of cache and to land point elimination. At coarse
resolution like the x1 case, there are few blocks which are completely land, so improvements
were only seen at low processor counts where cache-blocking improved performance. At higher
processor counts where the block size was already small, there was no improvement and in
some cases a slight (but measurable) performance penalty. The new scheme has not been fully
optimized and more work will be done to characterize and improve the new model.

5. Conclusion

POP is being used effectively on a wide variety of machine architectures using the same
source code on both vector machines and machines built using commodity microprocessors.
Performance on both classes of machines can be improved and code changes to implement
these improvements are in progress. Further testing of POP 2.0 will be used to tune and
optimize the new decomposition scheme and hybrid threaded/message-passing programming
model. Performance modeling using POP will be used to guide design and development of
future releases.
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Table I. Properties of machines used in benchmarks.

Machine Machine Proc Proc Speed Cache
Name Description (MHz) (Mb)
Cheetah IBM p690 cluster Power4 1300 1.5 (L2)
Lemieux HP AlphaServer SC EV68 1000 8 (L2)
Guyot SGI Origin3000 R14000 500 8 (L2)
Phoenix Cray X1 Cray 800/400 2
ES Earth Simulator ES 1000/500 N/A
Eagle IBM SP Power3-II 375 8 (L2)
Seaborg IBM SP Power3-II 375 8 (L2)

Machine Memory/ SMP Switch/
Name Proc (Mb) Size Network
Cheetah 1000 32 SP Switch2 (Corsair)
Lemieux 1000 4 Quadrics QsNet
Guyot 128 512 CrayLink
Phoenix 4000 4 Cray
ES 2000 8 ES
Eagle 500 4 SP Switch
Seaborg 1000 16 SP Switch2 (Colony)
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Figure 1. Performance in model years per CPU day as a function of processor count for the x1
configuration
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Figure 3. Performance in seconds per model day as a function of processor count for the baroclinic
section in the x1 configuration
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