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FY06 Joule Software Effectiveness

0.1 Annual Milestone

(SC GG 5.23.2) Improve Computational Science Capabilities: Average annual
percentage increase in the computational effectiveness (either by simulating the same prob-
lem in less time or simulating a larger problem in the same time) of a subset of applica-
tion codes within the Scientific Discovery through Advanced Computing (SciDAC)

and base program efforts. FY06 Target: ≥ 50%

0.2 Q2 Information

In the second fiscal quarter, the application experts stated problems to study on target ma-
chines with their existing application code base at that time. Application benchmark runs
of the problems on the machines were conducted at that time. The following information
was gathered for each problem that was exercised.

0.2.1 Problem description

• description of physical problem to be constructed, computed, or recognized

• defense of why the problem is significant

0.2.2 Algorithm description

• description of the problem’s complexity

• description of a procedure to compute the problem

3



D
R

A
FT

0.2.3 Machine description

• description of the machine used to compute the problem

0.2.4 Data

• application software source codes at end of Q2

• build information on target machine at the end of Q2

– makefile

– screen dump of the make

– environment - special variables, os, compiler, library versions, etc.

• runtime information at the end of Q2

– batch script for each problem’s job submission

– preferably utilize ≥ 50% of the available machine hardware

– input data for program

– environment - special variables, os, scheduler, etc.

• measured observables at the end of Q2 (minimal set)

– total wall time to generate, compute, and accept results for the problems

– total wall time should exceed 1 hour on preferably ≥ 50% of the available ma-
chine hardware

– measures of problem specific metrics of performance

Q2 Information Problem Algorithm Machine Data
sec[0.4.4] DCA-QMC sec(0.5.1) sec(0.5.2) sec(0.5.3) sec(0.5.4)

DCA-QMC sec(0.5.1) sec(0.5.2) sec(0.5.3) sec(0.5.4)
sec[0.7] ENZO sec(0.8.1) sec(0.8.2) sec(0.8.3) sec(0.8.4)

ENZO sec(0.8.1) sec(0.8.2) sec(0.8.3) sec(0.8.4)
sec[0.12] MADNESS sec(0.13) sec(0.13.1) sec(0.13.2) sec(0.13.3)
sec[0.15] ScalaBLAST sec(0.16.1) sec(0.16.2) sec(0.16.3) sec(0.16.4)

ScalaBLAST sec(0.16.1) sec(0.16.2) sec(0.16.3) sec(0.16.4)
ScalaBLAST sec(0.16.1) sec(0.16.2) sec(0.16.3) sec(0.16.4)
ScalaBLAST sec(0.16.1) sec(0.16.2) sec(0.16.3) sec(0.16.4)

Table 1: The baseline information collected at the end of Q2 for the FY06 case studies.
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0.3 Q4 Information

The application experts state and demonstrate their enhancements on the original target
platforms. Pointers into the text are provided in Table[2].

Q4 Information Problem Algorithm Machine Data
sec[0.4.4] DCA-QMC sec(0.5.1) sec(0.6.1) sec(0.5.3) sec(0.6.2)

sec[0.7] ENZO sec(0.8.1) sec(0.9.1) sec(0.8.3) da sec(0.9.2)
sec[0.12] MADNESS sec(0.13) sec(0.14.1) sec(0.13.2) sec(0.14.2)
sec[0.15] ScalaBLAST sec(0.16.1) sec(0.17.1) sec(0.16.3) sec(0.17.2)

Table 2: The information collected at the end of Q4 for the enhanced FY06 case
studies. The list excludes some results for clarity but represents an enhancement for
each application accomplished this FY.

0.4 Results

In this report a problem refers to a question whose language is derived from physical reality
and theory. An instance of a problem is a list of values for each of the parameters that
define it. The computational complexity of the problem is the relationship between values
of the input symbols and the number of operands managed at any instant during execution
of the procedure and the number and types of operations to be performed.

The process of constructing and computing algorithms for a problem using other algorithms
is called reduction. The notion of reduction is recursive and to be practical assumes special
properties for the algorithms. Informally, effective procedures are finitely describable and
consist of discrete steps, each of which can be executed mechanically. Note that the notion of
an effective reduction does not imply correctness nor convergence to it. The interpretation
of a computed physical result is required to assure that. Such a complete analysis is not
found here.

• performance enhancement

– TQ4{pi, al := e(aj),mk, datai,l,k} ≤ 1
2TQ2{pi, aj ,mk, datai,j,k}

∗ TQ4{pi, al,mk, datai,l,k} is the time for machine mk to compute problem pi

with algorithm al at the end of the fiscal year

∗ TQ2{pi, aj ,mk, datai,j,k} is the time for machine mk to compute problem pi

with algorithm aj at the end of the second fiscal quarter

∗ al := e(aj) is the performance enhanced version of algorithm aj

∗ both al and aj compute problem pi on machine mk

– discuss how al is different from aj

– provide the data

5
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∗ application software source codes at end of Q4

∗ build information on target machine at the end of Q4

· makefile

· screen dump of the make

· environment - special variables, os, compiler, library versions, etc.

∗ runtime information at the end of Q4

· batch script for each problem’s job submission

· preferably utilize ≥ 50% of the available machine hardware

· input data for program

· environment - special variables, os, scheduler, etc.

∗ measured observables at the end of Q4 (minimal set)

· total wall time to generate, compute, and accept results for the prob-
lems

· total wall time should exceed 1 hour on preferably ≥ 50% of the avail-
able machine hardware

· total cpu time per processor

· measures of problem specific metrics of performance

• scientific enhancement

– TQ4{pl := e(pi), am := e(aj),mk, datal,m,k} ∼ TQ2{pi, aj ,mk, datai,j,k}
∗ TQ4{pl, am,mk, datal,m,k} is the time for machine mk to compute the en-

hanced version of problem pi with the enhanced algorithm am at the end
of the fiscal year

∗ TQ2{pi, aj ,mk, datai,j,k} is the time for machine mk to compute problem pi

with algorithm aj at the end of the second fiscal quarter

∗ pl := e(pi) is the science enhanced version of pi; e.g. it is two times more ac-
curate, can take twice as many time steps, the rate of convergence doubled,
etc.

∗ am := e(aj) is the enhanced version of algorithm aj that accounts for the
enhancement

– discuss how pl is different from pi -include notion of factor of two

– discuss how am is different from aj

– provide the data

∗ application software source codes at end of Q4

∗ build information on target machine at the end of Q4

· makefile

· screen dump of the make

· environment - special variables, os, compiler, library versions, etc.

∗ runtime information at the end of Q4

· batch script for each problem’s job submission

· preferably utilize ≥ 50% of the available machine hardware

· (enhanced)input data for program

6
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· environment - special variables, os, scheduler, etc.

∗ measured observables at the end of Q4 (minimal set)

· total wall time to generate, compute, and accept results for the prob-
lems; should be approximately equal to the time measured in Q2

· total wall time should exceed 1 hour on preferably ≥ 50% of the avail-
able machine hardware

· total cpu time per processor

· measures of problem specific metrics of performance

• new result

– Tnew := TQ4{pi, aj ,mk, datai,j,k}
∗ collect the information found in the Q2 Baseline Information described

above

Speedup, γ. Some applications report the effectiveness of their optimization in terms
of a speedup factor, call it γ. This means that the time to compute the results with the
original code is γ times as long as the code that has been enhanced for performance. That
is To = γT1 and thus the assertion becomes To−T1

To
= γT1−T1

γT1
= γ−1

γ . Clearly, when γ ≥ 2
then the constraint is satisfied.

0.4.1 DCA-QMC

The DCA-QMC,Dynamical Cluster Approximation-Quantum Monte Carlo technique, treats
local interactions inside a finite cluster explicitly and otherwise uses mean-field theory for the
interation. The mapping from a microscopic lattice to the cluster is done by coarse-graining
the reciprocal lattice. The coarse-grained many-body Green functions and interactions are
computed to define an effective problem of a periodic cluster of size Nc coupled to a mean-
field host. The QMC solves the effective cluster problem, which yields a new estimate for the
mean-field host. This procedure is repeated until self-consistency is achieved. The primary

Problem System Enhancement

Pairing interaction, 2D Hubbard Model (sec0.5.1) Cray X1E [0.5.3], phoenix.ccs.ornl.gov performance(Tables[6,9]), ∼ 74.03%

metric is the time to compute the Green function update per time-slice. The performance
enhancement comes directly from comparing he original and enhanced times to compute
problem one(0.5.1) on machine(0.5.3) with the original algorithm(0.5.2) and the enhanced
algorithm(6). The times are found in tables[6,9] respectively.

0.4.2 Enzo

Enzo simulates the detailed dynamics and thermodynamics of the cosmic plasma under the
influence of dark matter and dark energy, as well as ionizing radiation backgrounds to study
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galaxy formation in the universe. Cosmological structure formation is inherently nonlinear,
multidimensional, and involves a broad range of physical processes operating on a range of
length- and time-scales. Large scale numerical simulation is the only means of studying it
in any detail.

A performance metric of primary interest is time/processor/physical timestep.

Problem System Enhancement

High redshift galaxies, amr (sec0.8.1) IBM Power5 (0.8.3), bassi.nersc.gov performance(Tables[8,7]), ∼ 66.35%

The results from running the original algorithm(0.8.2) may be referenced in Figure[19]
and Table[8]. The enhanced results come from running AMR FINAL(0.9.1) and may be
referenced in Figure[16] and Table[7].

0.4.3 MADNESS

MADNESS is a general framework for scientific simulation that provides new capabilities
for rapid computation with guaranteed precision enabled by new mathematical tools for
multiresolution analysis in multiwavelet bases and efficient computation in many-dimensions
through the use of separated representations.

Problem System Enhancement

project nuclear copper potential into wavelet basis(sec0.13) Cray XT3, jaguar.ccs.ornl.gov performance, γ = 4.4 (see[23])

Table 3: A scalable speedup,γ, is asserted for the baseline problem stated for the
MADNESS code. The projection with adaptive refinement to a precision of 10−3

into the k = 9 polynomial basis of the full nuclear potential arising from a cube of
4096 copper atoms arranged on a body-centered cubic lattice was computed.

0.4.4 ScalaBLAST

ScalaBLAST performs homology detection and sequence alignment to identify relationships
between molecular machinery of organisms which have been well-characterized and those
which have been newly sequenced. It is a hybrid application that capitalizes on the scal-
ability of query scheduling approaches, and at the same time shares the target database
using the Global Array toolkit which provides a software-enabled shared memory interface
to both true shared memory and distributed memory architectures.

Problem System Enhancement

(sec0.16.1) MPP2, mpp2.emsl.pnl.gov new result, see(??)

Table 4: FY06 Joule performance enhancement for the ScalaBLAST code. The mea-
sure of performance is time/query/processor.
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New result At the turn of FY06, MPI BLAST(v1.4.0) was the accepted state-of-the-art
in high performance sequence alignment. The primary limitation found with MPI BLAST
is memory usage. Figure[33] illustrates the memory footprint of MPI BLAST, which grew
linearly on the master node in time during execution of the large ENV benchmark. This
trend continued until all the memory of the master node was consumed. Figure[34] illus-
trates the corresponding drop in free memory for the master node during this time. Once
memory is consumed on the master node, swapping begins, as illustrated in Figures[35,36].
At this point, the calculation has essentially halted -prior to producing any output.

The two key capability limitations to performing very large BLAST searches that were ad-
dressed by ScalaBLAST are 1) inability of query scheduling applications to handle databases
too large to fit in-core without swapping and 2) poor scaling of database parsing methods.
Modifications (please see sec[0.17.1]) to ScalaBLAST addressed these issues head on.

Compared with the failure of MPI BLAST to produce any output for either of the bench-
mark runs on both Jacquard and MPP2, ScalaBLAST succeeded in delivering a high-
throughput of BLAST results per-processor on both platforms and for both benchmarks
essentially without regard for number of processors involved in the calculation-the same as
ideal scaling for both problems, as illustrated in Table [28].

9
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DCA-QMC

0.5 Q2 Information

0.5.1 Problems

Understanding the mechanism behind high-temperature superconductiv-
ity Superconductivity is, from an energy point of view, usually mentioned in the
context of power transmission. The fact that metallic wires have non-zero electri-
cal resistance currently imposes constraints on how electric power is used and dis-
tributed. For example, in order to minimize energy losses, alternating currents (ac)
at high voltage are used in transmission, while the majority of power sources and
consumption operate with direct currents (dc) and at low voltage. Availability of
wires with zero resistance that can sustain large enough electrical currents, would
allow to directly connect power sources to end-users and open new avenues to power
generation. For example, photovoltaic energy sources could be concentrated in remote
locations while making the generated power available in major urban agglomerations.
These and many other very appealing applications in electronics and medicine seem
to explain the continued interest in superconductivity, a state of matter with zero
electrical resistance. But the implications on science and technology are potentially
much broader. The superconducting state is one of few known macroscopic quantum
states, where of the order of 1023 electrons are coherent (or entangled in the termi-
nology of quantum computing). In high temperature superconductors (HTSC), this
state persists up to 150 degrees Kelvin. Understanding the mechanism how this state
forms could, for example, fundamentally impact the way quantum computing and
quantum teleportation is approached.

The discovery in 1986 by Bednorz and Müller of superconductivity with transition
temperatures above 30 K in Ba doped LaCuO2, a poor conductor (LaCuO2 is an
insulator), marked the beginning of a new era in condensed matter research. Within
a few years new transition metal oxides were discovered with superconducting tem-
peratures as high as 150 K - Bednorz and Müller were awarded the Nobel Prize in
1987). Despite two decades of intense research, the pairing mechanism in high tem-
perature superconductors (HTSC) remains a mystery and represents one of the most

10
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important outstanding problems in condensed matter science today.

Conventional superconductors are well described by the Bardeen-Cooper-Schrieffer
(BCS) theory. In this theory, superconductivity results from an attractive interaction
between electrons mediated by the exchange of lattice vibrations or phonons. By
forming Cooper-pairs, the electrons can lower their potential energy, condense into
a coherent macroscopic quantum state and conduct electricity without resistance.
While conventional superconductors are well understood, the pairing mechanism in
HTSC is believed to be of entirely different nature. Strong correlations between
electrons were realized to play a crucial role in HTSC. Hence, models describing
itinerant correlated electrons, in particular the two-dimensional Hubbard model, are
believed to capture the essential physics of HTSC. With only the basic ingredients of
a strongly correlated electron system, i.e. a hopping integral t that allows electrons
to move between neighboring sites, and a mutual Coulomb repulsion U electrons
feel when residing on the same site, the Hubbard model attempts to capture the
physics of electrons moving in the CuO2 planes of HTSC. With more than a thousand
publications per year for the last ten years, the Hubbard and related models are
among the mostly studied models in condensed matter physics. Despite this huge
effort and its simplicity, however, this model has remained unsolved and the question
of whether it contains enough ingredients to describe HTSC continues to be one of
the most important problems in condensed matter theory.

A recent concurrence of new algorithmic improvements over the past decade that
resulted in the DCA/QMC code [8], and the continued delivery of increasingly more
powerful computing capabilities have enabled systematic studies to solve the two-
dimensional (2D) Hubbard model for the HTSC cuprates [20]. The DCA method
[1, 3, 4, 5, 6] (for a review see [7]) takes advantage of the short length-scale of spin cor-
relations observed in optimally doped HTSC to map the original infinite size system
onto a cluster self-consistently embedded in a mean-field host. It retains the dynam-
ics of short-ranged correlations within the cluster, while approximating longer-ranged
correlations on the mean-field level. Translational invariance of the original system
assures that the quantity describing the mean-field host can be self-consistently de-
termined from the solution of the cluster problem. The complexity of the original
problem with an infinite number of degrees of freedom is thus reduced to a self-
consistent finite-size cluster problem with Nc degrees of freedom. The remaining
cluster problem may then be solved numerically by a number of techniques including
the QMC method used in this project.

The DCA/QMC method has been recently utilized to perform a systematic study
of superconductivity in the 2D doped Hubbard model [20]. In the study, supercon-
ductivity is indicated by the divergence of the pair-field susceptibility. Systematic
calculations of this quantity for different cluster sizes show, for the first time, evi-
dence for superconductivity in the 2D Hubbard model at finite temperatures, if large
enough clusters are considered. Based on these results, the 2D Hubbard model has
enough ingredients to describe HTSC.

11
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Given these results, there is the unique opportunity to gain insight in the mechanism
of high-temperature superconductivity. In this project the success of these calcula-
tions is leveraged to examine the question of what is causing the electrons to pair in
the 2D Hubbard model. To this end, large-scale computer simulations will be used to
examine the structure of the irreducible contribution to the pair-field susceptibility,
the particle-particle irreducible vertex function for various values of the interaction
strength U . This quantity can be viewed as the effective pairing interaction and thus
is responsible for pairing. In addition, the corresponding quantities for the magnetic
and charge susceptibilities, i.e. the magnetic and charge irreducible particle-hole
vertices, will be studied. The ouput will be valuable information about the dom-
inant excitations in the system. Further, an exact decomposition will be made of
the particle-particle vertex function into a fully two-fermion irreducible vertex and
magnetic and charge exchange channels. The hope is to pinpoint the dominant con-
tribution to the pairing interaction.

On the weak coupling (perturbative) level, the decomposition is well understood. The
dominant part of pairing interaction is found to come from the magnetic exchange
channel , so that the exchange of antiferromagnetic spin fluctuations can be held
responsible for pairing (see e.g. [21, 22]). Recent DCA/QMC calculations in the
weak to intermediate coupling limit confirm this picture [?]. However, the relevant
regime to describe the HTSC is the intermediate to strong coupling regime where U
is of the order of the bandwidth. Here, the DCA/QMC simulations will provide exact
results for the decomposition of the pairing interaction. When completed, the study
will provide, the first time, information on what is causing the electrons to pair in
the 2D Hubbard model at intermediate coupling, and hence with information on the
mechanism of high-temperature superconductivity.

Significance of Research A complete theoretical understanding of HTSCs, in
particular the pairing mechanism, could lead to the ability to design and synthe-
size room-temperature superconductors, which would have tremendous technological
implications. Evidence for the importance of this problem is further given by the
fact that among the 125 most important problems in science as listed in the Science
magazines anniversary edition [23] is “What is the pairing mechanism behind high-
temperature superconductivity?”. Despite two decades of studies, this remains an
unsolved problem.

Many different techniques, from analytical to numerical have been applied to study
superconductivity in the Hubbard model. Weak coupling theories for the Hubbard
model based on perturbative approaches assume that the Coulomb repulsion U be-
tween electrons is weak compared to their kinetic energy. Results from these methods
show evidence that the exchange of antiferromagnetic spin fluctuations can mediate
pairing with the correct symmetry [22]. However, these approaches suffer from the
large magnitude of U necessary to describe HTSC, rendering these approaches neither
helpful nor valid. Many theorists have therefore turned to numerical approaches to
close the gap between the model defined by its Hamiltonian and its properties. A large
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body of work has been devoted to a direct (numerically) exact solution of finite-size
systems using exact diagonalization or Quantum Monte Carlo (QMC) methods (for
a review see [24]). Exact diagonalization, however, is severely limited by the expo-
nential growth of computational effort with system size, while QMC methods suffer
from what is known as “the sign problem”. The size and temperature limitations
faced by these finite size approaches has prevented these studies to actually observe
a superconducting transition in the Hubbard model (see [21]). Another difficulty of
these methods arises from their strong finite-size effects, often ruling out the reli-
able extraction of low-energy scales, which are important to capture the competition
between different ground states often present in correlated electron systems.

The proposed tool in this project, the DCA/QMC approach, does not face these
limitations. The approach is valid for any strength of the Coulomb interaction U ,
and thus is well suited to address the question of superconductivity in the relevant
intermediate to strong coupling regime. In addition, the DCA sign problem is sig-
nificantly less severe than that encountered in finite size simulations, as illustrated
in Fig. 1 where the DCA average sign is compared to that of a corresponding finite
size QMC calculation by White et al. [25]. As a result, exploring larger systems and
lower temperatures has become possible.
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Figure 1. A comparison of the average sign for DCA and finite size simulations (FSS) of
the 2D Hubbard model when the Coulomb interaction is one-half of the bare bandwidth
U = 0.5W for a cluster/lattice size Nc = 16 as a function of doping δ (left) and as a function
of inverse temperature β = 1/T (right).

Problem One:The structure of the pairing interaction in the 2D Hubbard
model In this study we will examine the question of what is causing the electrons
to pair in the 2D Hubbard model. To this end, we will use large-scale computer
simulations to systematically examine the structure of the pairing interaction in the
2D Hubbard model. The effective pairing interaction is given by the irreducible
particle-particle vertex which is obtained by inverting the Bethe-Salpeter equation
for the vertex function. We will study this quantity for various values of the inter-
action strength U . In addition, we will examine the corresponding quantities for the
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magnetic and charge susceptibilities, i.e. the magnetic and charge irreducible particle-
hole vertices, which will yield valuable information about the dominant excitations
in the system. We will further use an exact decomposition of the particle-particle
vertex function into a fully two-fermion irreducible vertex and magnetic and charge
exchange channels. This will allow us to pinpoint the dominant contribution to the
pairing interaction.

In this case study, we examine the evolution of the eigenvectors of the particle-particle
kernel of the Bethe-Salpeter equation with temperature, at fixed filling 〈n〉 = 0.95 and
Coulomb interaction U = 8t for a cluster size of Nc = 24. This study is representative
of the runs required to complete this project. Due to the large value of U , the time
step ∆τ ∝ 1/

√
U has to be chosen small enough to generate reliable results. The

numerical expense of the DCA/QMC code scales as O((NcNl)
3) where the number

of time steps Nl = β/∆τ and β = 1/T is the inverse temperature. Hence, large scale
computations on a significant portion of the X1E are necessary due to the large values
of Nc and Nl required in this study.

Problem Two:Groundstate energies in the 2D Hubbard model Numerical
studies of the 2D Hubbard model have shown that this model can exhibit antifer-
romagnetism, stripes, pseudogap behavior as well dx2

−y2-wave pairing. In addtion,
this model appears to be delicately balanced between these nearly degenerate phases.
Slight increases in doping can tip the balance from antiferromagnetism to a striped
phase or a superconducting phase. Small variations in U can lead to a transition
from a striped phase to superconductivity. Due to the delicate balance between these
phases, different numerical techniques often find different groundstate phases for the
same model. Renormalization group techniques describing the physics of a finite size
system, e.g., find striped phases, while the DCA/QMC technique favors d-wave su-
perconductivity. The fact that these techniques find different groundstates may also
reflect the influence of different boundary conditions or different cluster shapes and
aspect ratios. Furthermore, the remarkable similarity of this behavior with the range
of phenomena observed in the cuprates provides strong evidence that the Hubbard
model containes the esential physics of the problem.

Here we will study the collection of different phases within a single numerical tech-
nique, the DCA/QMC approach, and calculate their respective groundstate energies
for different fillings and values of the Coulumb interaction U . This will allow us to
decide which phase is favored in a particular parameter regime. This study will re-
quire long runs averaging over many samples generating a small statistical error to
resolve the small energy differences between different phases.

In a case study, we will perform simulations at fixed cluster size Nc = 4, Coulomb
interaction U = 8t and filling 〈n〉 = 0.95 down to very low temperatures to allow
for the extrapolation of the energy to zero temperature. Since the low temperatures
necessitate the use of small time-steps ∆τ and therefore large Nl, this study will
require a significant portion of the resources on the X1E.
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0.5.2 Algorithm

The essential nature of the dynamical cluster approximation [1, 3, 4, 5, 6] (for a
review see [7]) is that correlations within a finite size cluster are treated explicitly,
while those at longer length-scales are treated at the mean-field level. The mapping
from the lattice to the cluster is accomplished by coarse-graining the reciprocal space
of the lattice. The coarse-grained many-body Green functions and interactions are
then used to define an effective problem of a periodic cluster of size Nc coupled to a
mean-field host. The QMC method may then be used to solve the effective cluster
problem, which yields a new estimate for the mean-field host. This procedure is
repeated until self-consistency is achieved.

QMC is itself inherently parallel because it consists of a stochastic Markov-chain walk.
Measurements are made periodically along this walk. The code performs several
independent, shorter Markov-chain walks on different processors and averages the
results of each walk to obtain the final result of the calculation using MPI. Apart from
the fraction of the walk required to achieve equilibrium, the result is an almost perfect
parallel speedup as an increasing number of processors are applied to a problem. This
arises because only an extremely small amount of communication between processors
is required – first to initialize the Markov-chain walks and then to collect the data
for averaging at the end of the Markov process (even this averaging can be done in
parallel using MPI calls).

The central quantity of the DCA/QMC code is the single-particle Green function Gc

of the effective cluster problem, which is a matrix of size N ×N [8]. Here N = NcNl

where Nl is the number of ”time-slices” in the time direction. The majority of the
CPU time is spent in the inner loop of the QMC simulation. The Hirsch-Fye algorithm
sweeps through the HHS decoupling fields and proposes local changes in the HHS fields

sn → s′n = −sn.(1)

The transition probability is calculated from the ratio of the old Green’s function Gc

to the new Green function G′

c.

Gcσ
G′

cσ

−1 = I + (I − Gcσ
)(eV ′

σ−Vσ − I) .(2)

where the matrix I is the identity and the matrix V is diagonal with finite elements
V = ασsn. Since the change is local in both space and time, (eV ′

σ−Vσ − I) has only
one finite element. So

R = det
[

Gcσ
G′

cσ

−1
]

= 1 + (1 − Gcσ,nn
)(e−2ασsn − 1) .(3)

If R is greater than a random number between zero and one, then the change is
accepted, and the Green’s functions must be updated using

G′

cσ
= Gcσ

+ (Gcσ
− I)(eV ′

σ−Vσ − I)G′

cσ
(4)
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Eq. (4) is iterated twice to obtain an updating equation for Gc

G′

cσ,ij
= Gcσ,ij

+
(

Gcσ,in
− δin

) (

e−2ασsn − 1
)

Gcσ,nj
/R(5)

This equation is the inner loop of the code where a major part of the CPU time is
spent. It is a vector outer product followed by a matrix update, G′

c = Gc + a ∗ b
where a and b are two vectors of dimension N . The operation may be computed with
a call to the BLAS[9] subroutine dger() which performs a double-precision rank-one
matrix update representing O(N 2) operations. Each iteration requires N such calls,
however, resulting in O(N 3) operations.

Figure 2. Per-processor performance of concurrent DGER calls using N = 4480 matrices.

In Figure[2] the vendor optimized dger() was used on each system. The figure shows
the performance for a matrix of size N = 64 × 70 = 4480, which is representative of
large DCA runs. Separate dger() instances were run concurrently across increasing
numbers of processors (MSPs), mimicking the processes of a Monte-Carlo simulation.
The Cray X1E memory system is able to maintain performance and efficiency with
added processors, while the IBM P690 steadily degrades. The SGI Altix degrades
going from one to two processors because memory bandwidth is shared between pro-
cessor pairs. The Cray X1E maintains 8 times the performance and 4 times the
efficiency of the other systems. Despite the Monte-Carlo nature of the DCA/QMC
algorithm, the Cray X1E also has an important scalability advantage over systems
with weaker processors. Each DCA/QMC process has a significant fixed start-up
cost, which favors splitting the Monte-Carlo iterations across fewer, faster processors.
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Analysis code In addition to the QMC code described above, an analysis code has
been developed to analyze the output of the DCA/QMC code. For large data sets, this
code is run on machines with a large amount of shared memory, such as ORNL’s SGI
Altix (Ram). This code takes the irreducible quantities produced by the DCA/QMC
simulation, including the vertex functions, and uses them to calculate a variety of
lattice response functions including the magnetic and pair-field susceptibilities, which
are needed in the analysis proposed here.

0.5.3 Machine

The Cray X1E (http://info.nccs.gov/resources/phoenix) at the National Center for
Computational Sciences (NCCS) was utilized to establish both the Q2 baseline and
the Q4 enhancements. Practically speaking, the system hardware description was
static during the fiscal year.

0.5.4 Data

Q2 Collected Data Problem One(0.5.1) Problem Two(0.5.1)
Source codes yes yes

Build information yes yes
Runtime information yes yes

Total walltime yes yes

Table 5: Information collected during Q2 for the computed DCA-QMC problems.
Please see sec[0.2.4] for description.

0.6 Q4 Information

The problems and target machine remained unchanged throughout the fiscal year
in this study. Please see section[0.5] for details. The algorithm was modified. A
description now follows of the changes.

0.6.1 Algorithm

Delayed Green’s function Updating The subroutine dger() is inefficient as it
computes only two floating point operations per memory access. Both floating point
operations can be done in the same clock cycle, but many clock cycles are required
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Identifier problem size(a.u.) processors Q2 Time(h) Weighted Time(h)
101 240 8 3.2 25.6
102 240 8 3.13 25.04
103 240 8 3.08 24.64
104 240 8 3.10 24.8
105 240 16 1.52 24.32
106 240 32 0.72 23.04
107 288 64 0.51 32.64
108 384 64 1.13 72.32
109 480 128 1.75 224
110 576 128 2.97 380.16
111 768 256 4.13 1057.28
112 864 256 4.52 1157.12
113 1056 512 3.85 1971.2

5042.16

Table 6: Times to compute problem one(0.5.1) on machine(0.5.3) with algo-
rithm(0.5.2) measured during the second fiscal quarter.

Identifier problem size(a.u.) processors Q2 Time(h) Weighted Time(h)
122 576 128 2.05 262.4
123 704 256 1.88 481.28
124 800 256 2.43 622.08
125 1056 512 2.71 1387.52

2753.28

Table 7: Times to compute problem two(0.5.1) on machine(0.5.3) with algo-
rithm(0.5.2) measured during the second fiscal quarter.
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for the memory access. Thus Eq. (5) is limited by the speed of the cpu-memory bus
-e.g. how fast Gc can be moved in and out of memory.

However, the Green function updating may be delayed, until a sufficiently large num-
ber of changes, call this number nb, have been accumulated. Only after nb changes
in the HHS fields is the whole Green function matrix updated. If these nb accepted
changes are labeled sequentially, then Eq. (5) becomes

Gnb
cσ,ij

= G1
cσ,ij

+
nb−1
∑

N=1

[GN
cσ,in(N)

− δin(N)][e
−2αsn(N) − 1]GN

cσ,N(n)j
/RN(6)

where the sum on n is over the indices of the accepted changed field and GN
c and RN

represent the corresponding Green’s functions and Metropolis ratio before the change
has been accepted. Again, this may be written as a series of vector outer products.
If one identifies

AN
σ,i =

(

GN
cσ,in(N)

− δin(N)

) (

e−2αsn(N) − 1
)

/RN(7)

BN
σ,j = GN

cσ,n(N)j
(8)

then

Gnb
cσ,ij

= G1
cσ,ij

+
nb−1
∑

N=1

AN
σ,iB

N
σ,j(9)

This can be collapsed into a matrix product of slender rectangular matrices which
may be performed efficiently with the BLAS call dgemm().

Since each AN and BN depends on GN
c , this step is pointless unless some way may

be found to calculate AN and BN for each N quickly; i.e. which scales like O(N).
This is possible, since Eqs. (7) and (8) don’t require the entire Green function, but
rather only one column or row. This efficient updating algorithm relies on the ability
to calculate and store (in AN and BN) the Nth row and column of the updated
Green function, and delay the full Green function update. To do this, the algorithm
is re-written in terms of the columns and rows

AN
σ,i =

(

colNσ,i − δin(N)

) (

e−2αsn(N) − 1
)

/RN(10)

BN
σ,j = rowN

σ,j(11)

colMσ,i = col1σ,i +
M−1
∑

N=1

AN
σ,iB

N
σ,n(N)(12)

rowM
σ,i = row1

σ,i +
M−1
∑

N=1

AN
σ,n(N)B

N
σ,j(13)
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Furthermore, the row and column information is needed only to calculate the cor-
ressponding AN and BN , and may be discarded afterwards. A similar equation is
used to calculate the diagonal elements of GN

c needed for the calculation of RN .

diagM
σ,i = G1

cσ,ii
+

M−1
∑

N=1

AN
σ,iB

N
σ,j(14)

Together, Eqs. (9)–(14) form a very efficient Green function update. Eqs. (10) and
(11) only require O(N) operations, Eqs. (12) and (13) require only O(N × nb) op-
erations. Of the equations involved in the Green function update, only Eq. (9) has
O(N2) operations; however, they have many FLOPs per memory access.

Note that nb must not be too large. As nb approaches N , Eqs. (12) and (13) will begin
to scale like O(N 2). I.e. the cpu time required to account for the dependences noted
above will eventually excede that required to update the Green’s function, Eq. (9). So,
as nb approaches N , this process is likely to become less efficient. Fortunately, an 1 �
nb � N is sufficient to overcome the caching problem in the Green’s function update.
Furthermore, Eqs. (12) and (13) will always have many more FLOPs than memory
accesses, so this algorithm is expected be superior to the original implementation of
Hirsch and Fye.

0.6.2 Data

Q4 Collected Data Problem(0.5.1) Problem(0.5.1)
source codes yes yes

build information yes yes
runtime information yes yes

total walltime yes no

Table 8: Information collected during Q4 for the computed DCA-QMC problems.
Please see sec[0.2.4] for description. Only the algorithm changed during the fiscal
year. Only one of the benchmark problems was rerun with the enhanced code. The
results of that enhanced run are reported.

0.7 Results

Scientific results of first physical problem The results of this case study con-
tributed to a complete characterization of the effective pairing interaction that leads
to superconductivity in the 2D Hubbard model of cuprate high-Tc superconductors.
This study allowed us to examine the frequency and momentum dependence of the
eigenfunction that corresponds to the leading eigenvalue of the effective pairing in-
teraction in the 2D Hubbard model for a specific set of parameters as a function of
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Identifier problem size(a.u.) processors Q4 Time(h) Weighted Time(h)
101 240 8 2.87 22.96
102 240 8 2.82 22.56
103 240 8 2.78 22.24
104 240 8 2.79 22.32
105 240 16 1.33 21.28
106 240 32 0.64 20.48
107 288 64 0.39 24.96
108 384 64 0.65 41.6
109 480 128 0.64 81.92
110 576 128 0.94 120.32
111 768 256 0.98 250.88
112 864 256 1.17 299.52
113 1056 512 0.70 358.4

1309.44

Table 9: Measured time to compute problem one(0.5.1) on machine(0.5.3) with the
enhanced algorithm(0.6.1).

temperature. The momentum dependence of this eigenfunction was found to vary as
cos(kx)− cos(ky) and its frequency dependence is determined by the spin 1 particle-
hole continuum. Given these results together with the information of additional runs
in different parameter regions, we were able to conclude [2] that the pairing interac-
tion is attractive for electrons located on nearest-neighbor sites in a spin singlet state
and that it is retarded on a time scale set by the antiferromagnetic spin flcutuations.
The strength of the pairing interaction measured by the size of the leading eigenvalue
peaks when the strength of the Coulomb repulsion between electrons is similar to the
width of the electronic band. The pairing strength is also found to increase as holes
are removed from the sytem.

Optimization of Fourier-transform by Kronecker products In our implemen-
tation of the Hirsch-Fye quantum Monte Carlo algorithm, we periodically perform
measurements of two-particle correlation functions. This entails a double Fourier-
transform of the single-particle Green’s function matrix from space-time to reciprocal
space and frequency. In the Q2 version of the code, both Fourier-transforms were
performed simultaneously in a single unitary transform F . With the number of time
slices Nl and the number of spatial sites Nc, F can be represented as an N × N
matrix where N = Nl ∗ Nc. Hence, this Fourier-transformation scaled as O(N 3). In
the optimized version of the code, this combined Fourier-transform F is replaced by
a Kronecker-product, F = kron(A, B). Here, A is a Nl × Nl matrix which trans-
forms from time to frequency, while B is a Nc × Nc matrix which transforms from
real space to reciprocal space. The result is a Fourier-transformation which scales
as O((Nc + Nl) ∗ (Nc ∗ Nl)

2), i.e. much better than the original O((Nc ∗ Nl)
3). The

21



D
R

A
FT

improvement in speed is documented by the reduction in time spent in the subroutine
meas():

Q4:

cpu ,time= 2523.1184966814162

geod ,time= 2.6031148318584201

date ,time= 817.6950566194721

meas ,time= 1694.0317702389382

put ,time= 3.9090832300885268

sumup,time= 1.02522124052484287E-4

Q2:

cpu ,time= 13874.31194784071

geod ,time= 2.6029983185844685

date ,time= 8551.5687524601908

meas ,time= 5199.7460792477796

put ,time= 105.49880338938056

sumup,time= 9.62212379818083718E-5

The runtime improvement from the delayed updating reflects itself in the time spent
in date().

Performance enhancement Table[6] and Table[9] refer to the original and en-
hanced times to compute the dca-qmc problem one. A comparison of the total
weighted runtimes asserts the Joule software effectiveness metric for this application.

Problem System Enhancement

Pairing interaction, 2D Hubbard Model (sec0.5.1) Cray X1E, phoenix.ccs.ornl.gov performance, ∼ 74.03%

Table 10: FY06 Joule performance enhancement for the DCQ-QMC code.
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ENZO: Incite and Novel
Computational Impact on Theory
and Experiment

0.8 Q2 Information

0.8.1 Problems

The universe is homogeneous and isotropic on scales exceeding one billion light years,
but on smaller scales it is clumpy, exhibiting a hierarchy of structures which includes
individual galaxies, groups and clusters of galaxies, and superclusters of galaxies.
Understanding the origin and cosmic evolution of these structures is the goal of cos-
mological structure formation–CSF. It is now understood that CSF is driven by the
gravitational clustering of dark matter, the dominant mass constituent of the uni-
verse. In addition, the rate at which structure develops in the universe depends upon
its expansion rate, which in turn is influenced by dark energy whose existence was
revealed in 1998 by the discovery that the expansion rate is accelerating. The quan-
titative study of CSF is thus a direct route to studying two of the most mysterious
substances in modern physics: dark matter and dark energy.

The part of the universe that astronomers can see is made up of ordinary bary-
onic matter. Thus, in order to make contact with observations, we must simulate
the detailed dynamics and thermodynamics of the cosmic plasma—mostly hydrogen
and helium—under the influence of dark matter and dark energy, as well as ioniz-
ing radiation backgrounds. Such simulations are called hydrodynamic cosmological
simulations, and are the type we consider here. CSF is inherently nonlinear, multidi-
mensional, and involves a broad range of physical processes operating on a range of
length- and time-scales. Large scale numerical simulation is the only means we have
of studying it in any detail.

In this study we will apply the ENZO hydrodynamic cosmology code developed at
UC San Diego to simulate two problems in cosmological structure formation. The
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first is to simulate the distribution and evolution of the diffuse intergalactic plasma
on large scales. The second is to simulate the formation and evolution of galaxies
which condense out of this plasma in the same volume. The two simulations together
will paint a complete picture of the history of baryons in the young universe, as
well as put new constraints on the mass of the dark matter particle. While the
physical equations we solve are the same in both cases, the spatial and temporal
discretizations are quite different, and therefore present two very different challenges
for analysis and optimization. The first experiment, henceforth called the “Unigrid”
experiment, employs a large, uniform 3D Cartesian mesh for discretizing the equations
of hydrodynamic cosmology. The second experiment, henceforth called the “AMR”
experiment, employs structured adaptive mesh refinement (SAMR) to provide higher
spatial and temporal resolution in galaxy-forming regions. While the first presents a
static work load to the computer, the second is highly dynamic and increasing. ENZO
has been designed to operate in both modes, although how efficiently is the subject
of this study.

Figure 3. ENZO simulation of galaxy formation and the intergalactic medium. Left:
Baryons in 80 Mpc survey volume simulated with 1 billion cells and particles on SDSC Blue
Horizon. Right: Zoom in on young galaxies using adaptive mesh refinement (AMR). Runs
similar to these form the baseline runs for this study.

To simulate the structure of the diffuse intergalactic medium, a spatial dynamic range
of 103 per dimension in 3D is a bare minimum, but 104 is ideally needed given the
range of important scales. For reasons analogous to turbulence simulations (uniform
sampling), we prefer to use uniform grids for this application. The current state-of-
the-art using ENZO in uniform grid mode is a 20483 simulation currently running
on NERSC’s Seaborg system under this year’s INCITE award. When completed,
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it will be the largest, most comprehensive simulation of the intergalactic medium
ever carried out. This calculation requires 4 TB of memory, and we estimate it will
consume 1.4 M CPU-hours. While there is nothing to be done about the memory
requirement, we hope that through optimization we can increase ENZO’s execution
rate and thereby reduce the CPU time.

To simulate the formation of collapsed structures like galaxies or galaxy clusters,
a bare minimum is a spatial dynamic range of 104 per dimension, but 105 is really
needed. This would allow, for example, resolving the internal structure of every galaxy
(10 kiloparsecs) simulated within a volume the size surveyed by the Sloan Digital Sky
Survey (1 gigaparsec). Anything less either under-resolves galaxies or under-samples
large scale structure. Thus, 105 dynamic range is a fidelity threshold in cosmological
simulations of galaxy formation and large scale structure. This resolution is only
needed where galaxies form, not everywhere in space, and therefore adaptive mesh
refinement (AMR) methods are ideally suited to achieving this.

The current state-of-the-art is an ENZO AMR simulation with a root grid of size 5123

and 7 levels of refinement by two, for a spatial dynamic range of 512×27 = 6.5×104.
We have found that the primary limitation for successfully running simulations of
this kind is the memory-per-node, with total system memory being of secondary
importance. The reason for this is that AMR places dynamic demands on node
CPU and memory resources despite our careful attention to load balancing. Nodes
with a large amount of shared memory are more forgiving to the occasional memory
requirement spikes that occur. For this reason, clusters with large memory nodes are
vastly more attractive than small memory nodes. For this reason we have chosen
the POWER5 system Bassi at NERSC to carry out our numerical experiments. A
second limitation in carrying out large AMR simulations efficiently is traversing the
grid hierarchy efficiently when the number of grid patches becomes very large. The
above mentioned simulation generates over 350, 000 unique grid patches at all levels
of resolution. We hope to speed this up through analysis and optimization.

Generating Initial Data So far, we have described how the dark matter and
baryonic species are evolved in an expanding universe. Initial conditions are com-
pletely specified by assuming the matter fluctuations are linear in amplitude at the
starting time (redshift), and can be described as a Gaussian random field with a
given power spectrum. Both of these assumptions characterize to a high degree of
accuracy the temperature anisotropies observed in the cosmic microwave background
radiation field as mapped by the Wilkinson Microwave Anisotropy Probe (WMAP).
We literally read our initial conditions from the sky. The cosmological model thus
deduced is well described by a cold dark matter dominated universe with dark matter,
baryon, and dark energy fractions of 0.23, 0.04, and 0.73 times the closure density for
a Hubble constant of 72 km/sec/Mpc. This model is referred to as the ΛCDM con-
cordance model, as it is consistent with all known measurements of cosmic structure
at a variety of epochs.
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Validating the Science The validity of the concordance model parameters and
matter power spectrum is now firmly established observationally; i.e., the inputs to
our simulations are not in serious doubt. The outputs consist of realizations of cosmic
structure formation including baryonic fields which can be compared to observations
at various epochs of cosmic evolution. Since looking out into space corresponds to
looking backward in time, the time history of the observed universe can be directly
compared to the time history of our simulations. These comparisons are both struc-
tural and statistical.

The distribution of intergalactic gas is observationally probed along lines of sight to
distant quasars by means of high resolution absorption spectra. In particular, the so-
called Lyman alpha forest spectra probe the distribution of neutral hydrogen along
path lengths of hundreds of Megaparsecs through the intergalactic medium. There are
many hundreds of such high resolution spectra now available. Our simulations of the
diffuse intergalactic medium are analyzed by creating synthetic absorption spectra to
imaginary quasars at different redshifts. The statistical properties of our synthetic
spectra are compared to the statistical properties of the observed spectra. He have
shown that the two agree for the concordance model parameters for a specific value for
the ultraviolet radiation background intensity and spectral shape ([59]). Our unigrid
experiment will extend the range of path lengths over which the data is compared,
and thereby measure the matter power spectrum on scales below that obtained by
the WMAP satellite.

The distribution of high redshift galaxies is not as well determined as the intergalactic
gas, since the galaxies must be detected in emission, not absorption. They are much
fainter that high redshift quasars, and not as many have been detected. Still, some
information is known about high redshift galaxies from limited surveys, such as their
mass, luminosity, star formation rates, and 2-point correlation function. Our AMR
simulation is being done in anticipation of much larger surveys in the future which
will improve these measurements substantially. We will validate the results of our
simulation by computing 1-point and 2-point statistics of the dark matter and galaxy
distributions and comparing them with available data.

Problem One: Structure of the Intergalactic Medium (Unigrid) We simu-
lated the evolution of a volume of the universe 154 Megaparsecs (≈ 500 Mega-light-
years) on a side assuming the concordance model parameters (Ωm = 0.27, Ωb = 0.044,
ΩΛ = 0.73, h = 0.72, σ8 = 0.9, ns = 1). Initial conditions for dark matter and bary-
onic density and velocity perturbations were generated using the routine EnzoInit

for redshift=60 (approximately 10 million yr after Big Bang (ABB)) and evolved with
ENZO in unigrid mode to redshift 3 (approximately 5 billion years ABB). A total of
10243 dark matter particles were evolved using a force mesh of 10243 cells. The same
mesh was used to evolve the 6 baryonic fluid species concentrations, temperature,
and velocity assuming the ionizing radiation background given by Madau, Haardt &
Rees (2001). The simulation was run on 512 processors of NERSC Bassi.
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Problem Two: High Redshift Galaxies (AMR) The physical design of AMR
baseline calculation was in all respects identical to the unigrid calculation with the
exception of the size of the initial grid and the number of dark matter particles evolved.
Instead of a 10243 uniform grid and 10243 dark matter particles, the initial data was
generated for a 5123 grid and 5123 particles. Whereas in the unigrid calculation the
spatial resolution was fixed, in the AMR run we allowed the mesh to refine locally to a
maximum depth of four levels, where each level is refined by a factor of two relative to
its parent. The cosmological parameters, power spectrum, and physical domain size
were kept the same as before. In addition, the same random seed was used to compute
the Gaussian random field of density fluctuations, which means that the pattern of
fluctuations is identical in both simulations. The reason for doing this is so that we
can compare structures computed at different mass and spatial resolution between the
two simulations. The unigrid simulation will posses better mass and spatial resolution
in the diffuse intergalactic gas, while the AMR simulation will possess 8 times poorer
mass resolution (5123 particles versus 10243 particles) in collapsed objects (galaxies),
but 8 times better spatial resolution (1024 versus 512 × 24).

0.8.2 Algorithm

Equations The hydrodynamical equations for mass, momentum and energy con-
servation in an expanding FRW universe with comoving coordinates are

∂ρb

∂t
+ ~∇ · (ρb~vb) + 3

ȧ

a
ρb = 0,(15)

∂(ρbvb,i)

∂t
+ ~∇ · [(ρbvb,i)~vb] + 5

ȧ

a
ρbvb,i = − 1

a2

∂p

∂xi

− ρb

a2

∂φ

∂xi

,(16)

∂e

∂t
+ ~∇ · (e~vb) + p~∇ · ~vb + 3

ȧ

a
(e + p) = Γ − Ė,(17)

where ρb, p and e are the baryonic density, pressure and specific internal energy
defined in the proper reference frame, ~vb is the comoving peculiar baryonic velocity,
φ is the comoving gravitational potential that includes baryonic plus dark matter
contributions, a = 1/(1 + z) is the cosmological scale factor, and Ė and Γ are the
microphysical cooling and heating rates.

The equations for collisionless dark matter in comoving coordinates are

d~xd

dt
= ~vd,(18)

d~vd

dt
= −2

ȧ

a
~vd −

1

a2
~∇φ.(19)

The baryonic and dark matter components are coupled through Poisson’s equation
for the gravitational potential

∇2φ = 4πGa2(ρ − ρ̄),(20)
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where ρ = ρb + ρd is the total density and ρ̄ = 3H2
0Ω0/(8πGa3) is the proper back-

ground density of the universe.

The cosmological scale factor a(t) is given by Einstein’s equation

da

dt
= H0

[

ΩM (
1

a
− 1) + ΩΛ(a2 − 1) + 1

]1/2

(21)

where ΩM = Ωb+Ωd is the density parameter including both baryonic and dark matter
contributions, ΩΛ = Λ/(3H2

0) is the density parameter attributed to the cosmological
constant Λ, and H0 is the present Hubble constant.

In addition to the usual hydrodynamic equations (15) – (17), we must also solve
equivalent mass conservation equations for the densities ρi of each of the nine separate
atomic and molecular species that we track

∂ρi

∂t
+ ~∇ · (ρi~vb) + 3

ȧ

a
ρi = ±

∑

j

∑

l

kjl(T )ρjρl ±
∑

j

Ijρj,(22)

where the signs of each term on the right–hand–side depend on whether the process
creates or destroys the species ρi. The kjl(T ) are rate coefficients for the two body
reactions and are functions of the gas temperature T . Explicit analytic fits for these
coefficients over a broad range of temperatures, and a general discussion of the relevant
chemical reactions, can be found in Abel et al. (1996). In all, we include 28 rate
coefficients, one for each of the chemical reactions shown in Appendix A. The Ij in
equation (22) are integrals due to photoionizations and photodissociations

Ij =
∫

∞

ν0,j

4πσj(ν)
I(ν)

hν
dν,(23)

where I(ν) = F(ν)/4π is the intensity of the radiation field, F(ν) is the flux, σj(ν)
are the cross-sections for the photoionization and photodissociation processes, and
ν0,j are the frequency thresholds for the respective processes. We note that the
nine equations represented by (22) are not all independent. The baryonic matter is
composed of hydrogen and helium with a fixed primordial hydrogen mass fraction of
fH . Hence we have the following three conservation equations

hydrogen nuclei: ρH + ρH+ + ρH− + ρH+
2

+ ρH2 = ρb fH ,(24)

helium nuclei: ρHe + ρHe+ + ρHe++ = ρb (1 − fH),(25)

charge conservation: ρH+ − ρH− +
1

2
ρH+

2
+

1

4
ρHe+ +

1

2
ρHe++ = mH ne,(26)

where ne is the number density of free electrons and mH the proton mass.

To complete the set of equations (15) – (17), we must also specify the equation of
state appropriate for an ideal gas

e =
p

γ − 1
=

kBT

γ − 1

9
∑

i=1

ni,(27)
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where γ = 5/3 is the ratio of specific heats for the baryonic matter, kB is boltzmann’s
constant, T is the gas temperature, and ni are the number densities for each of the
different species. We also need to provide the necessary cooling Ė and heating Γ
functions to the right-hand-side of equation (17)

Ė = ĖComp +
∑

j

∑

l

ėjl(T )ρjρl,(28)

Γ =
∑

j

Jj(ν)ρj,(29)

where ĖComp is the Compton cooling (or heating) due to interactions of free electrons
with the cosmic microwave background radiation, and ėjl(T ) are the cooling rates
from two-body interactions between species j and l. The Jj(ν) are integrals due to
photoionizing and photodissociating heating

Jj(ν) =
∫

∞

ν0,j

4πσj(ν)I(ν)
(hν − hν0,j)

hν
dν.(30)

We include a total of fourteen processes in the cooling function and three processes
for heating. The physical mechanisms and mathematical expressions for each process
are given in [49].

Discussion Matter in the universe is of two basic types: ordinary “baryonic” mat-
ter composed of nucleons and electrons out of which stars and galaxies are made, and
non-baryonic “dark” matter of unknown composition, which is nevertheless known
to be the dominant mass constituent in the universe on scales of galaxies and larger.
ENZO self-consistently simulates both components, which evolve according to differ-
ent physical laws and therefore require different numerical algorithms. The equations
solved by ENZO follow.

Baryonic matter is evolved using a finite volume discretization of the Euler equations
of gas dynamics cast in a frame which expands with the universe including energy
source and sink terms due radiative heating and cooling processes, as well as changes
in ionization state of the gas [49]. We use the Piecewise Parabolic Method (PPM),
which is a higher-order Godunov scheme developed by Colella and Woodward for ideal
gas dynamics calculations. The species abundances for H, H+, He, He+, He++, and
e- are solved out of equilibrium by integrating the rate equations including radia-
tive and collisional processes. Radiation fields are modeled as evolving but spatially
homogeneous backgrounds using published prescriptions.

Dark matter is assumed to behave as a collisionless phase fluid, obeying the Vlasov-
Poisson equation. Its evolution is solved using particle-mesh algorithms for collision-
less N-body dynamics [58]. In particular, we use the spatially second order-accurate
Cloud-in-Cell (CIC) formulation, together with leapfrog time integration, which is
formally second order-accurate in time. Dark matter and baryonic matter interact
only through their self-consistent gravitational field. The gravitational potential is
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computed by solving the Poisson equation on the uniform or adaptive grid hierarchy
using Fast Fourier transform and multigrid techniques. In generic terms, ENZO is
a 3D hybrid code consisting of a multi-species hydrodynamic solver for the baryons
coupled to a particle-mesh solver for the dark matter via a Poisson solver.

Matter evolution is computed in a cubic domain of length L = a(t)X, where X is the
domain size in comoving coordinates, and a(t) is the homogenous and isotropic scale
factor of the universe which is an analytic or numerical solution of the Friedmann
equation, a first order ODE. For sufficiently large L compared to the structures of
interest, any chunk of the universe is statistically equivalent to any other, justifying
the use of periodic boundary conditions. The speed of Fast Fourier Transform algo-
rithms and the fact that they are ideally suited to periodic problems make them the
Poisson solver of choice given the large grids employed—10243 or larger.

CSF simulations require very large grids and particle numbers due to two competing
demands: large boxes are needed for a fair statistical sample of the universe; and high
mass and spatial resolutions are needed to adequately resolve the scale lengths of the
structures which form. For example, in order to adequately simulate the internal
structure of galaxies and simultaneously describe their large scale distribution in
space (large scale structure), a dynamic range of 104 per spatial dimension and 109

in mass is needed at a minimum, as discussed above.

The Enzo Code The need for higher resolution than afforded by uniform grids
motivated the development of ENZO. ENZO uses structured adaptive mesh refine-
ment (SAMR, [50, 52]) to achieve high resolution in gravitational condensations. The
central idea behind SAMR is simple to describe but difficult to implement efficiently
on parallel computers. While solving the desired set of equations on a coarse uniform
grid, monitor the quality of the solution; when necessary, add an additional, finer
mesh over the region that requires enhanced resolution. This finer (child) mesh ob-
tains its boundary conditions from the coarser (parent) grid or from other neighboring
(sibling) grids with the same mesh spacing. The finer grid is also used to improve
the solution on its parent. As the evolution continues, it may be necessary to move,
resize or even remove the finer mesh. Even finer meshes may be required, producing
a tree structure that can continue to any depth.

To advance our system of coupled equations in time on this grid hierarchy, we use a
recursive algorithm. The EvolveLevel routine is passed the level of the hierarchy it
is to work on and the new time. Its job is to march the grids on that level from the
old time to the new time:
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EvolveLevel(level, ParentTime)

begin

SetBoundaryValues(all grids)

while (Time < ParentTime)

begin

dt = ComputeTimeStep(all grids)

PrepareDensityField(all grids, dt)

SolveHydroEquations(all grids, dt)

SolveRateEquations(all grids, dt)

SolveRadiativeCooling(all grids, dt)

Time += dt

SetBoundaryValues(all grids)

EvolveLevel(level+1, Time)

RebuildHierarchy(level+1)

end

end

Figure 4. ENZO AMR algorithm

Inside the loop which advances the grids on this level, there is a recursive call so that
all the levels above (with finer subgrids) are advanced as well. The resulting order of
timesteps is like the multigrid W-cycle.

Before we update the hyperbolic gas dynamics equations and solve the elliptic Pois-
son equation, we must set the boundary conditions on the grids. This is done by
first interpolating from a grid’s parent and thing copying from sibling grids, where
available. Once the boundary values have been set, we solve the Poisson equation
using the procedure PrepareDensityField and evolve the hydrodynamic field equa-
tions using procedure SolveHydroEquations. The multispecies kinetic equations are
integrated by procedure SolveRateEquations, followed by an update to the gas en-
ergy equation due to radiative cooling by procedure SolveRadiativeCooling. The
final task of the EvolveLevel routine is to modify the grid hierarchy to the changing
solution. This is accomplished via the RebuildHierarchy procedure, which takes a
level as an argument and modifies the grids on that level and all higher levels. This
involves three steps: First, a refinement test is applied to the parent grids of the
current level to determine which cells need to be refined. Second, rectangular regions
are chosen which cover all of the refined regions, while attempting to minimize the
number of unnecessarily refined points. Third, the new grids are created and their
values are copied from the old grids (which are deleted) or interpolated from parent
grids. This process is repeated on the next refined level until the grid hierarchy has
been entirely rebuilt.
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0.8.3 Machine

Please refer to the webpage http://web-dev.nersc.gov/nusers/resources/bassi/.

0.8.4 Data

Q2 Collected Data Problem One(0.8.1) Problem Two(0.8.1)
Source codes yes yes

Build information yes yes
Runtime information yes yes

Total walltime yes yes

Table 11: Information collected during Q2 for the computed Enzo problems on ma-
chine(0.8.3). Please see sec[0.2.4] for description.

Data and Analysis: Problem One(unigrid) The simulation proceeded in two steps
because we had to restart the job. The table below summarizes the two runs, referred
to as UB 1 and UB 2.

Run Timesteps Redshifts Wall clock (sec) CPU-hrs
UB 1 1 to 569 60 to 10 24889 2881.47
UB 2 565 to 1806 10 to 3 61497 7015.82

Table 1. Summary of the unigrid baseline runs.

Figures 5 and 6 below show the accumulated wall-clock-time versus timestep broken
down by major code regions, as well as the total wall-clock time, for runs UB 1 and
UB 2. The function of the major code regions is summarized in Table 2. A unigrid
run in ENZO is treated as an AMR run with no levels of refinement. This means
the algorithm is as given in Figure 4, but there is no recursion. Also, the fast sibling
neighbor search in boundary update 1 is omitted. Roughly 50% of this is for the
hydrodynamic update of the baryonic fields. The next largest is the radiative cooling
calculation, which is subcycled relative to the hydrodynamic timestep. The third
most costly step is a boundary update step which exchanges ghost zone information
and moves dark matter particles.
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Code Region Function Routines Called Comments

Boundary
update 1*

Collects ghost
zone data for
grid patches
and moves
dark matter
particles

SetBoundaryConditions() calls
grid::SetExternalBoundaryValues()

grid::InterpolateBoundaryFromParent()

grid::CheckForOverlap()

FastSiblingLocatorInitialize()

grid::FastSiblingLocatorAddGrid()

grid::FastSiblingLocatorFindSiblings()

grid::FastSiblingLocatorFinalize()

First
occurrence in
Figure 4, also
does fast
neighbor
search

Self-gravity* Assigns mass
to mesh, solves
Poisson
equation,
calculates
accelerations

PrepareDensityField() calls
DepositParticleMassField()

PrepareGravitatingMassField()

grid::CheckForOverlap()

grid::SolveForPotential()

grid::CopyPotentialToBaryonField()

grid::ComputeAccelerationField()

grid::InterpolateAccelerations()

FFT used for
unigrid and
AMR root
grid; multigrid
used for
subgrids

Hydrodynamics Solves
multispecies
Euler
equations

grid::SolveHydroEquations() Method: PPM

Rate equations Integrates rate
equations for
primordial gas
chemistry

grid::SolveRateEquations() Method: BDF
(Anninos et al.
1997)
Subcycled.

Radiative
cooling

Updates
energy
equation with
radiative
heating and
cooling

grid::SolveRadiativeCooling() Subcycled.

Boundary
update 2*

Collects ghost
zone data for
grid patches
and moves
dark matter
particles

SetBoundaryConditions() calls
grid::SetExternalBoundaryValues()

grid::InterpolateBoundaryFromParent()

grid::CheckForOverlap()

Second
occurrence in
Figure 4

Rebuild
hierarchy*

Controls the
AMR grid
hierarchy

RebuildHierarchy()

Total Sum of the
above plus
time spent
doing I/O

Table 2. Description of code regions instrumented in ENZO. A region with an asterisk(*)
invokes message-passing.
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Figure 5. Cumulative wall-clock time versus timestep number for unigrid baseline run
UB 1 broken down according to major code regions.
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Figure 6. Cumulative wall-clock time versus timestep number for unigrid baseline run
UB 2 broken down according to major code regions.

Figures 7 and 8 show the wall-clock time per timestep broken down by code region
for runs UB 1 and UB 2. Except for I/O which causes spikes in the total time, the
wall-clock time is roughly constant with timestep after an initial transient between
timesteps 70-100. The origin of this transient is unknown. It is also not under-
stood what causes the fluctuations in the timing curves for boundary update 2,
rate equations, and radiative cooling. The curves for the gas and dark matter
dynamics do not show these oscillations. Looking at Figure 7, we see that radiative
cooling roughly doubles in cost from time step 550 to 1100, thereafter declining. This
is probably physical, as the gas begins to be ionized at timestep 291 and becomes
nearly fully ionized at timestep 1100. At maximum, the radiative cooling calculation
accounts for (8 sec./45 sec) ≈ 15% of the cost of the calculation. Hydrodynamics

and radiative cooling account for (30 sec/45 sec) ≈ 66% of the total run time.
Self-gravity accounts for only about (3 sec/45 sec) ≈ 7% of the total run time.
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Figure 7. Wall-clock time versus timestep number for unigrid baseline run UB 1 broken
down according to major code regions (Table 2). Spikes in total time correspond to I/O
events.
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Figure 8. Wall-clock time versus timestep number for unigrid baseline run UB 2 broken
down according to major code regions (Table 2). Spikes in total time correspond to I/O
events.

Figure 9 shows the CPU time per processor for baseline run UB 2 (UB 1 is similar, and
not shown here, but available on the website http://jbpc.ucsd.edu/ jbordner/

nersc baseline/). It would appear that one processor per node is doing about 9%
more work than the other seven, but otherwise the workload is roughly uniform across
processors.
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Figure 9. CPU time per processor for run UB 2.

Data and Analysis: Problem Two(amr) The computational consequences of using
AMR are many. First, we use AMR in CSF to refine regions of the domain undergoing
gravitational collapse, which increase in number and complexity as the simulation
evolves. Thus both the memory and CPU requirements grow dramatically from the
start to the end of the calculation (Fig. 11). While the total number of dark matter
particles remains fixed, they are distributed among a growing number of refined grid
patches as time goes on. A particle is assigned to the finest resolution grid patch
which contains it. The AMR baseline calculation generates 26, 000 grids by the end
of the calculation at all levels of resolution (Fig. 10). This is to be compared with
512 grids for the statically decomposed base grid at the start of the calculation. The
state data for the baryonic fields grows with the number of grids, and therefore is
not a constant. Since the number of grids generated greatly exceeds the number of
assigned processors, each processor advances on average 26, 000/512 = 51 grids by
the end of the calculation.

Second, the work load is not uniformly distributed. Gravitational clustering produces
some regions which have more matter concentrated in them than others. This will
translate into more grids and particles in some processors than others. We use a
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simple load balancing scheme to redistribute the work load, but the load balancing
is not perfect. Moreover, dynamic load balancing is achieved by messaging entire
grids with their state data to under-loaded processors, increasing the communication
overhead.

Third, we use hierarchical timestepping, which means that a grid at level L is updated
roughly 2L times as frequently as the base grid. The work per processor per root grid
timestep is therefore

W =
4

∑

L=0

(N cellL × Wcell × 2L + N partL × Wpart × 2L),

where N cellL and N partL are the number of mesh cells and dark matter particles
at level L, Wcell and Wpart is the computational work to update one baryonic cell’s
density, temperature, velocity, and species concentrations, and dark matter particle’s
position and velocity, respectively.

Fourth, as particles move through space, they are passed from one grid to another
using message passing. In addition, each grid is surrounded by several rows of ghost
zones which store boundary values interpolated from parent grids, or copied from
sibling grids. These boundary updates must be done before every update step on
every level of the hierarchy. They involve a neighbor search in order to determine
which grids are contributing boundary data, and finally a message passing step to
actually gather the data. In the plots below, the time for all these operations are
collected under the rubric boundary update 1, 2.

Finally, the solution of the Poisson equation is more complicated than in the unigrid
case. As in the unigrid case, once mass is assigned to the root grid, the Poisson
equation is solved using 3D Fast Fourier Transforms assuming periodic boundary
conditions. To calculate the potential within a subgrid, we first assign the particle
mass to mesh, add in the baryon mass which already defined on the mesh, and
then solve the Poisson equation with isolating boundary conditions using multigrid
relaxation where the potential boundary values interpolated from parent grids, or
copied from adjacent sibling grids. Gathering the boundary data and solving the
Poisson equation iteratively on each subgrid increases the cost of the Poisson solve
dramatically as the number of grids grows.

Processors Timesteps Redshifts Q2 Time(s) Weighted Time(h)
512 1 to 153 60 to 6.4 14130 2010

Table 3. Summary of the AMR baseline run.

We now evaluate the relative cost of these AMR-related steps. Table 3 summarizes
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our AMR baseline run AMR FAST. It ran for a total of 14130 wall-clock seconds on
512 processors (64 nodes) of NERSC bassi. Of that, 12926 was spent in computation,
the remainder (1204 s) in start-up and clean-up.
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Figure 10. Number of grid patches versus root grid timestep in the AMR FAST baseline
run.

Figure 11 shows the accumulated wall-clock time for run AMR FAST, broken down by
code region. The accumulated time is roughly linear in the number of timesteps during
the early unigrid phase, but skyrockets once mesh refinement begins. Figure 12 shows
the same data, but the vertical axis is log-scaled. Table 4 shows the accumulated time
at the end of the calculation, broken down according to code region, and their percent
contribution to the total cost. The largest item in Table 4 is “other” at 33%, which
is time spent on things other than computation. We believe this time is dominated
by MPI barrier synchronization. If this is the case, then this is an obvious area for
optimization.
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Figure 11. Accumulated wall-clock time for run AMR FAST, broken down by code region.
Accumulated time is roughly linear in the numberof timesteps during the early unigrid
phase, but skyrockets once mesh refinement becomes significant at timestep 104.

Region Time (s) Percentage of total

Boundary update 1 589 4.6
Self gravity 128 1
Hydrodynamics 620 4.8
Rate equations 2282 17.6
Radiative cooling 2155 16.7
Boundary update 2 2853 22.1
Rebuild hierarchy 30 0.2
Other 4269 33

Total 12926 100

Table 4. Breakdown of time spent in various code regions for AMR FAST baseline.

Of the remaining 67%, the most time-consuming physics calculations are rate equations

and radiative cooling, which together account for 34.3% of total. Prior to the on-
set of mesh refinement (timestep 88), hydrodynamics dominates the cost of the physics
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portion of the calculation, just as in the unigrid baseline. However, by the end of
the calculation, hydrodynamics accounts for only 4.8% of the total runtime. The sig-
nificant thing to notice is that the cost of rate equations and radiative cooling

increases much faster than the hydrodynamics cost after mesh refinement begins, even
though the number of cells to be updated is the same. A possible explanation for the
disproportionate time spent in these routines is that the multispecies chemistry and
cooling, which is solved out of equilibrium using a subcycling technique, is subcycling
more and more as the mesh is refined. This is another area where optimization might
be needed.
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Figure 12. Same as Fig. 11, but log(accumulated wall-clock time).

Figure 12 shows the time spent in the various code regions as a function to root grid
timestep. The jump in cost for procedure “Rebuild Hierarchy” at timestep 104 signals
the onset of significant mesh refinement. At first, there are only the 512 root grid
tiles–one per processor–but by timestep 153 there are nearly 26,000 at four levels of
resolution. The cost to advance the root grid by one timestep remains is dominated
by hydrodynamics until timestep 104, when it is overtaken by boundary update 2,
rate equations and radiative cooling. Together, they account for about 56%
of the total cost. Routines hydrodynamics, boundary update 1, and self-gravity

together account for only about 10% of the total cost. Rebuilding the AMR grid
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hierarchy is a negligible cost, at about 0.2%.
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Figure 13. Same as Fig. 12, but log(wall-clock time per timestep). The jump in the cost
of Rebuild Hierarchy at timestep 104 indicates the onset of significant mesh refinement.
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Figure 14. CPU time per processor for run AMR FAST.

Figure 14 shows the total CPU time for run AMR FAST as a function of processor.
There is considerably more spread between the largest and smallest time compared
with the unigrid run (5200/3200)=1.63 versus (58000/48000)=1.21, which may be
due to load imbalances.

Summary of Communication Costs Finally, in Table 5, we summarize the com-
munications costs for our baseline runs. We see that for the unigrid runs communi-
cations accounts for about 12% of the total cost of the run. The number is higher
for the AMR baseline run. Communication becomes a larger and growing fraction of
the total cost once mesh refinement is well advanced. The dominant contributions to
this cost are boundary updates and self-gravity.
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UB 1 UB 2 AMR FAST
Boundary update 1 40 553 64
Set time step 0 0 2
Self-gravity 607 1915 52
Boundary update 2 2557 3743 2839
update from finer grids 1 2 5
rebuild hierarchy 0 0 8
Total MPI time 3427 6898 3684
Percent of total time 13.8% 11.2% 28.5%

Table 5. Breakdown of communication costs for baseline runs.

Discussion and Opportunities for Future Optimizations Based on these re-
sults, we now discuss where optimization efforts might be most profitable. With
regard to unigrid simulations, nearly 60% of the time is spent in three baryonic
physics routines: hydrodynamics, rate equations and radiative cooling. Fur-
ther analysis of where the time is spent in hydrodynamics may identify regions that
can be sped up or replaced with faster approximations. We know, for example, a
lot of time is spent in the iterative Riemann solver used by the PPM algorithm. A
faster, approximate Riemann solver might be profitable. We might also save a sub-
stantial amount of time if we replaced our iterative non-equilibrium species solver
routine with a direct solution of the equilibrium ionization equations–a valid approx-
imation for the state of the intergalactic medium after reionization, and one that is
already implemented in ENZO. We also subcycle the energy equation in code region
radiative cooling. We might find some savings there through further analysis. Of
the remaining 40%, we note that 19% is spent in the boundary update routines. It
may be possible to eliminate one of these calls per timestep, since it would seem to
be redundant in the case of unigrid runs. Another source of inefficiency is the ∼ 20%
load imbalance among processors (Fig. 6). The source of this imbalance is unclear,
but might have to do with additional functions assigned to the master processor in
each node. We request assistance from NERSC specialists on this machine-specific
issue.

The playing field is more complex in the case of the AMR baseline run. In addition
to the above mentioned optimizations, improved load balancing would speed things
up significantly since there is a 60% disparity between fastest and slowest processor
(Fig. 11). Some of this scatter surely has to do with additional work being done
by the master processor on each node, but the majority is probably due to true
load imbalances arising from dynamic mesh refinement. As noted above, we are
puzzled by the growth of the cost of regions rate equations and radiative cooling

relative to hydrodynamics as mesh refinement proceeds. We need to investigate
whether the number of subcycles is growing and becoming too onerous; if so, switching
to the equilibrium solver might be a substantial win. With 22% of the runtime,
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boundary update 2 should also be scrutinized for potential improvement. While
these calls are absolutely essential to the correctness of the algorithm, we might find
upon analysis of the memory access patterns that certain optimizations are possible,
including buffering, pipelining, and cache blocking. Finally, we need to investigate
what is responsible for the 30% of the runtime hidden within “other”. If it is mostly
due to synchronization barriers, then this would be revealed with message-passing
graphing packages like Jumpshot. While we could do this kind of analysis ourselves,
we would greatly appreciate getting assistance from someone at NERSC expert in
this kind of analysis to save us time.

0.9 Q4 Information

Given the compressed timeframe of this project (6 months), we chose to focus on opti-
mizing the AMR simulation (AMR FAST) as it was both forward–looking in terms of
where our science is going, and also it presented more opportunities for optimization.
As noted above (cf. Table 4), three routines come to dominate the cost of a timestep at
the end of our baseline run: boundary update 2, rate equations, and radiative

cooling. As shown in Figure 13, the cost per timestep for these routines increases
between 2 and 3 orders of magnitude while the cost for hydrodynamics increases only
by a factor of three. Since the cost of hydrodynamics scales with the number of active
zones, we see that the cost of boundary update 2, rate equations, and radiative

cooling is increasing disproportionately with the number of zones.

The cause for the rapid increase in rate equations and radiative cooling is that
both these routines are subcycling more and more as time goes on.

The problems and target machine remained unchanged throughout the fiscal year in
this study. Please see section[0.8] for details. The algorithm was enhanced through a
physical reduction in complexity. A description now follows.

0.9.1 Algorithm

Referring to the pseudocode0.11 , we see that we iterate these two routines itrate

and itcool times per grid per level, up to a maximum of 10,000 times depending
upon the ratio of the hydrodynamical time to the chemical timescale ∆thydro/∆tchem.
This ratio can become very large in the dense gas produced by gravitational collapse
where recombination times are short. Fig. 15 shows the distribution of zones and
zone-iterations versus processor for last timestep of AMR FAST. The red symbols are
the zones. We can see that the zone count is reasonably well load balanced. The zone-
iterations for the rate equations and radiative cooling steps are shown by blue and
green symbols, respectively. We see a load imbalance has developed, particularly in
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rate equations. Averaging over all grids and levels, the effective number of iterations
for the last three root grid timesteps of AMR FAST are given in Table 6. We see the
iteration count for solving the rate equations is climbing rapidly, as suspected.

Timestep 〈itrate〉 〈itcool〉
151 7.99 1.22
152 9.66 1.23
153 10.77 1.26

Table 6. Effective number of iterations for the last 3 timesteps of AMR FAST.
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Figure 15. Distribution of zone-iterations versus processor for last timestep of AMR FAST.
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Figure 16. Accumulated wall-clock time for run AMR FINAL, broken down by code
region. This is to be compared with Fig. 11.
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Figure 17. Same as Fig. 16, but log scaled. This is to be compared with Fig. 12.

Obviously, one could attempt to load balance the rate equations step. Even better,
however, is to eliminate the iterations altogether by assuming the species concentra-
tions are in ionization equilibrium. While this is a poor approximation in the low
density gas, it is a very good approximation in high density regions–the very regions
that are giving us a large iteration count. The reason is that the recombination time
is very short in high density gas, and thus ionization equilibrium is easily established.

With this motivation, we have rerun the AMR FAST baseline calculation substituting
an equilibrium ionization and radiative cooling algorithm (hereafter GADGET cool-
ing) for our nonequilibrium solver (hereafter NONEQ cooling). The GADGET cooling
algorithm solves for the equilibrium abundance of our primary chemical species and
then evaluates the cooling rates using them. The algorithm is described in detail
in [60]. The structure[0.12] shows the pseudocode for GADGET cooling. Far fewer
iterations are required to solve the system of six nonlinear equations to find the equi-
librium concentrations than to step the nonequilibrium ionization equations along in
the high density gas. We refer to this new calculation as AMR FINAL.
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0.9.2 Data

Q4 Collected Data Problem(0.8.1) Problem(0.8.1)
source codes yes yes

build information yes yes
runtime information yes yes

total walltime no yes

Table 12: Information collected during Q4 for the computed Enzo problems. Please
see sec[0.2.4] for description. Only the algorithm changed during the fiscal year.
Further, only one of the benchmark problems was rerun with the enhanced code,
problem two. The results of that enhanced run are reported.

Figs. 16 and 17 show the cumulative wall-clock time for AMR FINAL broken down
according to code region; i.e., identical to Figs. 11 and 12, respectively.

Region Time (s) Percentage of total

Boundary update 1 621 7.1
Self gravity 629 7.2
Hydrodynamics 685 7.9
Rate equations 26 0.3
Radiative cooling 171 2
Boundary update 2 702 8.1
Rebuild hierarchy 193 2.2
Other 5681 65.2

Total 8708 100

Table 7. Breakdown of time spent in various code regions for AMR FINAL.

Table 7 shows the accumulated time at the end of the calculation, broken down
according to code region, and their percent contribution to the total cost. The total
run time is TQ4 = 8708s.

0.10 Results

The total run time for AMR FINAL is TQ4 = 8708s, down from TQ2 = 12926s.
The ratio TQ4/TQ2=0.674, greater than the desired result ≤ 0.5. At face value,
we are not in compliance. However, a careful look at the components of the total
reveal that things are somewhat better. For reasons unknown to us, the cost of
the gravity calculation increased fivefold in AMR FINAL relative to AMR FAST.
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This is not related to mesh refinement as can be seen by comparing the cost per
timestep in Fig. 18 for AMR FINAL with same in Fig. 13 for AMR FAST. Before
mesh refinement begins at timestep 102–during the unigrid phase of the calculation–
we see that self-gravity is uniformly more costly in AMR FINAL per timestep
by about a factor of five. We have checked code, input parameters, compiler flags,
and environment variables, and find them the same for both runs. We suspect but
don’t know for certain that something changed on Bassi to cause this increase. To
check this, we reran AMR FAST using the executable we used for AMR FINAL, but
engaging the NONEQ model. This run we will refer to as AMR RERUN. To be
clear, the only difference between AMR RERUN and AMR FINAL is the value of
one parameter flag which switches between NONEQ cooling and GADGET cooling.
The executable was the same in both cases. The results are shown graphically in
Figures 19 and 20, and Table 8.
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Figure 18. Cost per timestep for different code regions for run AMR FINAL. This is to
be compared with Fig. 13.
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Figure 20. Same as Fig. 19, but log scaled.

Region Time (s) Percentage of total

Boundary update 1 749 2.9
Self gravity 561 2.2
Hydrodynamics 787 3
Rate equations 5309 20.5
Radiative cooling 4946 19.1
Boundary update 2 7518 29
Rebuild hierarchy 151 0.6
Other 5857 22.7

Total 25879 100

Table 8. Breakdown of cumulative time spent in various code regions for calculation
AMR RERUN to timestep 153.

Now we see quite a different story. The ratio TGADGET /TNONEQ=8708/25879=0.34–
almost a factor 3 speedup. The run using equilibrium cooling is three times as fast as
the run using the nonequilibrium model. This happy result is due to the fact that our
rerun of the baseline calculation took roughly twice as long as the Q2 basline: 25879
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s for AMR RERUN versus 12926 s for AMR FAST. Table 9 compares these two runs
side by side. We see that virtually every part of the calculation is taking longer in
AMR RERUN than in AMR FAST. Many code regions are taking more than twice
as long, not just self-gravity. We suspect something fundamental has changed
on Bassi between Q2 and Q4, perhaps the compiler. It is also possible something
has changed in ENZO, however, the factor of three speedup is real since we used the
same executable. Technically, we failed to meet the 2× speedup as strictly defined,
but we have achieved a 3× speedup if we compare the two algorithms at the same
instant in time. We note that the speedup will only increase the longer we integrate.
The baseline was terminated at timestep 153 for budgetary not scientific reasons. A
real application would integrate for a 1000 timesteps or more. We expect that the
equilibrium model would be at least 10 times faster than the nonequilibrium model for
a full science run. The incorporation of the equilibrium model into ENZO will enable
new, previously unfeasible calculations to be carried out. From this standpoint, the
OSCAR Joule Metric exercise has been useful for advancing our science capability.

Region AMR RERUN AMR FAST

Boundary update 1 749 589
Self gravity 561 128
Hydrodynamics 787 620
Rate equations 5309 2282
Radiative cooling 4946 2155
Boundary update 2 7518 2853
Rebuild hierarchy 151 30
Other 5857 4269

Total 25879 12926

Table 9. Cumulative times for AMR RERUN and AMR FAST through timestep 153.

Performance enhancement A comparison of the total weighted runtimes asserts
the Joule software effectiveness metric for this application. The results from running
the original algorithm may be referenced in Figure[19] and Table[8]. The enhanced
results come from running AMR FINAL and may be referenced in Figure[16] and
Table[7].

Problem System Enhancement

High redshift galaxies, amr (sec0.8.1) IBM Power5, bassi.nersc.gov performance, ∼ 66.35%

Table 13: FY06 Joule performance enhancement for the Enzo code. A metric of
primary interest is wall time/processor/physical timestep.
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0.11 Algorithm for nonequilibrium ionization and

radiative cooling (NONEQ)

main()

EvolveHierarchy()

for level in hierarchy(W-cycle)

EvolveLevel(level)
...

for grid in level
...

SolveRateEquations(grid)

solve rate(grid)

for k along grid z-axis
for j along grid y-axis

for iter = 1 to itrate(grid,j,k)
for i along grid x-axis

solve rate equations for grid zone (i,j,k)
end for i

end for iter

end for j

end for k

SolveRadiativeCooling(grid)

multi rate(grid)

for k along grid z-axis
for j along grid y-axis

for iter = 1 to itcool(grid,j,k)

cool1d multi(grid,j,k)
for i along grid x-axis

solve radiative cooling equations for grid zone (i,j,k)
end for i

end for iter

end for j

end for k

...
end for grid in level

...

end for level in hierarchy 56
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0.12 Algorithm for equilibrium ionization and ra-

diative cooling (GADGET)

main()

EvolveHierarchy()

for level in hierarchy(W-cycle)

EvolveLevel(level)
...

for grid in level
...

SolveRadiativeCooling(grid)

GadgetCalculateCooling(grid)

for k along grid z-axis
for j along grid y-axis

for i along grid x-axis

GadgetEquilibriumCooling(grid,i,j,k)
for iter = 1 to itgadget(grid,i,j,k)

solve equilibrium cooling equations for grid zone (i,j,k)
end for iter

end for i

end for j

end for k

...
end for grid in level

...

end for level in hierarchy

Fig-

ure 17. Algorithm for equilibrium ionization and radiative cooling (GADGET).
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MADNESS

0.13 Q2 Information

MADNESS is a general framework for scientific simulation that provides new capabil-
ities for rapid computation with guaranteed precision enabled by new mathematical
tools for multiresolution analysis in multiwavelet bases and efficient computation in
many-dimensions through the use of separated representations. It is under very ac-
tive development as part of the DOE, OBES SciDAC project Advanced Methods in
Electronic Structure (R.J. Harrison, P.I.) and the Scientific Application Partnership
(SAP) Advanced Mathematics for Electronic Structure (G.I. Fann, PI), in close col-
laboration with Prof. G. Beylkin, U. Colorado. After successful prototyping in both
Python and C++, a new production version of MADNESS is now being prepared for
emerging petascale architectures anticipated to have 100,000+ processors.

While MADNESS is a general purpose framework with emerging applications in fu-
sion, climate science, nuclear structure, accelerator dynamics, and image processing
being explored, it is still primarily motivated by application to chemical problems,
and to this end has also been incorporated into the premier DOE parallel chemistry
code, NWChem. The protoype code successfully demonstrated for a wide range of
chemical computations (ground and excited state energies, Hartree-Fock and density
functional theory, analytic derivatives w.r.t. atomic positions, and optical rotation
dispersion) the controlled elimination of basis set error while maintaining fast com-
putation.

The major project software goals for this year are to complete the production version
of MADNESS and to tune it for efficient and reliable exploitation of the nations
largest supercomputers. Using this framework we shall commence construction of
a very wide range of tools for chemistry and material science. We anticipate the
following outcomes:

• a two-fold speed-up of the current most expensive step in the new production
code -the projection of the nuclear potential into the wavelet basis.

• a ten-fold increase in the size of systems that may be studied with density func-
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tional theory compared to the prototype Python code. Such an increase will
constitute an entirely new scientific capability by enabling reliable simulation
of huge, all-electron molecules free of basis set error. This will require applica-
tion to a system with at least 1000 atoms and 6,000 electrons. To make this
benchmark well defined, we propose the study of both a fragment of DNA and
a section of a carbon nano-tube.

Problem: Copper Lattice The test input used to assess the current state of
MADNESS for the Q2 baseline describes the positions of copper atoms in a lattice
and computes the times to project the nuclear potential into the wavelet basis (labeled
construction), to transform to and from the wavelet basis (compression and recon-
struction, respectively) and to add the potential to a copy of itself (nearly identical
in cost to that of compression).

0.13.1 Algorithm

The new computational tools promise fast (O(N) or O(NlogN)) computation with
guaranteed precision in three, six, and higher dimensions. The combination of mul-
tiresolution and separation representations enable fast application of many physically
important integral operators which enables direct solution of integral equations rather
than poorly conditioned differential equations that involve operators of high-norm
with associated loss of precision.
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Figure 21. A molecular orbital of (C6H6)2 demonstrating the automatic adaptive refine-
ment.

In addition to low algorithmic operation count and efficient sequential and parallel
execution, scientific applications enjoy a very high level of composition in Python and
C++ that is ultimately intended to be akin to that of Maple or MATLAB.

The details behind the Q2 algorithms that were benchmarked and the subsequent
enhancements in Q4 are described in section[0.14.1].

0.13.2 Machine

The Cray XT3 (http://info.nccs.gov/resources/jaguar) at the National Center for
Computational Sciences (NCCS) is being utilized for the MADNESS study.
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0.13.3 Data

Q2 Collected Data Problem One(0.13)
Source codes yes

Build information yes
Runtime information yes

Total walltime yes

Table 14: Information collected during Q2 for the computed MADNESS problem.
Please see sec[0.2.4] for description.

The capabilities of the production code are not yet complete and essential operations
for scientific applications are still being developed (notably the differentiation and
integral convolution operators). Thus, the initial performance benchmarking is of
existing capabilities, whereas the final goals include both performance enhancements
and demonstration of new scientific capabilities.

MADNESS Copper Lattice Exercises
Oper::PEs 256 512 1024 2048 4096

construct f 8210.01 4486.95 2586.41 1562.33 982.30
compress f 2.95 1.61 .93 .56 .35

reconstruct f 2.94 1.59 .92 .56 .35
construct g 8209.58 4486.70 2586.47 1562.48 982.66
add f + g 6.30 3.43 1.97 1.20 .75

Total Time [s] 16432.20 8980.5 5176.84 3127.21 1966.47

Table 15: The Q2 benchmark information. The time for each task in seconds is
reported for a scaling study over the number of processing elements (PEs).

Excellent parallel scaling is observed for all steps from 256 to 4096 processors, but
the only 52% efficiency is disappointing. The numerical algorithms are designed to
deliver much higher efficiency and we currently ascribe the poor overall performance
to poor load balance but much more analysis is necessary. The construction step is
infrequently performed but presently very expensive. Fast summation of the nuclear
potential might resolve this issue, but mathematical analysis has yet to be performed.
The reconstruction and compression steps are much faster, but are repeated often.

0.14 Q4 Information

The problems and target machine remained unchanged throughout the fiscal year
in this study. Please see section[0.5] for details. The algorithm was modified. A
description now follows of the changes.

61



D
R

A
FT

The goals of the MADNESS project broadened significantly over the last nine months
to include a new, portable, and general purpose parallel programming model in addi-
tion to the original goals of deploying multi-resolution methods on massively parallel
computers and applying them to electronic structure methods. This was in response
to three stimuli:

1. Involvement with the DARPA High-Productivity Computing Systems (HPCS)
language evaluation project which emphasizes enhancements to the program-
ming environment.

2. Involvement in an NSF computer science project and researchers at Ohio State
University who are using MADNESS to motivate their research into new parallel
programming paradigms.

3. The needs of MADNESS itself and its anticipated end-users.

As a result of this change in scope, the full electronic structure functionality is not yet
complete, though it is shown that a direct consequence of the new development is that
new functionality is now far, far easier to implement both correctly and efficiently. A
relevant familiar adage is measure twice, cut once.

We start by describing the technical challenges in the original distributed-memory
message-passing version (used for the Q2 baseline) by comparing with the simplicity
of a shared-memory parallel approach, and then we examine the new parallel program-
ming model. The improved productivity is demonstrated, and finally, performance
data is presented for the new version of MADNESS on the ORNL Cray-XT3.

0.14.1 Algorithm

Figure 22. Recursive tree structure maintained by MADNESS
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MADNESS implements its adaptive refinement using a tree; in three dimensions this
is an oct-tree since 23 = 8. In Figure[22] is shown a representative binary tree (e.g., for
a function in one dimension). Recursive algorithms are very powerful at performing
operations on trees.

Function walk down(node)

Operation(node)

For each child of node:

walk down(child)

Figure 23. Pseudo-code for a function to walk down a tree to apply an operation on
every node in the tree.

The function walk down()[23] calls itself, which is the characteristic of recursive algo-
rithms. It should also be apparent that the operation is being applied while walking
down the tree - i.e., an operation is first applied to a node, and then to its children,
and so on. Applying an operation while walking up the tree[24], i.e., first to a node’s
children and then to itself, is just as easy.

Function walk up(node)

For each child of node:

walk up(child)

Operation(node)

Figure 24. Pseudo-code for a function to walk up a tree to apply an operation on every
node in the tree.

If the work on each child is completely independent, then we can spawn activities on
different processors to do this work. The shared-memory programming language Cilk
provides the keyword spawn to describe just this, e.g., in [25] is a parallel version of
walk up() highlighting where the additional keyword was introduced.

Function walk up(node)

For each child of node:

spawn walk up(child)

Operation(node)

Figure 25. Parallel walk up().
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Our shared-memory parallel version of MADNESS was almost literally this easy,
ignoring the details of all the math and data structures behind this pseudo-code.
But on a distributed memory computer, things get a lot more complicated. First,
a child, parent or sibling node may no longer be on the same processor, and so the
data structure must keep track of what lives where. When a node changes its own
state (commonly as a result of adaptive local refinement) it must notify its relatives
about this so that they share a consistent view of the world. Herein lays a more
major problem - how does the relative even know to look for a message when it
does not know that the remote state changed? Most other adaptive mesh codes only
change such state at regular, pre-scheduled times and so such notifications can be
handled all at one time and the overhead of the implied global synchronization is
acceptable. However, a crucial strength of MADNESS is very fluid changing of the
adaptive refinement and we cannot afford the overhead of global synchronization.

The first approach was to send a message whenever the state could have changed. This
results in potentially unnecessary message traffic, but worse, it also requires traversing
parts of the tree that might otherwise be dormant, e.g., in order to let a remote great-
great-grandchild know that nothing of interest to it has changed. It is this additional
logic that blows the complexity of the code way up, and it technically arises from
using a single-program multiple-data model to maintain a consistent distributed data
structure.

Consider [26] and [27] -the actual message passing code is about 5-10x longer still due
to mundane details that have been elided for clarity.

Function refine(node)

For each child of node

get data(child)

If (need to refine)

For each child of node

spawn refine(child)

Figure 26. Parallel Cilk code to adaptively refine a tree.
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Function refine(node)

If (node is remote parent)

For each child of node

Receive message with flag

IF (flag is true)

refine(child)

Elseif (node is active)

For each child of node

get data(child)

flag = if we need to refine

For each remote child of node

Send message with flag

For each local child of node

refine(child)

Elseif (node is inactive)

For each remote child of node

Send message with flag=false

For each local child of node

refine(child)

Figure 27. The initial message passing version of [26].

As messy as this appears, one need to write and debug it once. Refinement is actually
one of the easier tasks to do since it stays within the tree structure, works on only
one function, and the computation occurs where the data resides. Multiplication
of two functions is a harder example. The two functions may have very different
adaptively refined meshes and there are mathematical rules that prescribe how to
bring one function down to the same level as a more deeply refined function so that
multiplication can occur. This can require asking a remote parent for data which may
in turn have to ask its parent, and so on. Differentiation is harder still since instead of
moving data up/down the tree, it requires values from neighboring boxes at the same
level in the tree (i.e., siblings). These may again reside on different processors and
even worse, due to the adaptive refinement, they may not even exist which requires
additional logic and communication to figure out how to proceed. Integral operators
and higher-order differential operators have to search even further out at the same
level. The communication between nodes also causes excessive synchronization which
inhibits scalability. There are many other operations that we need to implement,
and it would be very valuable for less experienced programmers to be able to extend
MADNESS. Finally, if we are to cope with problems large enough to require petascale
computers, we only have enough space to store local connectivity information about
the tree - global knowledge is by definition not scalable.

There are three components to the MADNESS solution. The first was to develop a
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portable, distributed memory version of Cilk (in standard C++). Essentially, each
process has a queue of tasks and any process can put tasks into the queue of any other
process. A task can be either ready to run, or waiting for some other task to complete
first. These dependencies are expressed naturally using the same mechanism as Cilk
(futures; see below). The approach is portable since it presently uses MPI+polling,
but when more powerful mechanisms become available on our largest computers (e.g.,
active messages) it can switch to those. This capability means that we can move
computation around the machine just as easily as we can move data. This sets the
stage for eventual implementation of dynamic load balancing through work stealing.

The second technique was to factor most of the local/remote logic out of the code
by using futures. A future is the possibly yet-to-be-evaluated result of a computation
that was spawned for parallel execution. Trying to read the value of a future waits
if necessary for the computation to complete, and then returns the value. A future
can also be asked (probed) if it is ready - if not, you can do some other task instead
of idly waiting. In the MADNESS distributed memory version, futures can be either
local or remote and indeed can change from one to the other as a byproduct of the
calculation. The important thing is that the consumer of the future does not know
or care where the data is coming from, merely that it will be there when requested.

Finally, the complexity of walking up and down the tree, recurring coefficients down
as necessary to adjust adaptive refinement in one or more functions can be eliminated
by borrowing a concept from the standard C++ library - iterators. MADNESS now
provides a standard set of iterators that relieve the programmer from these complex
and error prone tasks. In [28] is the pseudo code that a user would write for the
multiplication of two adaptively refined functions (f and g) using the new framework.

class TaskMult : public TaskLeaf<TaskMult>

private:

Future a, b;

public:

TaskMult(Tree node,Function f,Function g,Function result)

a = f.get(node)

b = g.get(node)

bool probe()

return a.probe() and b.probe()

bool predicate()

return a.exists() and b.exists()

void apply()

multiply(node, a.get(), b.get())

Figure 28. MADNESS multiplication of two adaptively refined functions.

Again, some mundane details have been elided for clarity, but the actual code is not
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much longer and critically contains no if tests, no details about where data resides,
and no code to handle the recursion of coefficients down the tree and/or between
processors. The constructor of the class assigns to two futures the result of possibly
remote calculations to get/make the necessary coefficients in each function. The
probe() method is called by the task scheduler to inquire if the task is ready to
execute, which is the case if its futures are ready. The predicate() method is called
when the task is actually running to determine if refinement is necessary. The apply()
method is invoked to actually perform the sequential task of multiplying two blocks of
coefficients. All of the details of recursion and tree traversal are contained in the base
class TaskLeaf which is the MADNESS iterator that applies operators to coefficients
at the leaves of the tree. In turn, much of the logic to do with where data resides has
been moved out of both TaskLeaf and TaskDiff into the Future class. The Future
class is used extensively throughout the code and TaskLeaf is reused multiple times
for operators such as differentiation, refinement, multiplication, squaring, and so on.

The iterator proceeds by first placing all initially known tasks in the task queue (local
and remote). If several independent operations on functions are to be performed all
of these tasks can be scheduled. Then, the tasks scheduler is started and computation
begins. As execution proceeds additional local or remote tasks and futures can be
generated. E.g., to refine a sub-tree resident on a neighboring processor and to get
the generated coefficients, a future is associated with a remotely scheduled task that
will eventually perform the refinement. To avoid delaying other workers, remotely
generated tasks are assigned higher priority than locally generated tasks.

In addition to exposing nearly all available parallelism, this approach has numerous
other advantages. It is very suitable for multi-core processors. Many of the com-
munication buffers can be pre-allocated which is essential to eliminate bottlenecks
and to realize maximum transmission speed. Much of the communication, hard-
ware permitting, can be overlapped with useful computation. The more expensive
tasks can be migrated to idle processors which enables system wide load balancing.
Many enhancements are possible including more flexible prioritization of tasks, richer
mechanisms for expressing and managing dependencies, construction of near-optimal
local/regional/global task schedules, tree partitioning for static load balancing, and
work stealing/diffusion for dynamic load balancing. A large literature and software
base exists on many of these topics and we are benefiting greatly from our collabora-
tion with computer scientists at ORNL, OSU and elsewhere.

In adopting a heavily object-oriented approach to programming, one is always con-
cerned with the ”abstraction overhead.” By hiding details and complexity from the
human in order to make it easier to program, we may also be hiding information that
the compiler needs for optimization. Object-oriented methods are also notorious for
introducing lots of additional procedure calls that slow execution and further hin-
der optimization. Fortunately, modern C++ and recent compiler technology provide
powerful solutions in the form of templates and inlining. This is not the place to dis-
cuss these topics, but with care they can be employed to eliminate the performance
penalty of abstraction while still realizing the benefits. Profiling MADNESS reveals
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that its execution time is strongly dominated by useful work and the abstraction
penalty is at most a few percent, and much less in high accuracy calculations.

0.14.2 Data

Q4 Collected Data Problem(0.13)
source codes yes

build information yes
runtime information yes

total walltime yes

Table 16: Information collected during Q4 for the computed MADNESS problem set.
Please see sec[0.2.4] for description.

Processors T project+refine T compress T reconstruct
512 1020 0.077 0.178
1024 585 0.044 0.111
2048 309 0.022 0.061
4096 159 0.011 0.032

Table 17: Timing results for k = 9, tolerance = 1.e− 3 for the Q4 implementation of
the MADNESS operations for : project and refine, compress, reconstruct. The runs
utilized the the enhanced algorithm(0.14.1).

Processors T multiply T square T differentiate
512 0.092 0.057 0.26
1024 0.052 0.032 0.147
2048 0.027 0.015 0.096
4096 0.0142 0.0064 0.099

Table 18: Timing results for k = 9, tolerance = 1.e− 3 for the Q4 implementation of
the MADNESS operations for : multiply, square, differentiate. The runs utilized the
the enhanced algorithm(0.14.1).

Presented in Tables[21,22] are the results showing the computation rate in GFLOP/s,
the execution time of each step, and the speedup assuming the execution rate on 64
processors is ideal. There is not sufficient data yet to explain the poor scaling of
differentiation which a simple performance model suggests should scale well for the
target function.

Finally, a note with regard of the use of GFLOP/s to compare the computation rates.
The number of floating point operations is independent of the number of processors
and the time taken to perform these dominates the calculations. Thus, it is a useful
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Processors T project+refine T compress T reconstruct
512 1953 0.161 0.315
1024 1086 0.091 0.193
2048 570 0.047 0.101

Table 19: Timing results for k = 7, tolerance = 1.e− 5 for the Q4 implementation of
the MADNESS operations for : project and refine, compress, reconstruct. The runs
utilized the the enhanced algorithm(0.14.1).

Processors T multiply T square T differentiate
512 0.169 0.096 0.406
1024 0.089 0.052 0.224
2048 0.045 0.0255 0.133

Table 20: Timing results for k = 7, tolerance = 1.e− 5 for the Q4 implementation of
the MADNESS operations for : multiply, square, differentiate. The runs utilized the
the enhanced algorithm(0.14.1).

Ops::Procs 512 1024 2048 4096
project+refine 223 389 735 1432

compress 451 771 1424 2645
reconstruct 202 318 564 1023
multiply 503 3757 1530 2731
square 523 905 1776 3341

differentiate 472 810 1168 1099

Table 21: Floating point performance (GFlops) for k = 9, tolerance = 1.e − 3
for the Q4 implementation of the MADNESS operations : project+refine,compress,
reconstruct, multiply, square, differentiate. The runs utilized the the enhanced algo-
rithm(0.14.1).

Ops::Procs 512 1024 2048
project+refine 231 416 793

compress 348 620 1178
reconstruct 179 293 549
multiply 424 0.052 1516
square 500 895 1716

differentiate 301 531 863

Table 22: Floating point performance (GFlops) for k = 7, tolerance = 1.e − 5 for
the Q4 implementation of the MADNESS operations : project+ refine, compress,
reconstruct, multiply, square, differentiate. The runs utilized the enhanced algo-
rithm(0.14.1).
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measure of how ”fast” one component of the code is executing relative to another
since they all employ similar sequential kernels. It is not valid to compare these rates
to the unattainable peak speed of the machine for many reasons. Trivially, we can
easily construct algorithms that hit a high fraction of this speed and yet have much
longer execution times. We also do not yet know the theoretical peak floating point
execution rate of these specific algorithms on this machine, and furthermore at least
some useful work does not involve floating point operations. More relevantly, the
memory, the processors and the communication fabric are all very expensive machine
components and it is not meaningful to focus on just the floating-point units since
they are certainly not the price limiting component and are probably neither the
performance limiting component. Development of detailed performance models is a
key future step which will inform machine design/purchase decisions by enabling a
cost-benefit analysis of investments in key hardware or software systems.

0.15 Results

Performance enhancement The performance benchmark established in Q2 was
projection with adaptive refinement to a precision of 10−3 into the k = 9 polynomial
basis of the full nuclear potential arising from a cube of 4096 copper atoms arranged on
a body-centered cubic lattice. The adaptive refinement starts at level 4 and continues
until the accuracy criterion is satisfied which is at level 16. This corresponds to the
finest resolved length scale being about 100,000x smaller than the simulation cell.
The projected function is then compressed and reconstructed which correspond to
the forward and reverse fast-wavelet transform which are very important operations
and analogous to the fast-Fourier transform. The old and new timings in seconds are
presented in the Tables[15,17].

Processors project+refine compress reconstruct
512 4.398970588 20.88584416 8.952303371
1024 4.421213675 21.059 8.309918919
2048 5.056084142 25.61036364 9.150557377
4096 6.178 32.25090909 10.9781875

Table 23: Speedup comparison of the Q4 versus the Q2 MADNESS implementation
of the operations : project and refine, compress, reconstruct.

Problem System Enhancement

project nuclear copper potential into wavelet basis(sec0.13) Cray XT3, jaguar.ccs.ornl.gov performance, see[23]

Table 24: A scalable speedup is asserted for the baseline problem MADNESS code.
The projection with adaptive refinement to a precision of 10−3 into the k = 9 poly-
nomial basis of the full nuclear potential arising from a cube of 4096 copper atoms
arranged on a body-centered cubic lattice was computed.
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Discussion The new times are uniformly faster by factors ranging from 4.4 to 32.3
on the same number of processors. It should first be recalled that the old hardware
was based upon a single-core 2.4 GHz opteron processor, whereas the new hardware
uses a dual-core 2.6 GHz opteron. Thus, a speed-up of 1.083 could be ascribed to
processor speed enhancement, but in practice this would be offset by the two cores
in the new system competing for the same the bandwidth to memory available to the
original single core.

For the projection + refinement operation, about a factor of 2 can be ascribed to
improved use of compiler optimizations and manual optimizations such as unrolling,
etc., and another factor of two to improved load balance by adjusting the distribution
of data. It is observed that the new code scales better to larger number of processors.
The speedup in going from 512 to 4096 processors was 4.6 whereas in the new code
it is 6.4. This is solely due to the enhanced programming model described above.

For compression, the speedup is much larger. This is because, in addition to the
optimizations discussed above, the old code was computing to unnecessary precision
and the new code (in the MADNESS spirit of fast algorithms with guaranteed pre-
cision) computes more closely to the requested precision whereas the old code kept
unnecessary coefficients. Again, better parallel scaling is seen in the new code.

The reconstruction operation should be running as fast as compression, but it is over
a factor of 2 slower. It is presently hypothesized that this is due to poor load balance,
and in particular from giving too much work to processes that own nodes near the
top of the tree which hinders fan out of parallel work down the tree. A new work
distribution algorithm is under development to resolve this and related issues.

Science enhancement MADNESS performed calculations to a 100x greater pre-
cision, i.e., to a precision of 10-5. For the corresponding times see Table[19].

The additional two digits of precision increase the cost of the calculation by just
a factor of about 2. This is a result of the high-order polynomial basis providing
rapid convergence once sharp features have been resolved by adaptive refinement,
and corresponds to just 25accurate is still substantially faster than the old code.
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ScalaBLAST

0.16 Q2 Information

High performance sequence alignment for biological applications Homol-
ogy detection and sequence alignment are the two most fundamental computational
tasks applied to biological problems in the so-called post-genomic era because they
make it possible to identify relationships between molecular machinery of organisms
which have been well-characterized and those which have been newly sequenced. To
make these connections, newly sequenced organisms must be compared to all known
sequences. But the rate at which new sequences are completed continues to grow
exponentially and, correspondingly, the volume of known sequences increases in kind
resulting in an explosion of sequence data. Driven by this revolution of information
entirely new techniques and fields of biology have emerged (informatics-driven biol-
ogy), such as genome context mining and reconstructing the ’tree of life’, for which
comparisons between many whole organisms are required. The importance of these
fields to DoE is underscored by programs such as the Joint Genome Institute (JGI),
genomics:GTL, the Shewanella Federation, and the biological areas covered in pro-
grams such as SciDAC, through which it is hoped that research in biosystems can
realize its potential to revolutionize environmental cleanup, energy production, and
national security. But the scope of problem which can be addressed using current
bioinformatics tools is in many cases the limiting step. Analyzing even a modest
collection of sequences may take weeks or longer on a conventional workstation. The
real problems of interest are thousands or millions of times this size and so are con-
sidered intractible. We have developed ScalaBLAST as a high-performance extension
to BLAST optimized for very large sequence homology and alignment calculations on
high-end supercomputers enabling the next generation of informatics-driven compu-
tational biology.

This report is a performance evaluation of baseline sequence alignment code MPI
BLAST 1.4.0 for the beginning of FY06 and (will become) an assessment of improve-
ment by the end of FY06 of a newly developed highly scalable sequence alignment
code, ScalaBLAST, to be used as a part of the OMB software effectiveness metric.
The biology target applications are both driven by science problems that will require
very large ( 1 million) queries to be performed against the nonredundant protein (nr)
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database as provided by NCBI as of February of 2006 for the baseline measurement
and the nr database of May 2006 for the FY06 improvement metric. Each query
task will involve homology detection and sequence alignment against identified ho-
mologs from the nr database and reporting of these results in the standard NCBI
BLAST output format. Both baseline and improvement metrics will be taken from
ScalaBLAST running on 320 (50MPI BLAST is the accepted state-of-the-art in high
performance sequence alignment [[64]]. Developed and distributed by Los Alamos
(http://mpiblast.lanl.gov/), MPI BLAST is an open-source extension to the NCBI
toolkit. MPI BLAST allows a user to break up a sequence database into fragments
for running in a parallel environment. ScalaBLAST is an extension to the NCBI
BLAST executable and confers scalability through query scheduling and advanced
memory management on a large query set. ScalaBLAST has previously been opti-
mized for high-performance distributed memory architectures with very low latency
(Quadrics ElanIV) interconnect and cache-coherent NUMA platforms (SGI Altix).
We have observed an approximate 3-fold slowdown in performance when running
over higher-latency interconnects such as Infiniband, Myrinet or Gigabit Ethernet
because ScalaBLAST has not yet been optimized for these higher latency intercon-
nects. Since these interconnects are more representative of what is used in university
and NIH/DOE laboratory bioinformatics pipeline environments, the impact of achiev-
ing the goal of this OMB performance metric is substantial-success in this metric will
make the scalability and efficiency of ScalaBLAST accessible to the worldwide com-
munity of biology investigators. For this OMB performance metric, we propose to
address the high-throughput related issues with MPI BLAST primarily by tackling
optimization issues regarding task partitioning and memory management to more ef-
fectively hide latency associated with I/O and memory access. We will not attempt
to improve the performance of the internal BLAST algorithm itself. Modifications to
the core BLAST algorithm are beyond the scope of this study and are the subject of
ongoing research by many groups. The following is a more detailed discussion of the
motivation for the science drivers, algorithms and implementation of the code base,
input and run-time parameters, and the performance metric we will use to drive code
enhancements for ScalaBLAST.

0.16.1 Problems

Background and Motivation Genetic code is based on DNA, which can be repre-
sented as a single string of characters (A,C,G &T). Genes are regions of DNA encoding
for proteins, which can each be represented as a single string of characters as well.
Homology is a measure of the similarity between two sequences and alignment is the
physical mapping from one sequence to a different but homologous sequence. BLAST,
one of the most widely used computational tools in biology, is a sequence alignment
(and homology detection) algorithm distributed by the National Institute of Health
(NIH) National Center for Biotechnology Information (NCBI). BLAST represents a
quantum leap in efficiency over previous homology and global alignment algorithms
such as Needleman-Wunsch [[65]]. These global alignment methods search over the
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entire space of possible alignments for the ’global’ optimal alignment. For two given
sequences of length n and m respectively, these methods require nxm memory and
perform on the order of nxm operations. Currently the collection of unique proteins
contains over 3 million sequences. The most modest of the grand challenge problems
in sequence analysis would involve performing sequence alignments of each of these
entries against every other entry. Using the global alignment methods, one would
expect to need at least 3 million X 3 million double precision numbers in a single ar-
ray (72 TB of memory) to perform this calculation without repeated file access. The
other straightforward approach would be to step through the entire 1.7 GB database
3 million times (once for each sequence), putting a heavy load on file I/O.

While finding the global optimal alignment improves the statistics of homology de-
tection, it comes at a computational price. As outlined above, the memory and
computational requirements for global alignment methods are unwieldy for grand-
challenge sized problems in computational biology. To address this problem, local
alignment methods such as Smith-Waterman [[66], [67]], and FASTA [[68]] were de-
veloped. These local alignment methods do not produce a single global optimal
alignment, but rather identify stretches of subsequences which align statistically,
but which can be separated by gaps or mismatched regions. BLAST was a fur-
ther improvement in the area of local alignment methods because it improved the
computational run time significantly at the expense of sensitivity. BLAST is a
heuristic method employing the notion of breaking sequences into words and find-
ing local alignments of those words (or sequence substrings) among the collection
of sequences of known biological function [[69], [70]]. BLAST is much faster than
FASTA, Smith-Waterman or Needleman-Wunsch and is adequately sensitive for many
applications [[71], [72]]. Because of its speed and availability through the NCBI web-
site (http://www.ncbi.nlm.nih.gov/BLAST), BLAST has become one of the most
fundamental and widely used computational tools for the post-genomic era biolo-
gist. Because of its central importance in computational biology, enhanced sequence
alignment has been the target of many efforts making use of advanced computing
capabilities. Specialized hardware [[73],[74]], service center architectures [[75]-[77]],
POSIX thread-based applications [[69], [70]], shared memory applications [[78]], het-
erogeneous cluster applications [[79]], MPI-based distributed memory applications
[[64]], and hybrid software/hardware applications [[80]] have all been developed to
increase the throughput of sequence analysis. Work has also been done in managing
the database sequences both during the query by using an alternative hash-table rep-
resentation to approximate the database [[81]], and during the reporting of results by
employing parallel I/O to exploit concurrency between processors after the alignments
have been calculated [[82]]. In general, approaches that center around parallelizing
the sequence database (either sharing it or modifying its image) have the advantage
that larger databases can be maintained in-core during a run, limiting the need for
constant file access. However, they tend to scale poorly, especially in the case of MPI-
BLAST [[82], [83]]. On the other hand, approaches that center around parallelizing
the query sequences (query scheduling) tend to scale well, but require repeated file ac-
cess to the same database continuously through a run. Since the sequence databases
are growing exponentially (see www.ncbi.nlm.nih.gov/Genbank/genbankstats.html),
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the overhead from repeated I/O will continue to degrade performance. ScalaBLAST
[[83]] was developed as a hybrid application with the intent of capitalizing on the
scalability of query scheduling approaches, and at the same time sharing the target
database using the Global Array toolkit [[84]-[86]] which provides a software-enabled
shared memory interface to both true shared memory and distributed memory archi-
tectures. ScalaBLAST has been shown to scale nearly linear to the thousand processor
range and because of database sharing in a global array object, ScalaBLAST keeps
the entire database in-core throughout the run. Benchmark runs on an itanium 2
cluster over a quadrics elanIV interconnect (MPP2) demonstrated that ScalaBLAST
processed over 448,000 queries from the PFAM [[87]] sequence database in 3.5 hours
using 1500 processors. This opens the door for much larger grand challenge runs in
which millions or more sequences are analyzed in a short time. However, ScalaBLAST
has not yet been optimized on higher latency networks much more common in both
academic and government laboratory facilities, and has been shown to have a factor
of three slower run-time or worse. The aim of this study is to demonstrate significant
speedup of ScalaBLAST on an opteron cluster over an infiniband interconnect-the
NERSC Jacquard machine-in the context of two real science drivers for computa-
tional biology which fall into the grand challenge category. These problems were
chosen because they both require on the order of 1 million queries to be performed,
but with different search and output characteristics.

The first problem, relating to the set of environmental sequences representing many
full microbial genomes collected from locations such as the Sargasso Sea, requires
a standard BLAST search to be performed for each sequence against the entire nr
database under the default conditions for protein searching. This is a good represen-
tative test case of the sort of search most users would want to perform. The average
size of the sequences is close to the average size of proteins in general and the vol-
ume of output expected and the amount of computational work done per sequence is
representative of what one would expect for any collection of complete proteins.

The second problem involves finding exact matches of very small protein fragments
(peptides) used in the high-throughput proteomics facility at PNNL for the organism
Salmonella T. This is a highly skewed scenario in which the sequences are extremely
short and for which only the single best scoring exact match is retrieved from the
nr database. This problem was chosen because it should provide a reverse map of
peptides back to possible parent proteins (proteins which contain the exact peptide
substring). To make sure optimizations made for the first representative problem are
relevant to a wider range of BLAST problems, this second problem was chosen with
a different balance between search and output time and a different frequency of hits
expected from each query. Demonstrating sufficient speedup on both these problems
with a single code base will ensure that optimizations resulting from this study are
applicable to a wide range of computational biology problems.

Problem One: Environmental sequences The revolutionary technology of shot-
gun whole genome sequencing, 4.similar to the process used to complete the human
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genome sequence, 4.was applied to a collection of evolutionarily primitive of organisms
4.from sites such as the Sargasso Sea [[88]]. These organisms have been sequenced re-
vealing a collection of 1.2 million previously unrecorded proteins used in the baseline
calculation, and more than 1.6 million proteins in the FY06 performance improvement
metric. Much of initial effort in analyzing these biological populations has focused
on the genetic and phylogenic profile of the samples, which gives hints about the
evolutionary relationship between the organisms and which has revealed new insight
into our origins. We propose to extend this by performing an exhaustive search of all
predicted protein sequences from the so-called ’environmental’ samples against the
nonredundant protein database to identify relationships between well-characterized
sequences and the environmental sequences. A search of this magnitude is important
in identifying possible functions of these proteins and for enabling the downstream
analysis of these genes using advanced tecnhiques such as genome context mining. Ad-
ditionally, as the nr database continues to be updated, repeated exhaustive searches of
the environmental samples are expected to give new information. But the computa-
tional bottleneck of performing the searches is prohibitive using conventional sequence
alignment applications. We will demonstrate the baseline effeciency and scalability
MPI BLAST as compared to the FY06 improvement provided by development of
ScalaBLAST using this test case employing at least 50

Problem 2: Protein map for the Accurate Mass Tag (AMT) database
High-throughput proteomics (HTP) is a cornerstone of modern systems biology re-
search. This technological advancement makes it possible to measure the entire
protein content (molecular machinery) of a biological sample in one experimental
pipeline- a process which would have taken years or lifetimes using conventional anal-
ysis tecnhiques. Mass-spectrometry based HTP relies on identifying fragments of
proteins (peptides) by producing extremely accurate measures of the mass-to-charge
ratio of these peptides. In fact, one method of identifying peptides is by comparing
them to a database of the mass to charge ratio of known peptides (AMT database).
We propose to characterize the peptides in a production AMT (public Salmonella
data) by identifying proteins in the nonredundant (nr) protein database which have
exact subsequence matches. This would provide a valuable map from peptides back
to protein sequences in a variety of organisms.

Description of Biological Systems The NCBI nonredundant protein database
will be used for both the test problems. The February 2006 draft of this database, used
in the baseline MPI BLAST performance measurements contains 3,284,262 sequences
with 1,125,694,017 characters for an average protein length of 343 characters. This
database contained all the sequences in the nonredundant database as distributed by
NCBI as of February 2006. The binary sequence file associated with this database
(nr.psq) has a total size of 1.1 GB. For the FY06 performance metric, improvements
on the BLAST throughput attained by ScalaBLAST will be performed on the May
2006 draft of the database containing 3,658,078 protein sequences and a total of
1,256,998,427 characters for an average protein length of 344 characters.
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For the baseline assessment of MPI BLAST, the first test problem (environmental
sequence search), the collection of 994,617 environmental sequences as distributed
by NCBI in March 2006 contains a total of 194,022,063 characters, for an average
sequence length of 195 characters per sequence. The total size of the input file was
247MB. These were aligned against the nr database (as described above) using all
default arguments for the standard NCBI blastp executable. Run-time parameters
are discussed in detail in the Parameter Selection section below. The default values
were chosen to get alignments representative of the default way in which BLAST
and hence ScalaBLAST would be used by most users. The output of this first test
problem was a collection of similar sequences for each of the environmental sequences,
providing the impetus to perform further processing (beyond the scope of this project)
to mine for features and patterns within this set of homologs for each protein. For the
FY06 performance improvement attained by ScalaBLAST, the first test problem was
performed on a more recent version of the environmental sample collection as provided
by the Joint Genome Institute. This updated version contained 1,618,944 protein
sequences from over 400 microbial genomes with a total of 532,358,124 characters for
an average protein size of 329 amino acid residues. Since this test problem was of
significant interest to JGI, we chose different output and filtering options (as discussed
below), but since MPI BLAST failed to produce any output in the baseline tests
related to the size of the input file (rather than as a consequence of filtering options
or output format), the test between FY06 improvement gain in ScalaBLAST vs. MPI
BLAST baseline is still valid.

For the second test problem (Accurate Mass Tag database peptide matches), a col-
lection of 1,418,939 peptides was selected with a total of 34,209,722 characters and
an average length of 24 characters. No peptides were shorter than 10 characters. The
total input file size was 83MB. These sequences compose the public AMT database
for Salmonella at the Pacific Northwest National Laboratory high-throughput pro-
teomics facility. These were aligned against each of the nr database sequences (as
described above) using a parameter set chosen to select only a single exact match
for each peptide. The default values are discussed in greater detail in the Parameter
Selection section below. Identical input files, target database and command-line op-
tions were used on both the baseline runs on MPI BLAST and the FY06 performance
improvement runs for ScalaBLAST.

0.16.2 Algorithm

Underlying Algorithms of BLAST Sequence Alignment The core algorithm
of BLAST is character matching. The measure of homology between two sequences
is calculated by finding the maximal segment pair (MSP), which is the subsequence
pair of identical lengths which have the highest similarity score. Two completely
identical sequences will have a maximal segment pair equal to the sequences. For one
sequence which is an exact subsequence of another, their maximal segment pair is
equal to the subsequence itself. But often in nature the maximal segment pair is not
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as straightforward. Some amino acids can be commonly replaced with another with
little penalty to the survivability of the organism. But some amino acids are so fun-
damentally different (polar vs. nonpolar; aromatic vs. acidic) that the spontaneous
mutation underlying the mismatch is much less likely to occur and be propagated.

BLAST uses the notion of a scoring matrix to quantify the frequency (and hence
the inverse of the penalty) associated with all amino acid substitutions or nucleotide
substitutions in the case of genes. A protein scoring matrix can be thought of as
a 20x20 field in which each of the 20 amino acids is represented along the vertical
and horizontal axis. The i,j th entry contains a relative measure of the likelihood of
seeing amino acid i propagate to amino acid j in an evolutionary related protein. This
matrix is constructed based on statistical measures of the frequency of mutations in
nature so that unlikely substitutions are heavily penalized and likely substitutions or
an exact match are highly rewarded.

BLAST uses a small piece of the query sequence (a word whose size can be changed by
the user) to locate a region matching the target database sequence. When a matching
region is found, BLAST attempts to extend the match by adding more words to the
alignment. BLAST proceeds in this way until the best-scoring collection of MSP’s
has been located. The final score for each candidate alignment can also include a gap
initiation penalty and a gap extension penalty. The collection of disjoint MSP’s are
considered to represent evolutionarily conserved subregions of the sequences which
are connected by mismatched sequences or sequence gaps.

For each alignment reported from the sequence database for a given query, two associ-
ated metrics are reported: bitscore and expect (E) value. Bitscore is calculated using
the number of matches or near matches (matches with low penalty in the scoring
matrix). Higher bitscore suggests a higher degree of homology for a given query, so
results are given sorted by bitscore for each query. E value is a measure of the number
of random hits one would expect to find for a given bitscore in a database of the size of
the target database. A large E value suggests that the sequence is more likely to have
occurred by chance and an E value close to 0 lends more evidence to the argument that
the match is not by chance. For a more detailed discussion on the statistics used by
BLAST to describe homology, see www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-
1.html.

By default, query sequences are screened for low complexity regions. Low complexity
is characterized by segments containing some types of repeating motifs, or of stretches
dominated by a single character. These stretches can create homolog artifacts when
the low-complexity region is the basis of a match. They are automatically masked by
BLAST to prevent this anomaly.

Computational Approach of MPI BLAST MPI BLAST was developed as a
database parsing method in which a large sequence database is preformatted into
a collection of smaller database fragments [[64]]. At run-time, database fragments
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are distributed among processors responsible for calculating the partial results of
each query against their local database fragment. This method has been shown to
give superlinear speedup when the database fragments are small enough to fit in-
core for large databases [[89]]. This has been chosen as our baseline for the OMB
software effectiveness metric because MPI BLAST is the accepted state-of-the-art in
high performance sequence alignment at the start of FY06. For this study, we will be
using MPI BLAST 1.4.0.

MPI BLAST Code Overview Using MPI BLAST requires preformatting the
target database into a predetermined number of fragments using the executable mpi-
formatdb. When finished, the user can select the target database fragments on which
to run the queries. According to the MPI BLAST 1.4.0 documentation, a maximum
of 250 database fragments can be created with mpiformatdb. One may expect that
for a database like nr, one should use as many fragments as possible for the 1000
processor run. However, we have used small test cases to estimate the best config-
uration for running MPI BLAST 1.4.0 for the baseline measurement of the OMB
software effectiveness metric. We have identified two competing limitations of MPI
BLAST 1.4.0. On the one hand, there is a performance penalty for using many more
processors than database fragments. While the code does handle this case, parallel
efficiency drops off rapidly. For example, on a test query of 99 sequences against the
nr database parsed into 3 fragments we observed a speedup of only 37 times when
running on 64 processors. One would expect this to be significantly worse when run-
ning on 1000 processors. At the other end of the spectrum, there is a penalty for using
more database fragments on a given number of processors. For example, on the same
test query of 99 sequences, using 64 processors against 3 vs. 63 database partitions,
using 63 database partitions increased the run time by a factor of 6.4. These two
run-time limitations to MPI BLAST motivated the design of ScalaBLAST in the first
place. But since ScalaBLAST was not yet available and was not yet fully functional
at the outset of FY06, we must compare our improvement in performance during
FY06 to a baseline performance of MPI BLAST as it existed at the outset of FY06.
Since the limitation in scalability (50% dropoff in efficiency as 64 processors) for our
test problem appears less pronounced than the penalty for using more database frag-
ments, we use 3 database fragments for the baseline measurement with the intention
of best representing performance of MPI BLAST against the nr database.

0.16.3 Machines

Machine One The HP/Linux Itanium-2 over Quadrics in the Molecular Science
Computing Facility at the Pacific Northwest National Laboratory (http://mscf.emsl.pnl.gov/hardware/config mpp2.shtml)
is being utilized for the current study.
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Machine Two Concurrently, the AMD Opteron Cluster over InfiniBand at NERSC
(http://www.nersc.gov/nusers/resources/jacquard/) is being utilized to study the
same problem base.

0.16.4 Data

Q2 Collected Data Problem One(0.16.1) Problem Two(0.16.1)
Source codes yes yes

Build information yes yes
Runtime information yes yes

Total walltime yes yes

Table 25: Information collected during Q2 for the computed ScalaBLAST problems.
Please see sec[0.2.4] for description.

Description of Test Problems and Performance Metrics The test problems
were designed to probe the throughput of MPI BLAST and ScalaBLAST on large-
scale BLAST calculations. The key metric is therefore sustained throughput defined
as number of queries per processor completed per minute of wallclock time consumed
by the application (normalized to a database size of 1 million proteins). For the Scal-
aBLAST benchmark runs performed on Jacquard, a 6-hour run-time was selected
(to conform to Jacquard queue policy) during which ScalaBLAST processed as much
of the query list as possible using 320 processors. For the ScalaBLAST benchmark
runs performed on MPP2, the ENV benchmark was performed until completion of
all 1.6 million sequences (for a total of just over 18 hours broken up over two runs)
and the STP benchmark was run for 8.5 hours. The nr database is a representative
database containing the full list of proteins sequenced to date with duplicates omit-
ted. Demonstrating throughput against nr is a good indication that an application
can drive high-throughput BLAST calculations against a typical protein database.
To gague the impact of system performance on throughput from the standpoint of
I/O, the two benchmarks were chosen to flex I/O in different ways. First, the ENV
benchmark uses the ’hit table’ output format, common in many large-throughput
tasks because it omits the details of the alignments themselves and rather focuses on
the scores. This option was requested by the Joint Genome Institute collaboration
aspect of this test, in which the microbial genome database (ENV) results are be-
ing used by JGI in their upcoming version of the IMG database. Hence this output
is a relevant and representative format for real-world users. This output format in
ScalaBLAST has very similar run-time performance, scaling and machine utilization
to the full output format as output is a tiny fraction of the overall run-time on the
systems tested. Second, the STP benchmark uses the full output, but only reports
the single top hit for each query. This forces output of the alignment and statistics
as well as header and query information, but is not as extensive as the default output
options, which force 500 alignments to be printed.
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Parameter Selection Run-time options used for the baseline performance assess-
ment of MPI BLAST for the ENV benchmark were all taken as the default options,
whereas for the FY06 improvement assessment of ScalaBLAST the command line
used on MPP2 was as follows: -m 8 -F ’m S’ -e 1e-5 -b 2000. On Jacquard, the
filter string ’m S’ was not interpreted at run-time by csh, so only the ’m’ option was
used. We tried several variants on this including environment variables, etc but we
did not find a workaround for this. For the second problem (AMT database), the
MPI BLAST baseline and the ScalaBLAST OMB software effectiveness benchmark
on both MPP2 and Jacquard both used the following command-line arguments : -e
20000 -W 2 -M PAM30 -G 9 -E 1 -v 1 -b 1 and the same nr database as the first
problem.

Baseline Performance and Scaling (MPI BLAST) For all of the large bench-
marks attempted on both systems (MPP2 and Jacquard), MPI BLAST failed to
produce any output. Several key limitations in MPI BLAST which are addressed in
ScalaBLAST combine to produce this behavior. First the scaling is poor, regardless
of the number of databases being used (see fig. 1). Even though MPI BLAST is
intended to be used on systems where the number of database partitions is greater
than or equal to the number of processors, it was prohitive in these benchmarks to
use any more than 3 database fragments. Second, large input files cause MPI BLAST
to stall in the query distribution phase. We have used NWPerf, a performance mon-
itoring tool on MPP2 to reconstruct a detailed profile of the run-time behavior of
MPI BLAST for the ENV benchmark. Using this set of results, it can be shown that
a memory usage limitation caused by large input files causes the master node to run
out of memory and begin swapping, essentially stalling the entire application. This
benchmark ran for over 5 hours on 1000 processors on MPP2 producing no output,
with the performance characteristics illustrated in the following figures.
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Figure 29. Output of NWPerf for the MPI BLAST ENV test which produced no output
running on 1000 processors on MPP2 after several hours. For the duration of the run, the
master node is essentially 80% stalled.
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Figure 30. NWPerf output illustrating that virtually no time on any processor was spent
idle. MPI BLAST ENV test on MPP2 resulted in a spin-wait state for all processors just
after startup

First, looking at hardware stalls (Figure[29]), one can see that the master node re-
mains at a high stall rate (80essentally spin-waiting. Figure[30] illustrates that this
stall rate is not a consequence of idle processors, as virtually all of the processors have
an idle rate near 0, and are spending all their time in user space (Figure[??]). Fig-
ure[32] illustrates that the floating point operation rate is very low for all processors,
but that the master node is performing a small number of flops throughout the job.
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Figure 31. NWPerf output for MPI BLAST ENV run on 1000 processors shows all cpu’s
almost completely dedicated to user space tasks (not blocking on I/O)
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Figure 32. NWPerf output for ENV run of MPI BLAST on 1000 processors illustrates
very little floating point operations occur during the run, even on the master processor (red
dots above).

Baseline Communication, Memory Utilization and I/O Overhead (MPI
BLAST) The real crux of the limitation we found with MPI BLAST is memory
usage. Figure[33] illustrates the memory footprint of MPI BLAST, which grew lin-
early on the master node in time during execution of the large ENV benchmark. This
trend continued until all the memory of the master node was consumed. Figure[34]
illustrates the corresponding drop in free memory for the master node during this
time. Once memory is consumed on the master node, swapping begins, as illustrated
in Figures[35,36]. At this point, the calculation has essentially ground to a halt-before
any BLAST output has been produced.
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Figure 33. NWPerf results from 1000 processor MPI BLAST run of ENV benchmark
problem on MPP2 illustrates memory usage for master node rises to total memory per
node (8GB) before swapping begins.
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Figure 34. NWPerf results for ENV benchmark of MPI BLAST on 1000 processors of
MPP2. Free memory drops to 0 as memory is consumed by the application during the
query assignment phase.
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Figure 35. NWPerf results for MPI BLAST ENV run on 1000 processors of MPP2 illus-
trates processor 0 (the master node) begins swapping out bytes around the same time it
runs out of memory.
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Figure 36. NWPerf output for 1000 processor MPP2 run of ENV benchmark for MPI
BLAST reveals the memory swapping problem which begins after the node’s full memory
is consumed.
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Figure 37. The results of profiling of MPI BLAST 1.4.0 on 99 queries against the nr
database.

Small Parallel Benchmark Profiling: MPI BLAST In addition to the prob-
lems with scaling of MPI BLAST with respect to number of database fragments used,
we also identified a key limitation which is described in detail below. MPI BLAST
failed to produce any output for either of the OMB benchmark runs on both Jacquard
and MPP2 in large part because of its inability to handle a very large input file. We
show in following sections that MPI BLAST also would likely have not produced any
output for much longer run-times because it exhausted memory on the systems we
tried, forcing them into a swapping situation. On both Jacquard and MPP2, adverse
effects on the system resulted from this problem, prompting system administrators
to ask us to not run MPI BLAST anymore for problems of this size. After verifying
that the problem was related to memory usage (detailed below), we ran a series of
small benchmarks to study the effect of varying either number of processors (np), or
number of queries (nq) in the input file. Results of this study are illustrated in Table
[26]. These runs were performed with the ’hit table’ output option selected.

The key finding here is that in the short 20 minute test runs we performed, once
the input file contained 100000 queries, MPI BLAST failed to produce any output.
We widened this constraint for the large OMB runs and allowed it to run for several
hours in some cases, but in all large runs MPI BLAST failed to produce output. In
table 1, one can see that increasing the number of processors while holding the size
of the input file constant resulted in a degradation in performance. Additionally,
using larger input files while holding the process count at 256 also resulted in a slight
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procs Time (m) nq in nq out nq/(proc*min) db frags
64 24.7 1000 1000 2.317194679 3
128 25.5 1000 826 0.925726847 3
256 25.35 1000 796 0.448691767 3
256 25.45 10000 699 0.392466313 3
256 25.43 100000 0 0 3

Table 26: MPI BLAST performance on MPP2 on varying input file sizes and process
counts

degradation in performance at an input size of 10000 queries and no output at all in
20 minutes on 100000 queries. The negative impact to both testing sites for these
runs which consume half the machine for hours or more without producing output is
substantial both in terms of negative user impact (i.e. blocking other users during
simple I/O tasks) and wasted CPU cycles. The I/O strategy of ScalaBLAST is aimed
at taking full advantage of globally mounted filesystems to eliminate this serial I/O
bottleneck, and the memory problems associated with trafficking this entire list over
MPI.

0.17 Q4 Information

The problems and the machines remained the same. The algorithm was modified. A
description now follows of the changes. A new science capability was delivered as a
result.

0.17.1 Algorithm

Computational Approach of ScalaBLAST As outlined in the Introduction, the
two key capability limitations to performing very large BLAST searches that were
addressed by ScalaBLAST are 1) inability of query scheduling applications to handle
databases too large to fit in-core without swapping and 2) poor scaling of database
parsing methods. The following discussion covers the algorithm design aspects of
the ScalaBLAST extension to BLAST which have been shown to overcome these two
capability limitaitons of the conventional state-of-the-art sequence alignment imple-
mentations [[83]].

Database sharing at run-time Unlike the currently accepted parallel BLAST im-
plementation MPI-BLAST, which requires the user to pre-format the target database
by dividing it into pieces, ScalaBLAST opens the target database at run-time and
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evenly divides it among memory segments in the processors available at run-time. As
long as the aggregate memory of the processor collection is enough to hold the target
database and associated data structures for bookkeeping, ScalaBLAST operates sen-
sibly on any processor count we have tried it on. Database sharing in ScalaBLAST is
achieved by instantiating a global array object across all the processors large enough
to hold the character strings associated with each sequence. At run-time, the database
reading function retrieves sequences from the global array object, rather than from
the native memory-mapped files. This makes it possible to keep single database ob-
jects in-core for the duration of a run, eliminating the need for constant file access to
database volumes which is the current approach for databases too large to fit in-core
or too large to address with 4 byte integers.

Query scheduling and load balancing Rather than force all processors to work
on a single query together, as is generally done by database parsing methods, Scal-
aBLAST divides the processors into process groups (of size 2 for now). At run-time,
each process group is assigned a disjoint subset of the query list, eliminating the need
for communication between process groups during the run. Within a process group,
the work of aligning each query against all the database sequences is shared between
the processors-each processor is responsible for obtaining partial results from exactly
of the database global array object. Within a process group, the processors can work
in relative asynchrony because they post the partial results to a small global array
object shared by only the process group. So later when it is time to produce output,
either processor can merge the partial results into a single output object and sent it to
the NCBI print routines. To ensure that all process groups have a balanced fraction
of the total query load, a crude approximation of the total work is estimated based on
the number of characters in each query and the number of queries. The work estimate
is calculated from the entire query list and divided such that each processor performs
roughly the same volume of queries where volume is determined by number of total
characters in the collection of sequences and a penalty for the number of sequences in
the list. The specific parameters used for this static load balance scheme are outlined
in the Parameter Selection section below.

Reporting results to files asynchronously To capitalize on the concurrency in
print and query tasks, a two-tiered approach to output has been adopted for Scal-
aBLAST. As discussed above, the query list is distributed among the process groups
participating in the alignment calculations. Since the query list fragments being pro-
cessed are disjoint, each process group is free to print to its own files completely
independently of all other process groups. This can be done using local scratch disk
space, or over a network to a globally mounted filesystem. The second tier of con-
currency occurs within process groups. The normal sequence of a BLAST query
has interleaved printing and searching tasks. But ScalaBLAST has been designed to
cleanly separate the query phase from the output phase. First a collection of input
queries are run through the BLAST engine and the partial results posted indepently
by the two processors in the process group. Since these partial results are shared in a
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global array object, a single processor can proceed with the next BLAST calculation
before its companion processor has finished the task. So each processor proceeds
with its own partial queries posting the results after each assignment to the process
group global array object. When a predetermined number of these queries has been
completed, a processor switches from query mode to print mode. In print mode,
each processor is assigned the duty of printing half of the results to its own output
file. All that is required during this phase is for both halves of the query to have
been completed at some point prior to printing. This is the only possible block in
this sequence of operations. Iteration over several queries has been used as a way to
eliminate the majority of blocking that would occur at this point, since most of the
time one processor is only behind the other by one or two queries. Each processor
prints its assigned output to a separate file (again, either in local scratch space or
over a globally mounted filesystem), taking full advantage of the independence of the
queries to drive I/O at its maximum rate.

Sequence block prefetching On distributed memory systems, the main perfor-
mance consideration for ScalaBLAST arises from interconnect latency. Blocking ’get’
operations supported by Global Array toolkit are used in the most straightforward ap-
plication of ScalaBLAST to retrieve sequences from the global array sequence shared
object to individual processors during a run. But each sequence has an average length
shorter than 300 characters, and there are currently over 3 million sequences in the
nr database. So for 1 million queries, each of 3 million short sequences would be
individually sent via global array operations to each process group. For low latency
interconnects, this represents a performance penalty of roughly 50interconnects, it is
possible this bottleneck would dominate run time degrading computational efficiency
to an unacceptable level and interfering with scalability. So ScalaBLAST was outfit-
ted with a block prefetching option in which large sequence blocks are retrieved using
nonblocking global array ’get’ operations. As one block is being processed, the next
one is being prefetched. When the end of the current block is reached in local mem-
ory, a ’wait’ is issued until the prefetch operation has completed. Using this prefetch
method, virtually all the overhead associated with sequence retrieval from the global
array sequence object was hidden by overlapping fewer large retrieve operations with
the query processing itself [[83]].

Exploiting concurrency between query and I/O tasks Concurrency in the
nature of large BLAST searches has been exposed and exploited by ScalaBLAST in
two separate design features. Since BLAST compares a query sequence against each
sequence in the target database in a predictable order, (for the first pass), prefetching
algorithm discussed above is a natural way to overlap communication cost of retriev-
ing sequences with the computational work of processing a query. The second way
in which ScalaBLAST exploits concurrency in large BLAST searches is by dividing
the BLAST driver into query and print phases, rather than allowing them to stay
interleaved as they are in the standard NCBI toolkit distribution. This makes it
possible to iterate over several queries, accumulating partial results before moving
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to the print phase. But the real benefit is more subtle. ScalaBLAST was designed
to maximize I/O by allowing each processor to print results to its own file. If two
processors perform a query task, then a single processor must collate and print those
results, the second processor can only get as far as performing the next partial query
before it must stop and wait. It cannot print until the first processor has caught
up, posting its own partial results for the second query. This bottleneck would occur
on each query and the resulting inefficiency would compromise scalability. There is
often great variability in the duration of the query phase for a given sequence between
the processor assignments for that query. For instance, one processor may find no
significant hits in its portion of the database search while the other processor may
find thousands of significant hits in its portion of the database for the same query.
Likewise between queries, one may see a query with many hits and long alignments
followed by a query with few hits and straightforward alignments. When this sort
of variability in run time for tasks occurrs, it usually pays off to average over many
tasks. The more tasks one can do before enforcing a ’barrier’ (or ’sync’ in the case
of global arrays), the more likely the run times for each task are to even each other
out. ScalaBLAST uses this to its advantage by scheduling multiple query tasks to
be performed by each processor in the group (which can be done asynchronously)
followed by a collection of print tasks. The only dependency in the tasks is that for
a given query to be printed, both of its partial results must have been completed
and posted. But since we can iterate over many queries before moving to the print
phase, most of the variability in the task times averages out, increasing efficiency and
throughput for very large jobs.

ScalaBLAST Code Overview

Layout of the ScalaBLAST driver The driver function for ScalaBLAST is de-
rived from the NCBI toolkit file ’blastall.c’. When the user runs the ScalaBLAST
executable on the command line of a submission script, the main driver (’ncbimain.c’)
calls a function called �Nlm Main, which is defined in the file ’sblastall.c’. This driver
processes the input arguments and sets up the run using the same procedure used
by ’blastall.c’. However, the normal BLAST executable immediately opens the user-
specified output file and prints header information and begins printing tick marks to
indicate the passage of time. ScalaBLAST has been modified so that it loops over
10 queries (or as many as remain in the process group’s assignment) only performing
query-related tasks. After all 10 partial queries are done and the results posted by
a processor, that processor moves to the print phase. Even numbered processors are
responsible for dumping the even numbered query’s output to its file. Likewise odd-
numbered processors handle odd-numbered queries. When a processor is printing, it
first checks to make sure both partial results have been posted to the results global
array object. If so, then it localizes the two half-sequence alignment objects from the
global array and manually merges them into a single list. Then this linked list is sent
to the normal NCBI print routine. When all printing is done, the processor waits
for the other processor in the group to finish, and then both processors re-enter the
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query phase if any queries remain unprocessed.

Creating this driver from the distributed NCBI ’blastall.c’ file is done by first pushing
all the argument setup code above the loop. Then a loop is created in which all the
query-related functions occur in a subloop in the top, followed by a printing subloop
at the bottom. Initialization of the query has to happen twice-once during the query
phase and again during the printing phase so file pointers must be maintained so that
they can be rewound appropriately once the query phase is finished. During the print
phase of the driver, only mask loc (discussed below) is set to TRUE, forcing BLAST
to initialize the data structures needed for printing output, but not actually perform
the search.

Prefetching, as described above, is performed for each query during the first pass over
the database. When the last database block is prefetched, a flag is set which allows
future database operations to directly retrieve a single sequence using blocking ’get’
calls. As a result, the driver must notify the database-reading function whenever a
new sequence is begun. This is done using global variables set by the driver indicating
it is the first time for this sequence through the database reading step. This variable is
detected in the database-reading function, as described in the next section in greater
detail.

The driver uses two primary hooks into the ScalaBLAST functions, contained in the
file ’sb funcs.c’. These functions are primarily for creating, initializing, and managing
the global array objects. First the driver creates a the collection of global array
objects, then assigns processor 1 the task of reading the user-specified binary sequence
file, byte-swapping its binary entries, and posting the sequence data to the sequence
global array. Processor 0 on each process group is responsible for opening the sequence
index file and filling the global array objects local to each process group with the values
of starting locations of each of the sequences. This way, each processor has access to
the starting and ending index of each sequence in the global array sequence object.

The driver’s next task is to assign one half of the database as the search target for
the processors. In each group, proc 0 is responsible for searching the second half of
the database and proc 1 is responsible for searching the first half of the database.
This is done by overwriting the options-¿first db seq and options-¿final db seq values
where the final sequence index for process 0 and first sequence index for process 1 is
determined as the sequence containing the n/2 th character where n is the number of
characters in the whole database.

The last special role of the driver occurs during the output phase. After re-initializing
the query with only mask loc set to TRUE, the driver calls the ScalaBLAST function
GA Reconstitute SeqAnnot, which localizes both partial results for a given query and
merges the results into a local linked list structure which is then dispatched to the
NCBI print routines.
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Modifications to the NCBI toolkit source code for ScalaBLAST Rather
than change the NCBI BLAST API, ScalaBLAST passes some variable to BLAST
through global variables. These include a flag indicating whether prefetching should
be used, information about the number of processors and the process identity, process
group information, and control flags for managing passes through the database. These
globals are referenced in the tools/readdb.c file.

ScalaBLAST intercepts native NCBI calls to database reading functions and a new
block of code is executed instead. This block reads the ID number of the sequence
(the sequence index, which is normally passed to the database reading function) and
gets the sequence string from the global array object containing the sequence. If
prefetching is used, this is read from a local buffer into which a block of sequences
has been already placed. If prefetching is not used, a blocking GA Get is issued to
directly retrieve the sequence into local memory.

Currently, the block size of the prefetch unit is predetermined (by a #define direc-
tive) in both the NCBI standard file readdb.c, and in the ScalaBLAST driver file
scalablastall.c. These values can be manually set to tune the prefetch block size for
different systems, but they must agree with one another. To prevent the second ini-
tialization phase from doing actual alignment calculations, a new element (Boolean
only mask loc) has been added to the BLAST OptionsBlk struct defined in ’blast-
def.h’. If only mask loc is set to TRUE, BLAST is re-routed to only create the data
structures needed for printing the sequence alignment calculation and not attempt
to perform an alignment. The modification required to intercept this new option is
located in the file ’blastutl.c’. It tests if only mask loc is set to TRUE, and if so skips
over the call to BioseqBlastEngineCore, which calls the core BLAST algorithm.

Porting ScalaBLAST to the Opteron According to the NCBI website and the
NCBI code documentation, there is no native support for BLAST on 64 bit AMD
Opteron. However, a patch is available from Scalable Informatics (http://downloads.scalableinformatics.com/downloads/ncbi/).
To use this patch, the newest version of the NCBI toolkit was downloaded to Jacquard
and the accompanying ScalaBLAST had to be changed accordingly. The ScalaBLAST
driver had to be completely reworked to function correctly with the newest version
of the NCBI tookit and the Scalable Informatics patch was modified to build the
NCBI toolkit on Jacquard to be used with ScalaBLAST. Because ScalaBLAST uses
MPI and GA libraries in the readdb functions and in the Nlm Main wrapper, the
standard NCBI build must be modified so that the proper libraries and include files
are available at compile and run-time. Similar changes were made to the NCBI build
on MPP2, a 1,960 processor Itanium II cluster housed in the William R. Wiley En-
vironmental Molecular Science Laboratory’s (EMSL) Molecular Science Computing
Facility (MSCF) so that ScalaBLAST could be made to run with GA and MPI li-
braries there as well.
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ScalaBLAST build details Intel 8 compiler was used to build ScalaBLAST on
MPP2, and pathcc was used to build both applications on Jacquard. On both plat-
forms, the associated file in the ncbi/platform directory was modified to point to the
correct compiler, etc... On MPP2, the following is the value of the NCBI FLAGS1
variable: -c -O2 -tpp2 -ftz -ip -I/¡path to GA include¿ -I/¡path to ScalaBLAST home
directory¿ -I/¡path to MPI include¿. Following is the value of the NCBO OTHERLIBS
variable: -L/¡path to GA libs¿ -lglobal -lma -larmci -llapack -lmpi -ltcgmsg-mpi -
lpthread -lm -L/lib -L/¡path to mpi libs¿ -lguide. The same modifications had to be
made to the corresponding values in the ncbi/make files makenet.unx makedemo.unx
makeindx.unx and makeall.unx as well. To prevent multiple definitions of the pointer
and boolean types from GA and from NCBI, the following changes had to be made
to the GA include file matypes.h: the line #ifndef CSO NCBI and a correspond-
ing #endif flank the declaration of the Boolean and Pointer types. CSO NCBI is
defined in the standard ScalaBLAST header file.

ScalaBLAST run-time environment On MPP2, the run-time and compile-time
environments are set by the pnnl env/1.11 module. Among other things, this sets
LD LIBRARY PATH to point to the correct system, Quadrics and MPI libraries
as well as scheduler (LSF) and resource manager (RMS)-specific libraries. For the
normal NCBI toolkit to run, the /.ncbirc file must exist. On MPP2, this file contains
directives pointing to default data and database locations. Data directory is for
scoring matrices, etc.

[NCBI]

Data=/home/oehmen/GAMPI\_PREFETCH/PAR\_ncbi/data/

[BLAST]

BLASTDB=/home/oehmen/DB\_NEW/

BLASTMAT=/home/oehmen/GAMPI\_PREFETCH/PAR\_ncbi/data/

For this benchmark, databases, input and output files were located on the /home
filesystem. The ScalaBLAST executable is copied to /scratch at run-time.

Internal ScalaBLAST run-time parameters Prefetching chunk size (CHUNK SIZE)
is set by a pair of #define directives in the standard ScalaBLAST header file, and
in the /tools/readdb.h file to a value of 400000 on both MPP2 and Jacquard builds.
In the current ScalaBLAST build, the size of the array holding partial query results
is fixed at 40,000,000 int’s on both MPP2 and Jacquard. The new sequence penalty
(QUERY PENALTY) is set in the ScalaBLAST driver to a value of 225 on both
MPP2 and Jacquard. ScalaBLAST is currently hard-coded to expect exactly two
processors per process group (ENCLOSURE SIZE). This is optimal for both MPP2
and Jacquard in which dual processor nodes are present.
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0.17.2 Data

Q4 Collected Data Problem(0.16.1) Problem(0.16.1)
source codes yes yes

build information yes yes
runtime information yes yes

total walltime yes yes

Table 27: Information collected during Q4 for both platforms and both problems w/
ScalaBLAST.

arch procs nq/p/min/mil Time(m) nq problem
jacquard 4 3.751874872 21.45 88 ENV
jacquard 4 2.530568947 21.68 60 ENV
jacquard 16 2.817554891 8.033 99 99
jacquard 64 2.334546035 24.48 1000 1000
jacquard 320 1.900295609 361.82 60146 ENV
jacquard 320 1.872471727 361.9 59279 STP
MPP2 4 3.187685463 25.53 89 ENV
MPP2 500 2.522386515 108.4 37373 ENV
MPP2 1000 6.404846053 510.42 893677 STP
MPP2 1500 3.587774192 1097.43 1614513 ENV

Table 28: Q4 performace of ScalaBLAST on varying problem sizes, process counts
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Figure 38. Normalized throughput of ScalaBLAST for a range of problem sizes and number
of processors for both MPP2 and Jacquard. Both baseline problems were executed on both
systems.

Note the results in table [28] show that ScalaBLAST throughput was consistently
near or above 2 queries per processor per minute (normalized to 1 million proteins
in the database for comparison to future benchmark numbers on larger databases).
On jobs containing from 99 queries to 1.6 million proteins and from 4 processors
to 1500 processors this level of throughput was achieved. The data from this table
is illustrated in Fig[38], which shows that on Jacquard, ScalaBLAST demonstrated
excellent scaling by maintaining per-processor throughput at a nearly constant level
up to 64 processors. By 320 processors, the throughput is still good, but is beginning
to decline over the 4 processor throughput without regard for output size (STP vs.
ENV are identical). By contrast, ScalaBLAST running on MPP2 shows a virtually
ideal (flat) per-processor throughput regardless of number of processors for the ENV
benchmark, with a substantial gain in throughput when using recording only one
top hit per query (STP benchmark). Large variability in run-time was observed
on jacquard in conjunction with running with the database on the /u0 filesystem
(better performance at 4 procs) vs. on the /projects filesystem (almost 1/3 drop in
performance). Quotas enforced on /u0 prevented similar tests being performed with
regard to where output was routed (in all cases, it was sent to /projects).

17. FY06 Improvement in Communication and I/O Overhead (ScalaBLAST) Im-
provements made in the area of high-throughput BLAST calculations in the course
of this OMB software effectiveness study stem from effective partitioning of large
input sets taking advantage of globally mounted filesystems, and effective memory
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utilization. ScalaBLAST performance characteristics are illustrated in the follow-
ing figures taken from NWPerf output for the 1000 processor MPP2 benchmark for
the STP problem. Similar performance was observed for ScalaBLAST on the ENV
benchmark. Figure[39] illustrates the low idle time which would accompany resource
contention in the software-implemented shared memory model from Global Arrays
on which ScalaBLAST is based. The correspondingly high user time illustrated in
Figure[40] is indicative of the performance we observe for ScalaBLAST for a wide
range of problems. The main reason for such high effectiveness is hiding latency from
remote ’get’ operations using prefetching available through Global Array nonblocking
calls. Figure[41] shows that context switching quickly levels off during the calcula-
tion as processors contend less and less for off-processor sequence blocks even though
only 1/1000 of the whole database is local to any given processor. This contention
decreases through the run because of the variability in BLAST execution time for
given queries. Since process groups are independent except for their sharing of the
target database, randomness in run times spreads out the communication pattern
intrinsically, increasing efficiency and scalability. This spread is also evident from
Figure[42] which shows the pattern of processors writing to the Lustre file system.
Even though each process group performs the same number of queries between file
write operations, the time to execute each query block differs spreading out the overall
I/O pattern, minimizing contention for I/O resources.
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Figure 39. Idle time reported by NWPerf for STP benchmark for ScalaBLAST Almost
no time is spent by any processor in the idle state.
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Figure 40. NWPerf results for STP benchmark ScalaBLAST run on 1000 processors
showing virtually all the time spent by all processors in user space.
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Figure 41. Context switching for the STP run of ScalaBLAST on 1000 processors dies out
as the BLAST tasks become more out of sync on different processors. This eases resource
contention for I/O and memory access.
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Figure 42. NWPerf results on MPP2 for ScalaBLAST STP benchmark on 1000 proces-
sors. After startup, write tasks to the global filesystem are evenly distributed across the
processors.

A second tier of concurrency is exploited by iterating over separate halves of a
database with the processors within a process group. This is done many times fol-
lowed by storage of partial results in a process-group wide global array object before
any of the results are merged and printed to the output file. Since each processor can
proceed on its own with these half-database calculations, synchronization is only en-
forced after all iterations have been performed by both processors in the group. The
consequence of this is that there is little blocking within a process group for synchrony
or resource contention. The processors in the process group are proceeding with in-
dependent calculations requiring only sparse synchronization. Fig[43] illustrates the
low likelihood of multiple processes blocked on system calls. The vast majority of
datapoints lie on the value 0-the mean for this collection of data is 0.025 +/- 0.2.
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Figure 43. Blocking on I/O or other system calls are rare in the ScalaBLAST STP
benchmark on MPP2 using 1000 processors. NWPerf output shows most of the data at a
value of 0.

FY06 Improvement in Memory Utilization (ScalaBLAST) ScalaBLAST,
based on the NCBI BLAST core algorithm, is not floating-point intensive. Figure[44]
illustrates the flop rate of the high-throughput operation of ScalaBLAST at around
0.1The primary limitation of ScalaBLAST performance is memory-bandwith avail-
ability. Figure[45] illustrates the stall rate of the code with two key features: 1) all
processors are equally likely to be stalled (rather than the high stall rate of the master
node observed in the MPI BLAST benchmarks), and 2) load imbalance results in a
higher stall rate at the end of the calculation as some process groups finish their tasks
before others. Item 2 could be addressed using dynamic scheduling of the queries,
which is an item for future development in ScalaBLAST. However, item 1 will remain
a challenge since register-register stalls (of which the majority shown in Figure[45]
are) may relate to dependency in computations being done by ScalaBLAST or the
BLAST core itself. Given the weakness of many systems in terms of balance between
peak flop rate and memory bandwidth and memory latency, ScalaBLAST was de-
signed to utilize memory as efficiently as possible. Figure[46] illustrates the changing
footprint of ScalaBLAST during the STP benchmark run. This figure clearly shows
that all processors are operating well within the limits of the memory available on
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MPP2 (8 GB per node on fatnodes and 6 GB per node on thin nodes).

Figure 44. ScalaBLAST is not floating-point operation intensive with a consistent flop rate
of below 0.25% of peak on MPP2, as revealed by NWPerf results for the STP benchmark
on 1000 processors.
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Figure 45. Stalls in the memory bus demonstrate that ScalaBLAST is memory-bandwidth
limited even while producing high-throughput BLAST output. Rise in stalls near the end
of the calculation marks the load-balancing limitation of static partitioning of the query
list.
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Figure 46. Global arrays help make memory management effective after startup. Jumps
in memory usage generally coincide with partial results buffers being expanded in Scal-
aBLAST, as revealed by NWPerf output from MPP2.

Figure[47] demonstrates that no processors participate in swapping during the run,
ensuring that limitaitons associated with swapping do not hinder ScalaBLAST oper-
ation or scalability.
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Figure 47. NWPerf results reveal that ScalaBLAST completely avoids swapping during
the entire run on all processors. This output contains data from all 1000 processors for the
entire STP benchmark run on MPP2.

0.18 Results

To overcome the limitations of MPI BLAST with respect to memory usage and scal-
ability, ScalaBLAST was designed with an alternative approach, meant to maximize
parallel I/O, memory bandwidth, and scalability as demonstrated in the FY06 im-
provement results, shown in the following sections.

New Result Compared with the failure of MPI BLAST to produce any output for
either of the benchmark runs on both Jacquard and MPP2, ScalaBLAST succeeded
in delivering a high-throughput of BLAST results per-processor on both platforms
and for both benchmarks essentially without regard for number of processors involved
in the calculation-the same as ideal scaling for both problems, as illustrated in Table
[28].
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Problem System Enhancement

(sec0.16.1) MPP2, mpp2.emsl.pnl.gov new result, see(??)

Table 29: FY06 Joule performance enhancement for the ScalaBLAST code. The
science driver for this application is reduced to...
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