
DEPLOYING PARALLEL NUMERICAL LIBRARY ROUTINES

TO CLUSTER COMPUTING IN A SELF ADAPTING

FASHION

KENNETH J. ROCHE, JACK J. DONGARRA

Department of Computer Science, The University of Tennessee,

203 Claxton Complex,

Knoxville, Tennessee 37996-3450

roche,dongarra@cs.utk.edu

This paper discusses middleware under development which couples cluster system
information with the speci�cs of a user problem to launch cluster based applica-
tions on the best set of resources available. The user is responsible for stating his
numerical problem and is assumed to be working in a serial environment. He calls
the middleware to execute his application. The middleware assesses the possibility
of solving the problem faster on some subset of available resources based on infor-
mation describing the state of the system. If so, the user's data is redistributed
over the subset of processors, the problem is executed in parallel, and the solution
is returned to the user. If it is no faster, or slower, the user's problem is solved with
the best appropriate serial routine. The feasibility of this approach is empirically
investigated on a typical target system and results reported which validate the
method.

1 Overview

On multi-user computing systems in which the resources are dedicated but
the allocation of resources is controlled by a scheduler, one expects a job, once
allocated, to �nish execution in a predictable amount of time. In fact, the user
on such a system usually submits a job through a batch script which requires
an upper bound on the predicted runtime of the task being queued. The user
is billed for the entire time requested and thus has a responsibility to himself
and other users to understand the behavior of his code. Scheduling schemes on
such systems attempt to order the computations in a fair manner so that user
jobs show progress towards completion in a timely fashion while the overall
system throughput is maximized. One problem with this approach is that
such a scheduling scheme is easier to talk about than to implement.(ref. [1])
It is a fact of life that the multi-processor scheduling problem is NP -complete
in the strong sense.a Thus, developers must look for algorithms which are

aTheoretically, a decision problem � is NP -complete in the strong sense if (� 2 NP)^(9�p
which is NP -complete). For decision problem � and polynomial p, de�ned over the integers,
�p is the restriction of � to instances I 3 Max[i] � p(Length[I]). If � is solvable by a
pseudo-polynomial time algorithm, then �p is solvable in polynomial time. Consider the

dyn_pnumlibs: submitted to World Scienti�c on April 8, 2002 1

eÆcient. This is a diÆcult and time consuming task (which can't really be
avoided on production scale or commodity clusters such as those at national
laboratories and supercomputing centers). The large variance in the average
duration and demand of user jobs, for instance, further complicates the task.
It's complicated. Even though there's no provably optimal way of addressing
this problem, people do it all the time because it has to be done. We don't
make further considerations of such systems in this paper.

In shared, multi-user computing environments, such as clusters of work-
stations in a local area network, the notion of determinism in computations
can be lost due to resource contention. Thus, successive runs of the same linear
algebraic kernel with the same problem parameters, for instance, may result
in grossly di�erent wall clock times for completion due to the variability of the
work load on the CPUs from competing tasks. If users compute responsibly
and in coordination with one another such systems can be and are successful.
(Administrators intervene otherwise to mediate serious contention problems.)
This approach is often more eÆcient, for instance, in the developmental stage
of parallel application codes due to the constant testing and debugging of
software, or in groups where the average user job tends not to saturate the
system resources and runs to completion on a relatively short time scale (e.g.
minutes or even hours). One way for the user to possibly make better use
of the available resources in such an environment is to employ the informa-
tion describing the state of the computational system at runtime to select an
appropriate subset of resources for the speci�c kernel at hand. It is acknowl-
edged that making low risk predictions in such a system when multiple users
are sharing the resources cannot be done with certainty. There is nothing to
preclude the event that the demand on the resources may change dramati-
cally in the time which transpires between deciding on a set of resources and
getting one's problem set up and ready to go on the resources. Nonetheless, it
seems negligent not to try to use available system related data at runtime. In
the very least a user can identify saturated resources in the system and avoid
allocating them for his/her run. In the event that the overall system behavior

uctuates about some time sensitive normal level of activity, then a statistical
analysis of the collected data can be used as the basis for a predictive model
of the system's behavior at some future time. Software, such as NWS, the

multi-processor scheduling problem �MS: given a �nite set J of jobs, a length l(j) 2

Z+8j 2 J, a number, m 2 Z+, of processors, and deadline D 2 Z+ , is there a partition
J = J1 [J2 [� � � [Jm of J into m disjoint sets such that max[

P
j2Ji

l(j) : 1 � i �

m] � D? This problem is NP -complete in the strong sense and thus cannot be solved by a
pseudo-polynomial time algorithm unless P = NP . (For proof see reference [2], for related
information see references [3; 4; 5; 6; 7; 8].)

Network Weather Service, operates sensors in a distributed computing envi-
ronment and periodically (in time) collects measured data from them.(ref. [9])
NWS includes sensors for end-to-end TCP/IP performance (bandwidth and
latency), available CPU percentage, and available non-paged memory. The
collected data is kept and analyzed as a time series which attempts to forecast
the future behavior of the system through low order ARMA, autoregressive
moving averages, methods.

This paper discusses software being developed which couples system infor-
mation with information speci�cally related to the numerical kernel of interest.
The model being used is that a user is assumed to contact the middleware
through a library function call during a serial run. The middleware assesses
the possibility of solving the problem faster on some subset of available re-
sources based on information describing the state of the system. If so, the
user's data is redistributed over the subset of processors, the problem is exe-
cuted in parallel, and the solution is returned to the user. If it is no faster, or
slower, the user's problem is solved with the best appropriate serial routine.

It is conjectured that if the underlying application software is scalable
then there will be a problem size which marks a turning point, Ntp, for which
the time saved because of the parallel run (as opposed to the best serial runs
for the same problem) will be greater than the time lost moving the user's
data around. At this value, such software is deemed useful in the sense that it
provides an answer to the user's numerical question faster than had the user
done as well as an expert working in the same serial environment. That is, it
bene�ts even the expert user working on a single node of the shared system
to use the proposed software for problem sizes in which Nuser > Ntp.

As a case study we consider the problem of solving a system of dense,
linear equations on a shared cluster of workstations using the ScaLAPACK
software.(ref. [10]) A discussion of some speci�c implementations tested is
made and results of selected experiments are presented. It is observed that
even with naive data handling the conjecture is validated in a �nite ensemble
of test cases. Thus there is motivation for future studies in this area. It is also
observed that the expert user in the parallel environment can always complete
the dense, algebraic task at hand faster than the proposed software. (There
are no clear winners for small problem sizes since each approach solves the
problem serially with the best available version of the library routine.) This
is no surprise since even in the most ideal cases, the proposed software has
to touch the user's data at least enough to impart the relevant data structure
expected by the logical process grid. The parallel expert, on the other hand,
is assumed to be able to generate relevant data structures in-core, in-parallel
at the time of the distributed run. This user also knows how to initialize the

numerical library routine, and make compilation time optimizations. He/she
is probably not the typical scientist who has likely already labored just to
reduce their problem to linear algebra. There are, in fact, many details to
account for by any user before the parallel kernel runs correctly. Reporting
the results of this expert user provides a basis for comparison to the other
projected users and scenarios.

2 Numerical libraries in shared, homogeneous, distributed

environments

2.1 The computing environment

In the development of the current investigation heterogeneous grid com-
puting systems have not been the central focus. (See references
[11,12,13,14,15,16,17].) However, it is noteworthy that one of the goals in
resource selection when considering a pool of heterogeneous (and potentially
geographically distributed) candidate resources is to achieve as much homo-
geneity in the allocated resources possible. Here's at least one complication
of scheduling in a shared distributed system which is general to both hetero-
geneous and homogeneous systems: the scheduler of resources for a task in
question has to try and allocate resources which not only look homogeneous at
the instant of inquiry, but remain as homogeneous as possible for the duration
of time that the task is in (parallel) execution. In short, even if we could
solve the general multi-processor scheduling problem at some speci�c instant
in time, we can't count on this partitioning to assist us in forecasting the
state of the system resources at some time in the future. This is due to the

uctuating properties of system resources which one can observe in a shared
environment. This brief subsection intends to describe the notion of homo-
geneity in the context of the current study. Some sample results of timing
various operations in one of the systems tested demonstrates the notion as it
is observed empirically.

In complex mechanical systems the notion of homogeneity usually implies
that the system behaves in a predictable manner when performing a speci�c
task only in the absence of external in
uences. If this de�nition applies to
computational systems (see Figure 1 for a sample computing environment),
then it cannot be that a shared set of resources alone, such as a cluster of
workstations in a local area network, is homogeneous. Usually such a system
is only meaningful when responding to a user's requests. Users' requests are
developed externally and then serviced by the system at runtime. Since there
is no way to know when a user intends to make requests in such an open

Network File System
Sun’s NFS (RPC/UDP)

Remote memory server,
e.g. IBP(TCP)

100 Gbit Switch,
(fully connected)

100 Mbit Switch,
(fully connected)

100 Mbit

Users, etc.

Figure 1. The �gure is a diagram of part of the local area net work in which many of
the current investigations were made. It is noteworthy for the purposes of interpreting
some of the results presented in this paper that the memory depot and network �le server
are separate machines in reality sitting on a shared network. The clusters on which we
have developed the current study are removed from the shared network through one of two
switches through which the cluster of workstations is said to be fully connected. It is a
factor for the types of studies we have made that there is only one, 100Mbit line for all of
the network
ow to and from the network disk or the memory server.

system, any speci�c task, such as solving a set of linear equations, is likely to
exhibit di�erent total wall times for completion on subsequent runs. So what
does one mean by a shared homogeneous, distributed computing environment?
Naively, it is assumed that the hardware speci�cations and available software
are duplicated between compute nodes on such a system. This is not enough
however (and may not be necessary). The notion of homogeneity has meaning
only in terms of some speci�c system state engaged in some speci�ed activity
as observed in an ensemble of test cases. Let us elaborate on this thought a
little.

Physical system parameters, when observed at equidistant time inter-
vals and kept in collections of ordered data, comprise a time series.(see ref-

erences[18,19,20,21]) Because of the inherent
uctuations in the system pa-
rameters, CPU loads on a shared cluster for instance, the time series of the
state of the shared system is a non-deterministic function. (For instance,
the activity level of system resources often re
ects the underlying nature
of the humans which use the system. At lunch time, dinner time, or bed
time one often observes a decrease in overall system activity. In the morn-
ing, one often observes some adiabatic growth of activity in the system as
users arrive and begin working. This growth continues until some normal
level of system activity is achieved. For some duration of time, one may
expect the system resource activity levels to
uctuate around this normal.
But the point is that the activity norm is time of day dependent more often
than not.) Non-deterministic time series can only be described by statis-
tical laws or models. To study such systems formally one assumes that a
time series can only be described at a given instant in time, t, by a (dis-
crete) random variable, Xt, and its associated probability distribution, fXt

.
Thus, an observed time series of the system parameters can be regarded as
one realization of an in�nite ensemble of functions which might have been
generated by a stochastic process -in this case multi-users sharing a common
set of resources as a function of time. Stochastic processes are strictly sta-
tionary when the joint probability distribution of any set of observations is
invariant in time and are particularly useful for modeling processes whose
parameters tend to remain in equilibrium about a stationary mean. Any
stationary stochastic process can be described by estimating the statistical
mean � (x = n�1

Pn
t=1 xt), its variance �

2 (s2x = n�1
Pn

t=1(xt � x)2), the

autocovariance function (cxx(k) = n�1
Pn�k

t=1 (xt � x)(xt�k � x) e.g. the
extent to which two random variables are linearly independent), and the
sample autocorrelation function which is a kind of correlation coeÆcient
(rxx(k) = cxx(k)(cxx(0))

�1; k = 0; :::; n � 1). A discrete random process for
which all the observed random variables are independent is the simplest form
of a stationary stochastic process. For this process, the autocovariance is zero
(for all lags not zero) and thus such a process is referred to as purely random,
or white noise.

Usually, the observable system parameters such as CPU loads and avail-
able memory are not independent. Thus, the notion of homogeneity is mani-
fest only in observing a speci�c task on the system, such as data I/O or mul-
tiplying matrices in-core, repeatedly under normal system activity on each of
the computing nodes said to comprise the system. An expectation value (�)
for the speci�ed task will be formed for each unit only in this time tested man-

ner.b One can subsequently compare the results from each of the units and
determine a level of similarity between them. Ideally, the time to complete any
serial task would be the same within some standard deviation (approximated
by the square root of the variance) regardless of the compute node executing
it. Further, the error bars should ideally tend to zero as the number of ob-
servations tends to in�nity. This is not achievable in practice, clearly. (For
non-stationary processes, one �lters the available data sets thus transforming
the problem into a stationary form.)

Figures 2, 3, 4, and 5 illustrate the results of portions of an empirical
study on one of the systems used to develop the current investigation. In
each of the �gures, successive runs of a task are time stamped and recorded
to �le. The results presented were analyzed statistically and only the mean
and root of the variance are reported. The runs were conducted over the
course of weeks and, as much as possible, during the same hours of the day
(10am until 5pm,EST). No attempt was made to push users o� the shared
system accept during development of some test cases.

In Figure 2, an assessment of the CPU of each node when executing
(serial runs) a numerical kernel rich in
oating point operations as a function
of the numerical problem size is made. In this case the time to solution
and performance are reported and there is a clear correlation in the expected
behavior of each node.

Figure 3 is composed of three plots. The plots look at the read and
write I/O times per node as a function of bytes on each node's local disk,
on the local network users' disk (in our case operating under Sun's NFS -
utilizing RPCs, UDP/IP), and on a memory server (running IBP c (ref. [23]),
TCP/IP) on the same local network but with a di�erent IP address from
any node on the cluster or the NFS server itself. In plot one, the local disk
accesses, one can only imagine that sporadic user activity is responsible for
the larger variances in some of the reported results. To within the error bars

bIf observational data is to be of use in developing advanced software, a standard metric
has to be agreed upon and needs to be reliable across di�erent platforms. PAPI (ref. [22]),
which accesses hardware counters as well as the system clock, provides such a tool and has
been used throughout this investigation when recording observations.
cIBP , the Internet Backplane Protocol, is software for managing and using memory on a
distribution of disks across a network. Its design is really intended for large scale, logistical
networking. However, because it was designed with a client/server model in mind, is also
useful for our purposes (as will be discussed further in this report.) The client accesses
remote resources through function calls in C, for instance. The multi-threaded servers have
their own IP addresses. The client has to know this address in advance as well as to which
port the server listens. Usually one sets up his own IBP depot and can choose the port.
The IBP group also manages some public domain (free) depots across the country which
one can use.

0 500 1000 1500 2000 2500 3000
N

0

10

20

30

40

50

T
im

e
(s

)

TORC(Homogeneity(CPU))
Time to Solve Ax=b:: _GESV() (ATLAS)

torc1
torc2
torc3
torc4
torc5
torc6
torc7
torc8

0 500 1000 1500 2000 2500 3000
N

0.25

0.28

0.30

0.33

0.35

0.38

0.40

G
F

L
O

P
S

TORC(Homogeneity(CPU))
Performance of solve routine _GESV() in Gflops

torc1
torc2
torc3
torc4
torc5
torc6
torc7
torc8

CPU homogeneity on TORC::

Time to solve Ax=b:: _GESV()

CPU homogeneity on TORC::

Performance of _GESV() in GFLOPS

Figure 2. Performance and time to completion numbers for the serial, dense, linear solve
routine gesv() from ATLAS are reported as an example. CPU homogeneity in the shared
cluster is a very important criterion for developing numerical software intended for dis-
tributed environments.

the wall times reported are within seconds of one another and thus invoke
some sense of homogeneity. In the software designed to date, we don't make
explicit use local disk I/O. In plot two, the accesses to the local network disk
as controlled by NFS, we again see
uctuations, in particular during the
UNIX system reads. This data is of particular interest to us, as will become
clear in the sections to follow. It is recalled that to access (NFS controlled)
the network disk that data is moved over a single shared local communication
line. Further, multiple users tax NFS due to the design of the shared local
�le system. One expects larger variances here. Nonetheless, the results again
instill some con�dence within the expected error. Further, we have to deal
with reality. The systems being tested are supposedly identical. However, in
open systems we must work with the expectation that this notion is a fallacy
-we can only make sensible predictions within some con�dence limits which
are set by the actual behavior of the system. It is fun, however, to guess
at why the writes appear to have much tighter error bars than the reads.

0.0e+00 1.0e+08 2.0e+08 3.0e+08 4.0e+08 5.0e+08
Bytes

−20

0

20

40

60

80

100

T
im

e
(s

)

TORC(Homogeneity(I/O))
Time to WRITE versus number of bytes

torc1
torc2
torc3
torc4
torc5
torc6
torc7
torc8

0.0e+00 1.0e+08 2.0e+08 3.0e+08 4.0e+08 5.0e+08
Bytes

−5

5

15

25

35

45

T
im

e
 (

s)

TORC(Homogeneity(I/O))
Time to READ versus number of bytes

torc1
torc2
torc3
torc4
torc5
torc6
torc7
torc8

Local disk(s)

Local disk(s)

0.0e+00 1.0e+08 2.0e+08 3.0e+08 4.0e+08 5.0e+08 6.0e+08
Bytes

0

50

100

150

200

T
im

e
(s

)

TORC(Homogeneity(I/O))
Time to WRITE versus number of bytes

torc1
torc2
torc3
torc4
torc5
torc6
torc7
torc8

0.0e+00 1.0e+08 2.0e+08 3.0e+08 4.0e+08 5.0e+08 6.0e+08
Bytes

−25

0

25

50

75

100

125

150

T
im

e
 (

s)

TORC(Homogeneity(I/O))
Time to READ versus number of bytes

torc1
torc2
torc3
torc4
torc5
torc6
torc7
torc8

UDP/IP, UDP/IP,
Network
File
System

Network
File
System

0.0e+00 1.0e+08 2.0e+08 3.0e+08 4.0e+08 5.0e+08 6.0e+08
Bytes

0

50

100

150

T
im

e
(s

)

TORC(Homogeneity(I/O))
Time to WRITE versus number of bytes

torc1
torc2
torc3
torc4
torc5
torc6
torc7
torc8

0.0e+00 1.0e+08 2.0e+08 3.0e+08 4.0e+08 5.0e+08 6.0e+08
Bytes

−25

25

75

125

175

T
im

e
 (

s)

TORC(Homogeneity(I/O))
Time to READ versus number of bytes

torc1
torc2
torc3
torc4
torc5
torc6
torc7
torc8

IBP,Remote Memory IBP,Remote Memory
Server (TCP/IP) Server (TCP/IP)

Figure 3. Empirical study of what is meant by I/O homogeneity on the shared cluster.

One can't be certain, of course, but maybe NFS is bu�ering part of the data
to be written. Since NFS utilizes RPCs which use the UDP/IP protocol,
the application does not require a response before sending the next message.
Thus to the user, it appears as though all is well. This is a reliability issue
and not addressed here. For the reads, the user doesn't report a time until
he actually has his data. This may add to the
uctuations, but it is more
likely due to the fact that writes require that the CPU (or I/O device) send
both address and data and require no return of data, whereas usually the
CPU must be waiting between sending the address and receiving the data on
a read. Often, the CPU will not wait on writes. In plot three, the results are
quite remarkable in some sense. For one thing, the accesses to the memory
server, IBP on a LINUX workstation in the local area, do have to utilize the
shared communication line as with the NFS case. However, this server is on a
di�erent machine in the local area from that which serves as the NFS server.
Thus, one suspects that there is much less overall activity on this server as
opposed to the the local network disk itself.

In Figure 3, there are two important points to keep in mind when con-
sidering the plots. One, for all three data sets, care must be taken to collect
such numbers since bu�ering by various levels of software skews the numbers
if successive runs aren't replicated scenarios. For instance, in the NFS runs
if one collects such data with naive nested loop approaches, one can observe
(not shown) that on the �rst run the time to report is always larger than
subsequent runs. This is because of the bu�ering of data by either NFS,
or possibly locally. If this is not accounted for, very spurious averages are
formed which do not re
ect the likely reality of servicing a user's request in
numerical libraries such as those we are trying to build. The point is, unless
the user makes successive requests with the same data set in mind, moving
his/her data will be the unbu�ered case -which is considerably larger in time.
This is accounted for in the presentation here. Next, the reader is advised not
to make serious comparisons of plots two and three. The machines servicing
these requests employ di�erent hardware and operating systems as well as
network protocols. It is noteworthy that the NFS will likely exhibit larger
variances since it is subject to a larger average activity in the local area net-
work. One should keep in mind that the requests are all generated from some
arbitrary node in our target computing system -this is why we care about
these observations.

Figure 4 reports available physical memory in kilobytes per node. The
plot is important because it demonstrates the reality that homogeneity can't
be taken for granted -despite common resources at the onset. In particular,
on the cluster under observation, there are certain nodes which are more

0 1 2 3 4 5 6 7 8 9
Machine Number

−1e+05

0

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

K
ilo

by
te

s

TORC(HOMOGENEITY(Available Memory))

available unpaged memory / node

Figure 4. The available unpaged physical memory is reported in KBytes per node. Available
memory is a critical criterion in resource selection since a user's job must fit in physical
memory lest it su�er serious time penalties due to page swapping during execution. The
variances for these observations are large since during heavy activity levels on a node,
physical memory tends to be nearly fully in use -at other times, nearly completely idle save
the OS.

commonly used than others. Who knows why this is, it just is.
Until now, we have ignored discussing some important observables such

as time for broadcasts, sends, and receives as a function of bytes when a
collection of machines from the available resources is executing in parallel.
In some sense, it is up to the library developer to know his target system.
In other words, the parallel application may impose the system properties of
interest. In our test case, we study the solution of systems of linear equations.
We will discuss this more later, but the parallel kernel is known to be rich
in matrix multiplies. We've seen CPU homogeneity already per node and so
expect the local performance to be a good �t for such a kernel. In addition,
during the factorization of A, the kernel is also rich in broadcasts. For this
reason, the behavior of broadcasts from a root node (the BLACS (ref. [24])
communication library implementation) as observed in our shared system is

0.0e+00 5.0e+07 1.0e+08 1.5e+08
Bytes

0

10

20

30

40

50

T
im

e
(s

)

TORC(Homogeneity(Communication))
Time to broadcast versus number of bytes

torc1
torc2
torc3
torc4
torc5
torc6
torc7
torc8

0.0e+00 5.0e+07 1.0e+08 1.5e+08
Bytes

0

10

20

30

T
im

e
 (

s
)

TORC(Homogeneity(Communication))
Time to send/receive versus number of bytes

torc(i) −>torc(j!=i)
torc(k)−>torc(j!=k)

Figure 5. The plot on the left reports the time for root to broadcast N bytes of data during
a parallel run in which 8 processors are selected from the cluster under investigation. Each
computing node acts as root. Although the behavior is clearly homogeneous looking, there
is a spurious node in the cluster as regards parallel communication of data. The fact is
exposed through an investigation of the send/receive times (point to point communication)
as a function of bytes. Plot two reports results from two di�erent nodes acting as the lead
node in di�erent runs. The lead node contacts each other node in turn and sends N bytes
of data to be received.

also reported. Each node is considered as root and results as a function of
bytes broadcast timed. We wait for con�rmation that each node has received
the data before stopping the clock. The slowest node should always dominate
-in this sense the results are meaningless for understanding the behavior of a
single node's parallel communication with another particular node. The small
errors are expected since the machines are fully connected through a common
switch. Just in case there is bad communication between two nodes, e.g. to
address an issue which the broadcast cannot, one can investigate the behavior
of the point to point communications. Results are presented to this end. Two
identical runs are considered (there are simply too many permutations of
possible collections of allocated resources to report all such numbers here) in
which the lead node is di�erent. In the runs, root conducts BLACS sends

and receives as a function of message size in bytes (always double precision
data in our sample implementation) individually to each other process in the
allocated resources.

The results in this subsection are intended help to classify our use of
the term homogeneous as it applies to individual compute nodes from a pool
of candidate resources. The important point is to understand why this is a
desirable property for the development of user friendly numerical software.
Consider block factorizations from linear algebra which depend upon lower
level block operations that have been tuned to be optimal (ref. [25]) on the
system for which they intend to be used. Multiplying matrices is one such
operation and it is common knowledge that tuned versions of this kernel ex-
ist on most any platform. When factorizations, such as A ! P�1LU , are
implemented in parallel it remains important for matrix multiplication to be
homogeneous between nodes in the parallel run to retain load balance and per-
formance (and in fact scalability in the parallel case). Otherwise, there may
be a single node which imparts large delays on the remaining nodes or sits
idle waiting for the remaining nodes during execution of the application. Al-
though the numerical answer should be the same regardless, time is the factor
which the library routine attempts to minimize. (Naturally, the same could
be said of the time to communicate a set number of bytes between processors
during a solve. We hope that each node in a set of allocated resources is
capable of sending and receiving data at the same rate. If this is not the case,
the resources can be stuck waiting. Etc.) Thus, in some sense, to within the
errors of each task sampled, there is some expectation as to how the system
resources will behave. There is a theoretical isotropy in the compute nodes
when homogeneity can be expected. That is, we expect that any particular
computing node may be of equal use to us in the selection process subject to
interpreting its current state.

2.2 The user

Our target user has a numerical application to execute and intends to do so on
a single node of a shared, distributed computing environment which exhibits
a strong degree of homogeneity (as described in the previous section). It is
assumed that the user invokes one of our library routines to this end. We
appeal to the user who may bene�t from some user friendly software which
intervenes on his behalf to determine if the problem can be solved more quickly
through a redistribution of the user's data onto a team of computing nodes,
solved in parallel, and the solution mapped back. A standard structure of our

target user's code is:

User Code()f
De�ne Data Handle(data handle(out));
Generate Data(data(out),data handle(in));
Invoke Numerical Application Routine(data handle(in/out),
routine name(in),routine parameters(in));
Use Solution();
Clean Up();
Exit();

g

The user's data will be double precision matrix and vector elements, for
instance, in most linear algebra kernels which concern us now. The storage
may assume some sparse or dense (row or column major) data structure on
input. At this point, we are inclined to assume that the user has correctly for-
matted his data for a serial execution of a speci�c routine from some speci�c
numerical library. He has correctly identi�ed the input routine parameters
for the routine name. The data handle is what the middleware uses as a key
to handling the user's data. For now, suÆce it to note that the user can invoke
the application routine with his data in-core, in a �le on the local network
disk (NFS case), or in a �le on a memory depot (IBP). The data handles
are a pointer in physical memory, a �le name (e.g. a path to the data in
the �le system) on the local network disk, or an IBP capability respectively.
(A capability is the interface to a speci�c memory location in an IBP mem-
ory depot. It is the key to allocateing, storeing, loading, and manageing a
logically contiguous block of bytes on the memory server.)

One motivation for adding a remote memory depot is to allow for a user to
generate problems of a magnitude which would otherwise, due to system con-
straints, not be feasible on a single node. This can be accomplished through
bu�ered stores to a depot which has abundant available memory. We provide
an interface for the user to achieve this set-up as well. Further, a user can
choose to generate a data set in the memory depot and share the capability
with others if so desired. This allows multiple users to collaborate on the
generation of a data set and to share in the solution to a potentially common
problem with no diÆculties.

2.3 The middleware model

The middleware provides several services which are discussed in turn
brie
y. The entry point into the middleware is from the user's serial call
Invoke Numerical Application Routine() . The middleware, once invoked,

�rst assembles a collection of system speci�c parameters about the available
resources which re
ect the current state of the shared system. As previously
mentioned NWS, or the like, can be used to achieve this step. Information
about the number of candidate computing nodes, the free available memory
per node, the CPU load (a number between 0 and 1 for each processor of each
node) per node, and the bandwidth and latency for communication between
each node in the cluster is gathered. Let us collect this information into the
system parameters. A resource selection process is started which relies upon
the evaluation of a time function which depends explicitly upon the computa-
tional demands of routine name as a function of the routine parameters, and
the system parameters returned from the previous step. Let us call the team
of resources which the middleware intends to allocate the selected resources.
Next, if the data handle speci�es that the user's data has been generated
in-core, then the middleware writes the user's data to the local network disk.
(As will be discussed in the comments on data movement later in this paper,
the developer has to decide whether to map the user's data at the time of
this write or to simply write the data as is and allow the mapping to be made
in the application routine prior to executing the parallel application. Both
cases are considered in our experiments and results are presented later.) Oth-
erwise, and after the write for the in-core case, the middleware assembles the
command line and the machine �le necessary for launching the parallel appli-
cation. The application routine is forked and waited upon by the middleware.
On return, if the user expects an answer in-core, the middleware assembles
the solution (from disk) and passes it to the user. Otherwise, the middleware
returns the modi�ed data handle which now contains updated information
regarding where to �nd the expected solution. The process can be described
as pseudo-code as follows:

Invoke Numerical Application Routine(data handle(in/out),
routine name(in),routine parameters(in))f
Get State of System(system parameters(out));
Do Resource Selection(selected resources(out),system parameters(in),
routine name(in),routine parameters(in));
If(process==1)f
Special Case Serial Run(data handle(in/out),
selected resources(in),routine name(in),routine parameters(in));
Return Control to User();
g
Create Machine�le and Dress Command Line(command line(out),
selected resources(in),routine name(in),routine parameters(in));
If(data handle=="incore")
Write Data to Disk(data handle(in));
Fork Application Routine and Wait(command line(in));
If(data handle=="incore")
Read Data from Disk(data handle(in/out));
Return Control to User();

g

It is useful to look at Do Resource Selection(). A general structure for
this stage of the middleware reads:

Do Resource Selection(selected resources(out),system parameters(in),
routine name(in),routine parameters(in))f
Find Numerical Library(library name(out),routine name(in));
Find Time Function for Application Routine(time function(out),
library name(in),routine name(in));
Minimize Time Function(selected resources(out),time function(in),
system parameters(in),routine parameters(in));

g

In its current form, the minimization of the time function disregards
a careful analysis of the amount of time required to handle the user's
data before (and after) executing the parallel application. (We simply as-
sume that the total time to get the data in place is the cost of a single
disk access per node plus, for instance in the case of dense linear kernels,
the summation (over compute nodes) of the time for each node to move
O(N2 � sizeof(double)=total processors) bytes over the shared network lines
with a knowledge of the bandwidth and latency of the network at the time
of the mapping.) This is agreeably naive and we are hard at work developing
viable models of the handling/mapping of the user's data over the network. It
is complicated by many factors however. The fact that TCP/IP, for instance,

imparts its own congestion control (e.g. sliding windows) when the network
becomes congested complicates matters.(See references [26; 27].) Further, we
don't know whether the system handling the disk accesses employs DMA or,
if not, how many accesses to disk may be necessary to service a request, the
time per disk access, etc. If we did know this, we could write a function
to approximate the procedure. For instance, suppose we wanted to load N
bytes from a network disk into local physical memory. Suppose we know
the bandwidth and latency between the source and destination machines, the
number of bytes loadable per disk access as well as the time overhead per
disk access. In this case, the total number of disk accesses is (N bytes) /
(X bytes loaded per disk access), or N=X disk accesses. The time just to
get the data to the network will then be (N=X disk accesses)� (Y sec-
onds per disk access), or NY=X seconds, for instance. Next, to move the
data over the network, we could assume the ideal and thus, the time to move
the data over the network would be simply the latency (converted to sec-
onds) plus N bytes divided by the network bandwidth (converted into bytes
per second). Unfortunately, these simpli�cations ignore the true complex-
ities of the underlying resources and protocols which are used in practice.
Such models fail to yield realistic predictions in a shared system. Again,
it's complicated and a work in progress. Naively, and for the sake of com-
mentary, one assumes that the typical form for a time function will be of
the sort, Tsolve user0s problem ' Thandle user0s data+Texecute parallel application.
Here, Texecute parallel application and Thandle user0s data are functions of the
routine parameters and system parameters. In these terms, our orig-
inal conjecture for a study may be restated as: if Tserial expert �

Texecute parallel application > Thandle user0s data, then the user bene�ts from
invoking the middleware. Otherwise, the user's problem is simply solved se-
rially without any bene�ts from having invoked the middleware. Again, if the
parallel application routine is scalable, we expect to �nd the problem size
which marks the turning point which validates the method. We return to the
issue when considering the test case.

2.4 The application layer

The application level of our current e�ort is built upon pre-existing nu-
merical packages such as PETSc (ref. [28]) or ScaLAPACK. We have
relied upon the scalability of such libraries to more than account for the
time required for the middleware to handle the user's data. It is the de-
veloper's burden to understand the application routines from such libraries
at an intricate level so that accurate time functions can be written to be

used by the middleware during the resource selection process. At this
point, the typical time function for Texecute parallel application has the form
Texecute parallel application ' Tcommunicate data + Tfloating point operations. In
the example discussed in the next section, details of such a function are placed
in context of an actual parallel kernel.

The application routine has to get the user's data in-core before the par-
allel execution. There have been several approaches tested to this end. Basi-
cally, the data may be pre-mapped by the middleware in which case the par-
allel application starts with a parallel read of the data from the local network
�lesystem. The user's data may reside on the local network disk or a memory
server in an unmapped format. In this case, either each node assembles its
own data through a series of random accesses to the �le housing the data, or a
single, lead, node is responsible for bringing the data incore and distributing it
in a mapped manner -or in bulk letting each node claim its own data- through
a series of send/receives or broadcasts respectively. Let us agree for simplicity
to lump all these scenarios into the routine Get User0s Data Iown Incore().
Each processor in the allocated team of resources will use this. Then,

Parallel Application Routine(command line(in))f
Parse Command Line(environment information(out),data handle(out),
routine parameters(out),command line(in));
Initialize Parallel Environment(environment information(in));
Get User's Data Iown Incore(data(out),data handle(in));
Execute Parallel Application Routine(data(in/out),routine parameters(in));
Collect Answer to Root(data(in/out));
If(Iam Root)Write Answer to Disk(data(in),data handle(in));
Free Parallel Environment(environment information(in));
Exit();

g

3 Sample software implementation and results

3.1 Some comments on the kernel, pdgesv()

In this section, results from a study of the kernel pdgesv() (from the numeri-
cal library ScaLAPACK) are presented and brie
y discussed. In each case,
it is assumed that the matrix elements form a well determined system.(ref.
[29]) Routine pdgesv() computes solutions to the system of equations Ax = b
where A 2 <m;n, x 2 <n, and b 2 <m. In particular, a dense, block based
factorization of the matrix A is made reducing it to the form P�1LU where
P�1 is a pivot array, L is a lower triangular matrix (unit diagonal), and U
is upper triangular. (Thus we expect the blocks L1;2, and U2;1 to be zero.)

After said reduction, two relatively trivial systems of equations are left to
solve instead of the original set. Thus, one has PA = LU or A = P�1LU ,
solves Ly = b for y, and �nally solves Ux = y for x. There are a couple of
important points to make here. The algorithm for the factorization is ap-
plied recursively. Thus, the routine factors (Gaussian elimination) the A1;1,
A2;1 blocks of A recursively employing partial pivoting over rows in a single
column of the process grid (the other nodes remain idle). At the stop case,
each process in the current, active, process column broadcasts the pivot in-
formation to all the remaining columns of processes. Each process can then
apply the row interchanges (to all the columns that were not involved in the
iteration) to re
ect the changes from the previous step. After each such fac-
torization, the L1;1, L2;1, and U1;1 blocks are known. The evaluation of each
block row of the matrix U requires the solution of a lower triangular system
of equations over the elements in a single row of the process grid. Thus, L1;1
is broadcast along the current row of processes converting panel A1;2 to U1;2
-e.g. U1;2 L�1

1;1A1;2. The last step in any iteration of the factorization is
the Schur update of the trailing sub-matrix. The column block L2;1 is broad-
cast over rows across all columns of the process grid. U1;2 is broadcast over
columns along all the rows of the process grid. Then the Schur update mod-
i�es each process' local portion of the block A2;2. (~A2;2 A2;2 � L2;1U1;2)
This operation is a parallel matrix multiplication, pdgemm() (ref. [30]), and
it dominates the execution time. After the update, the process is begun again
recursively on block ~A2;2. It is important to note that the factorization pro-
ceeds from left-to-right, top-to-bottom. Thus, the amount of work per node
becomes uneven as the factorization progresses. It is noteworthy that the
expert user recognizes this point as a need for optimizing both the block size
and the grid aspect ratio (the logical dimensions of the rectangular process
grid). The block size is generally chosen to coincide with the problem size
which achieves 90% of the performance expected by dgemm() (ATLAS) on
each node. Again, we have a need for homogeneity between nodes. The grid
aspect ratio is no big deal really but it does change the time of execution
for solving the problem. An example is provided in Figure 6. It is observed
quite generally that for a p � q logical rectangular process grid (p,q denotes
the number of logical process rows,columns respectively) p=q < 1 yields better
performance for the speci�c kernel at hand than the cases where p=q � 1.

When allocating resources from a pool of computing resources for the ker-
nel pdgesv(), the times of particular interest are tfactorization, tbroadcast, and
tupdate. On a user's request to solve a system of linear equations, the mid-
dleware ascertains the state of the shared system and invokes the selection
process which attempts to minimize a time function. This function purports

1000 3000 5000 7000 9000 11000
N (problem size)

0

100

200

300

400

500

600

T
im

e
 (

s
)

TORC :: Grid Aspect Ratio , pdgesv()
Time as a function of grid shape and problem size

(p,q) = (8,1)
(p,q) = (4,2)
(p,q) = (2,4)
(p,q) = (1,8)
(p,q) = (1,6)
(p,q) = (2,3)
(p,q) = (3,2)
(p,q) = (6,1)

2000 4000 6000 8000 10000
N

1.05

1.075

1.1

1.125

1.15

1.175

1.2

1.225

1.25

S
c
a

L
A

P
A

C
K

 (
ti
m

e
(s

))
/
H

P
L

 (
ti
m

e
(s

))

2x4 Process Grid: Parallel AXEB
ScaLAPACK versus HPL

Figure 6. The developer is responsible for understanding how to get the most out of the
kernel being implemented in the proposed library. The plot on the left demonstrates a time
range of over 100seconds for the 8 processor run due to either a very poor choice of logical
grid layouts, or the best possible. The plot on the right compares (a ratio of execution times
is formed) the best run of the ScaLAPACK routine pdgesv() versus the High Performance
Linpack benchmark over the same number of nodes on the system. HPL is highly tuned and
is really hard to beat in practice, even for experts. The results demonstrate the reliability
of ScaLAPACK to perform well provided the correct system parameters are identi�ed.
Tuning the major kernels in ScaLAPACK has been a major concern on the side of the
application routine developers.

to model the kernel as a function of the problem parameters as well as the state
of the system. The basic communication model assumes a linear relation be-
tween any two nodes i; j such that the time to send a message of sizeX bytes is
tcomm(i;j)(bandwidthi;j ; latencyi;j) ' latencyi;j+bandwidth

�1
i;j �X . For a p�q

process grid, the factorization of a m�n panel, again, (see the documentation
regarding HPL (ref. [31])) occurs within a single process column (p proces-
sors). Since the algorithm recurses within a panel, the assumption is made
that any of the p processors within the panel perform at level 3 BLAS (ref.
[32]) rates. Here is where we employ the notion of homogeneity in our target
system as regards both communication and computational expectations. In
the kernel of interest we are always bound by the slowest machine in the broad-
cast and update phases. Thus we select p processors which re
ect homogeneity
in the sense de�ned in this paper. If one only considers the time the nearest
neighboring process columns will spend in the broadcast phase (after the fac-

torization), then the time to factor and broadcast a block panel is estimated
for a collection of homogeneous resources by tfactor(m;n)+ tbroadcast(m;n) '

fdgemm(
n2m
p
� n3

3) + latency(1 + nlg(p)) + (bandwidth)�1(2n2lg(p) + mn
p
).

The Schur update of the remaining n � n matrix is approximated for ho-
mogeneous systems by tupdate ' 3q�1(bandwidth)�1n � nb + latency(p +
lg(p) � 1) + fdgemm � n � nb(

nb
q
+ 2 n

pq
). Here nb is the block size, m;n are

the panel dimensions (not global) for the factorization and fdgemm approx-
imates the performance of matrix multiply on an arbitrary node of our ho-
mogeneous system. Naturally, the system constraints have to be considered
despite the assumption of homogeneity. The total time to perform this fac-
torization in a homogeneous system may be approximated as � (start; i =
0)
Pn

i+=nb(tfactor(n � i; nb) + tbroadcast(n � i; nb) + tupdate(n � i � nb; nb)).
Quite frankly, one really requires a separate paper simply to work through
the details of how we arrive at this time function and how it is used in the
selection process. Clearly, we wish to minimize this function. Scheduling
schemes are truly diÆcult however. People try simulated annealing, genetic
algorithms, apply low order time series analyses, etc. The problem is of in-
terest to the community in general. We will address the issue at this time.
Future papers will describe our e�orts in this area in detail. For now, suÆce
it to say, we crudley minimize this function based on the available system re-
sources through an adhoc means and observe how well the allocated resources
complete the task relative to the time we predict it should take based on an-
alyzing the time function. The plots in Figure 7 reveal the faithfulness of our
model in its current form.

3.2 Data movement scenarios

Moving and mapping m �n double precision matrix elements is informally dis-
cussed. The major consideration is on getting the data, matrices A 2 <m;n 7!

(m�n�sizeof(double))bytes and vectors b 2 <m 7! (m�sizeof(double))bytes
, from the user and in place for the parallel solve routine.d It is assumed that
the data is generated in a natural ordering, which is to say, in the language C
for instance, that �(A+ i+ j �n) references the value of the matrix element in
row i and column j of matrix A when 0 � i < m and 0 � j < n. This mapping
is of general importance because the scalability of numerical calculations in
a distributed computing environment is dependent upon spending more time
computing than moving a user's data around. In particular, if numerical li-
braries such as that being investigated here are to be successful, it is necessary

dIn the test cases m = n as we consider square matrices in the parallel solve routine.

0 2000 4000 6000 8000 10000 12000
N

0

1

10

100

1000

T
im

e
 (

s
e

c
o

n
d

s
)

Busy TORC Runs :: Total Wall Clock Time :: PDGESV Kernel Only
Performance Model :: Predicted vs. Measured Results

<Measured>
<Predicted>

2 nodes

4 nodes

5 nodes

7 nodes

8 nodes 8 nodes

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
N

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

(M
e

a
s
u

re
d

 T
im

e
)

/
(P

re
d

ic
te

d
 T

im
e

)

Busy TORC Runs :: PDGESV Kernel Only
Ratio of Measured Time vs. Time Predicted by the Performance Model

<Ratio>
Ideal

Figure 7. In plot one, the predicted wall times for execution given several di�erent instances
of the state of the system is plotted against the resulting execution times actually measured.
The second plot is a dimensionless ratio of the two data sets of plot one. The ideal case is
the value 1.

that the user's data can be forward mapped into a form expected at the ap-
plication level (the parallel routines) and the solution backward mapped into
natural form for the user in a timely fashion. For dense linear algebra kernels
being studied in parallel computing environments it is known that a 2d block-
cyclic mapping of the naturally structured data (e.g. matrix A and vector b in
Ax = b) provides excellent load balance during parallel runs. (See references
[33; 34; 35] for instance.) The mapping is a function of the problem size (mn,
or n for square matrices where [A 2 <n;n 7! (n2 � sizeof(double))bytes]!
problem size � n), the block sizes (nb row; nb column, or nb), the number of
process columns in the logical rectangular process grid (npcols), the number
of process rows in the logical rectangular process grid (nprows), and the ma-
trix elements, A. In fact, the mapping is quite easy to implement naively but
it is found that real improvements on such a mapping are more diÆcult to
achieve than expected. In the remainder of this section we outline the general
scenarios that we have considered. In each instance, the corresponding read
of the data, from the perspective of the parallel application routine, is also
discussed.

In scenario one, the user �rst generates the data in-core. There are n2+n

elements and each requires sizeof(double) bytes of memory. This user then
passes a pointer to the middleware which in turn (after deciding on the process
grid) writes (nprows � npcols) 2d block cyclically pre-mapped work �les to
the network disk (NFS) as well as nprows work �les for the vector elements.
In total, of course, only (n2 + n) � sizeof(double) bytes are written to disk.
However, it is useful to compare the time it takes to simply write natural A
to a single �le on the network disk versus the time to write the elements of
A to multiple �les in an order imposed by the 2d block cyclic mapping. (see
Figure) In this scenario, the processors involved in the parallel application
routine have only to read their matrix elements from disk before executing the
parallel application. It is noted that no extra elements are read per processor
as the mapping has already taken place in the middleware and is exact.

The second general scenario begins with the user's data having been writ-
ten to a �le on either the local network disk or on the memory depot. After
the middleware determines a set of processes for the application routine, the
data handle is passed to the application routine from the middleware. The
natural data is brought in-core by a chosen processor (root) from the logical
process grid. The data may be distributed by root in a manner which imposes
the mapping during point to point communication with the other nodes(2a).
Alternatively, root may proceed to broadcast the data as is and let the map-
ping be done by each process locally(2b). (We label these scenarios here so
the reader can make sense of the plots.)

In the �nal scenario we consider the case where the natural data is brought
in-core in parallel by each processor in the logical process grid. The mapping
may be imposed exactly during the load phase through random access to the
�le(3a). Alternatively, bulk data can be brought over the network by each
process and the mapping carried out in-core(3b). It is noted that one may
contend with network congestion in this scenario. In reality, the developer
has to experiment with these approaches before truly understanding the best
approach for a given system.

4 Results and conclusions

Figure 8 is interesting to think about. For one thing, we clearly see Ntp exists
for each of the scenarios reported on the graph. Notice that the scale of
the graph is linear-log. Thus, small separations on the graph suggest large
separations in time. Not all the scenarios are reported but the point is clearly
made -the user will bene�t from interfacing with the proposed software. Plot
two of Figure 8 demonstrates at once the strength ScaLAPACK for the
dense algebraic kernel, and the reason we pursued this idea in the �rst place

0 2000 4000 6000 8000 10000
N (problem_size)

0

1

10

100

1000

10000

T
im

e
 (

s
)

Total Wall Times Solving Ax=b :: TORC
(data_generation (and movement)) + (solve)

Total_wall_time[expert/distr]
Total_wall_time[NFS_scenario(1)]
Total_wall_time[IBP_scenario(2a)]
Total_Wall_Time[IBP_scenario(3b)]
Total_wall_time[expert/serial]

0 2000 4000 6000 8000 10000
N (problem_size)

0

1

10

100

1000

10000

Total Wall Time for kernel _pdgesv() :: TORC

_pgesv[expert/distr]
_pgesv[NFS_scenario(1)]
_pgesv[IBP_scenario(2a)]
_gesv[expert/serial]
_pgesv[IBP_scenario(3b)]

2

NPROOCS:
[3,8,8,...,8]

[2,3,6,7,8]

[2,2,4,8,8]
[3,8,8,...,8][2,3,6,8,8]

[2,3,6,7,8]

[2,2,4,8,8]

[2,3,6,8,8]

NPROOCS:

Figure 8. The total time is reported for multiple approaches to solving the linear problem
Ax = b. The serial and parallel expert cases proceed without the intervention of additional
software. All other runs reported invoke the middleware just as desribed in the current
work.

-scalability. For each run on the graph the number of processors allocated for
the parallel runs is provided. The expert user in the serial environment can
no longer conduct his normal activities in a timely manner. His task is over
1000seconds behind the proposed software when we stop counting.

Figure 9 is also interesting because it displays the overheads involved in
simply porting the user's data into a form amenable to the parallel applica-
tion routine. The times reported for the top two plots are simply the time
it takes for the expert user (serial, or parallel) to generate his data before
calling the library routine. Next, if we look at the local network disk data
(NFS), handling there are multiple plots. The original time it took for the
middleware to generate the block cyclic data �les for each process in the log-
ical process grid was due to a careless mapping. This is an easy mistake for
user's -even developers- to make. Simply compare the time it takes to write
some set number of bytes to the network disk with these maps. The only
di�erence in the poorly implemented case (which also a�ects the numbers in
Figure 9) and the faster mappings is in bu�ering. Similarly, in the load of
the work�les in scenario (2a) attempts to �rst map the user's natural data
and then communicate it. It is simply faster to let multiple requests engage
the memory server. Of course, this is only true until such traÆc generates

0 2000 4000 6000 8000 10000
N

0

1

10

100

1000

T
im

e
(s

)

generate_A,b_incore[usr/serial]
write_work_files[mw/serial]
load_A’,b’_write_x[appl/distr] (1)
serial_write_no_map
write_work_files_buf[mw/serial]

0 2000 4000 6000 8000 10000
0

0

1

10

100

1000

T
im

e
 (

s
)

0 2000 4000 6000 8000 10000
N

0

1

10

100

1000

generate_A,b_remotely[usr+mw/serial]
load_A,b_write_x[appl/distr] (2a)
load_A,b_write_x[appl/distr] (3b)

0 2000 4000 6000 8000 10000
0

0

1

10

NFS_DATA
IBP_DATA

EXPERT_DATA(parallel)EXPERT_DATA(serial)

Figure 9.

congestion on the network. We don't see that here but easily could as larger
problems and methods are investigated.

There is much left that could be discussed about such next generation
software which we have not had time to even mention. For instance, the
issue of how to build fault tolerance into such a set of library routines, or
assembling contracts which attempt to monitor the progress of a user's task
and act if necessary. The general problem of redistributing the user's data is
also important.

In closing, we have attempted to de�ne the target system through identi-
fying a set of criterion relevant to the numerical library routines we are inves-
tigating. Homogeneity is an important criterion and as has been discussed,
cannot be taken for granted. We have de�ned our target user and provided an
interface for this user into the middleware which has been designed to utilize
existing, scalable library routines. We have reserved a detailed conversation
for scheduling in shared, homogeneous system for another time. This subject
is of great importance however and cannot be avoided in practice. It is possi-
ble, if not likely, that techniques from time sensitive statistical investigations
will play a major role in coming to terms with large scale systems -especially
as they only become larger. Motivation to further pursue such approaches to
numerical libraries on shared, homogeneous systems was provided. We are
proposing a more thorough study at this point which attempts to ferret out
many of the outstanding mysteries.

References

1. See documentation on IBM's LoadLeveler batch system. For instance
http :: ==usgibm:nersc:gov=docs=LoadL=index:html provides documen-
tation of a speci�c implementation on NERSC's IBM SP/RS6000, cur-
rently known as seaborg:nersc:gov.

2. Garey, M. and Johnson, D.,Computers and Intractability, a Guide to the
Theory of NP-Completeness,Bell Telephone Laboratories,1979

3. Hopcroft, J. E. and Ullman, J. D.,Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, 1979

4. Ullman, J. D.,"NP-complete scheduling problems,",Journal of Computer
and Systems Sciences 10:3, pp. 384-393

5. Knuth, D. E.,Fundamental Algorithms, volume 1 of The Art of Computer
Programming, Addison-Wesley, 1968

6. Knuth, D. E.,Seminumerical Algorithms, volume 2 of The Art of Com-
puter Programming, Addison-Wesley, 1969

7. Knuth, D. E.,Sorting and Searching, volume 3 of The Art of Computer
Programming, Addison-Wesley, 1973

8. Cormen, T. H., Leiserson, C. E, Rivest, R. L., Stein, C.,Introduction to
Algorithms, 2nd edition, MIT Press, 2001

9. NWS, The Network Weather Service, http://nws.cs.ucsb.edu/
10. Blackford, L. S., Choi, J., Cleary, A., D'Azevedo, E., Demmel, J., Dhillon,

I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K.,
Walker, D., Whaley, R. C.,ScaLAPACK Users' Guide, SIAM, 1997

11. Berman, F., Chien, A., Cooper, K., Dongarra, J., Foster, I., Gannon, D.,

Johnsson, L., Kennedy, K., Kesselman, C., Mellor-Crummey, J., Reed,
D., Torczon, L., Wolski, R.,"The GrADS Project: Software Support for
High-Level Grid Application Development," 2001, Rice University, Hous-
ton, Texas; see also http://www.hipersoft.rice.edu/grads

12. Foster, I. and Kesselman, C.,"GLOBUS: A metacomputing infrastructure
toolkit",International Journal of High Performance Computing Applica-
tions, vol. 11, pp. 115-128

13. Petitet, A., Blackford, S., Dongarra, J., Ellis, B., Fagg, G., Roche, K.,
Vadhiyar, S.,"Numerical Libraries and the Grid,"International Journal
of High Performance Computing Applications, vol. 15, pp. 359-374

14. Foster, I. and Kesselman, C.,The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, San Francisco, 1999

15. Petitet, A., Blackford, S., Dongarra, J., Ellis, B., Fagg, G., Roche, K.,
Vadhiyar, S.,Numerical Libraries and the Grid: The GrADS Experiments
with ScaLAPACK, Computer Science Department Technical Report UT-
CS-01-460, University of Tennessee, Knoxville, Tennessee 37996-3450

16. Boulet, P., Dongarra, J., Rastello, F., Robert, Y., Vivien, F.,"Algorithmic
issues on heterogenous computing platforms," Parallel Processing Letters,
9:2, pp. 197-213, 1999

17. Kalinov, A. and Lastovetsky, A.,"Heterogeneous Distribution of Compu-
tations While Solving Linear Algebra Problems on Networks of Heteroge-
nous Computers," Journal of Parallel and Distributed Computing, 61, 4,
pp. 520-535, 2001

18. Oksendal, B.,Stochastic Di�erential Equations, 3rd edition, Springer-
Verlag (Berlin), 1992

19. Bremaud, P.,Point Processes and Queues, Martingale Dynamics,
Springer-Verlag (New York), p.181 , 1981

20. Lipster, R. and Shiryayev, A.,Statistics of Random Processes: General
Theory, Springer-Verlag (New York), 1977

21. Lipster, R. and Shiryayev, A.,Statistics of Random Processes: Applica-
tions, Springer-Verlag (New York), 1978

22. PAPI , Performance API, http://icl.cs.utk.edu/projects/papi
23. IBP , Internet Backplane Protocol, http://loci.cs.utk.edu/ibp
24. Whaley, R. C.,Basic linear algebra communication subprograms: Analy-

sis and implementation across multiple parallel architectures, Computer
Science Department Technical Report UT-CS-94-234, University of Ten-
nessee, Knoxville, Tennessee 37996-3450

25. Whaley, R. C., Petitet, A., Dongarra, J. J.,\Automated empirical opti-
mizations of software and the ATLAS project," Parallel Computing, 27,
1,2, pp.3-35, 2001

26. Peterson, L. L. and Davie, B. S., Computer Networks: A Systems Ap-
proach, Morgan Kaufmann (San Francisco), 1996

27. Stevens, W. R.,Unix Network Programming, Prentice-Hall, 1990
28. Balay, S., Gropp, W., Curfman McInnes, L., Smith, B.,PETSc Users

Manual, rev. 2.1.0, Argonne National Laboratory, 9700 South Cass Av-
enue, Argonne, Illinois 60439

29. Golub, G. H. and Van Loan, C. F.,M atrix Computations, 3rd edition,
John's Hopkins University Press, 1996

30. Choi, J., Dongarra, J., Ostrouchov, S., Petitet, A., Walker, D., Whaley,
R. C.,A Proposal for a Set of Parallel Basic Linear Algebra Subprograms,
Computer Science Department Technical Report UT-CS-95-292, Univer-
sity of Tennessee, Knoxville, Tennessee 37996-3450

31. HPL, High Performance Linpack bench-
mark,http://www.netlib.org/benchmark/hpl

32. Dongarra, J., Du Croz, J., Du�, I. S., Hammarling, S.,"A Set of Level 3
Basic Linear Algebra Subprograms," ACM Trans. Math. Soft., 14, pp.
1-17, 1988

33. Lichtenstein and Johnson,\Block-cyclic dense linear algebra," SIAM J.
Sci. Stat. Compt., 14, pp.1259-1288, 1993

34. Petitet, A. Algorithmic Redistribution Methods for Block Cyclic Decom-
positions, PhD thesis, Department of Computer Science, University of
Tennessee, Knoxville, Tennessee 37996-3450

35. Beaumont, O., Legrand, A., Rastello, F., Robert, Y.,\Dense linear alge-
bra kernels on heterogeneous platforms: Redistribution issues,", Parallel
Computing, 28, (issue 2), pp.155-185, 2002

36. Kernighan, B. W. and Ritchie, D. M.,The C Programming Language, 2nd
edition,Bell Telephone Laboratories, Inc., 1988

37. Snir, M. , Otto, S. W., Huss-Lederman S., Walker, D. W., and Dongarra,
J. J.,MPI: The Complete Reference,MIT Press,1996

