ORNL/TM-2009/100

ADIOS 1.4.0 User’s Manual

July 2012

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S.
Department of Energy (DOE) Information Bridge:

Web site:http://www.osti.gov/bridge
Reports produced before January 1, 1996, may be purchased by members of the
public from the following source:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

Telephomne:703-605-6000 (1-800-553-6847)

TDD:703-487-4639

Faz:703-605-6900

E-masil:info@ntis.fedworld.gov

Web site:http://www.ntis.gov/support/ordernowabout.htm
Reports are available to DOE employees, DOE contractors, Energy Technology
Data Exchange (ETDE) representatives, and International Nuclear Information
System (INIS) representatives from the following source:

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone:865-576-8401

Fax:865-576-5728

E-masil:reports@Qadonis.osti.gov

Web site:http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The views and opinions of

authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

ORNL/TM-2009/100
ADIOS 1.4.0 USER’S MANUAL

Prepared for the
Office of Science
U.S. Department of Energy

Authors
N. Podhorszki, Q. Liu, J. Logan, H. Abbasi, J.Y. Choi, S. Klasky

Contributors

J. Lofstead, S. Hodson, F. Zheng, M. Wolf, T. Kordenbrock, N. Samatova

July 2012

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6070
managed by
UT-BATTELLE, LLC
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-000R22725

Contents

2 Installation|
2.1 Obtaining ADIOS| 0 o e
2.2 Quick Installation|. o

222 Cray XT3

2.3 EPENAENCIES| L L i e e e e e
[2.3.1 Mini-XML parser (tequired)].o
2.3.2 MPI and MPI-IO (required)|.o
2.3.3 Python (required)|
2.3.4 Fortran90 compiler (optional)] Lo Lo
2.3.5 Serial NetCDF-3 (optional)|
036 Serial HDFD (ODUIONAL)| - « « « « o v o oo e e e e e
2.3.7 PHDFS5 (optional)]
2.3.8 NetCDF-4 Parallel (optional)| o
2.3.9 Lustreapi (optional)]
2.3.10 Staging transport methods (optional)] Lo L.
£.311 Read-only installation]

[2.5 Compiling applications using ADIOS|. o o o
2.5.1 Sequential applications|.
[2.6 Language bindings| L

P61 Support for Matlabl.
[2.6.2 Support for Javalo

[2.6.3 Support for Numpy| L

3 ADIOS Write APIl
[3.1 Write API Description| o o
B.1.1 Introductionl e

[3.2 Write Fortran API description|
8.2.1 Create the first ADIOS program| o oo

11
11
11
11
11
12

13
13
13
13
14
14
14
14
14
14
14
14
15
15
15
15
16
16
17
17
18
18
18
18

4 ADIOS No-XML Write APT |
4.1 No-XML Write API Description|

4.1.1 adios 1nit noxml| Lo L

412 adios_allocate_buffer]
113 adios declare group| v v v e e e e
4.1.4 adios define var[. L e

4.1.5 adios define attribute] o Lo

4.1.6 adios_select _method|o oo oo
2 Create a no-XML ADIOS program] o i i i

6 XML Config File Format|

B OVEIVIEW] .+« v oo oooo e e e e e e e e e e e
[0.2 adios-config| L e e e e e
[0.3 adios-group| e e e e e e

[5.4 Transport method| L

[0.5 Buffer specification]| L Lo e e e

[5.6 Enabling Histogram| e

B7 An Example XML LG . .« o oo oot e e e e

|6 Transport Methods|
[6.1 Synchronous methods|

6.1.2 POSIX] . . . o e
6.1.3 MPIl . .o
VP ' D
MPT AMR]

[6.2 Asynchronous methods|.
6.2.1 Network Scalable Service Interface (NSSD)|
622 DataTapl. o
6.2.3 Decoupled and Asynchronous Remote Transfers (DART)|
6.3 Other research methods at ORNILI o 0 o o 0 o oo

6.3.1 MPICIOl . . .0 oo e

6.32 MPTATOl

7 _ADIOS Read APIl
[C1 TIntroductionl. o
[7.1.1 Changes from version 1| o . L e

[7.1.2 Concepts| o e e e

Ii.l,;i :‘2& ls !:l lszll I ...

[7.4 Read C APl description|
[7.41 adios errmsg / adios errnol.

28
28
28
28
29
29
30
31
31

33
33
33
34
34
34
35
36
36
36
37
37
37
38
38
38
38
39

40
40
40
40
40
41
42
43
43
44
44
44
45
46
47
47
48

[7.4.2 adios_read init_method| oo oo oo 93
[([43 adios_read _finalize_method] 53
[[[44 adios_read open_stream|., 54

|f.4.5 adios_read_open_file]o oo oo 54
|?§§ adios read ClOSE|. 55

7.4.7 adios advance step| L L e 95
[[[48 adios_release_step|. 56
[[49 adios_Ing_var 56
[[[430 adios_ing_var_byid|. 56
[[[411 adios_Iree_varinfo]. 56
[[412 adios_ing_var_stat] L 56
[7-413 adios_ing_var_blockinfo] 57
[[4014 Selections] o o o 57
[7.4.15 adios_schedule read|. 59

|?.4.16 adios_schedule _read byid|0 oo o 59
|?Z.|7 adios perform reads| e 59

[[4.18 adios_check reads|. 60
[[[419 adios_free_chunk| 60
[[[420 adios_get _attr 60

421 adios get attr byid| oL Lo 61
[[[422 adios_fype_fo_string]. 61
[[4.23 adios_ftype_size] 61
[7-4:24 adios_get_grouplist] 61
|1§25 adios _GrOUP VIEW| - .+« o v v v vttt e e e e e e e 61

.5 1me series analysis esCription| Lo 62
[75.1 adios stat cor /adios stat COV] oot 62

[7.6 _Read Fortran API description| 62
[-7_ Compiling and TNKINE apPICATIONS] . « - « « « « « o v e oee e e e e e e e e 66
[.71 C/C++applications] 66
[7772 Fortran applications] 66

[7.8 Supported scenarios and samples|o 67
[7.9 Reading a fileas file] o 67
[7.9.1 Discover and read in a complete variable[. 000000 67

9.2 Multiple steps of a variablel oo o 67

17.9.3 Read a bounding box subset of a variable] 00000000 L. 68
[7.9.4 Reading non-global variables written by multiple processes| 68

[7.10 Reading streams| 0 L e e e e e e e 69
[7.10.1 Opening a stream| e 70
[7.70.2 Reading one step at a time, blocking if a new step 1S Jate] 70
17.10.3 Locking and step advancing scenarios| 71
[7.10.4 Handling errors due to missing steps| Lo 71

[7.11 Non-blocking reads| e 71
[7.11.1 Chunk reads: read without pre-allocating buflers| 71
7.11.2 Read into user-allocated buffers 73

73

[7.12.1 In situ read: read data locally available on the node| 73
[7.12.2 Variable stepping of variables in astream| o 0oL 73

B TUtilities] 75
8.1 adios lint| e 75
... 75
8 bpls| . . e e e e 75
4 bpd Dl - - o o e e e e e 77

[10 Group Read/Write Process|
[10.1 Gwrite/gread/read|
[10.2 Add conditional expression] v i i e e

111 Language bindings|

[I1.1 Java support] o o e e e e
LI1.1 Adiosclassl« . o e
[11.1.2 AdiosFile, AdiosGroup, and AdiosVarinfo classes|
[11.1.3 AdiosDatatype, Adiosklag, and AdiosBufterAllocWhen classes|
[11.1.4 Example[.

[11.2 Python/Numpy support| e
[1.2.T APIs for Writing and NO-XMUL] o o
11.2.2 APIsfor Reading|. o e
11.2.3 Example|. o

[12 C Programming with ADIOS|

12.1 Non- TOGTAIM| e oo e e e e e e e

(22 Constructan XML Filel o oo

12.3 Generate .ch file (s)]

12.4 POSIX transport method (P writers, P subfiles + 1 metadata file)]

12.5 MPI-IO transport method (P writers, 1 file)|

[12.6 Reading data from the same number of processors|

12.7 Writing to Shared Files (P writers, N files)]

2.8 Global Arrays|. o vt v i
12.8.1 MPI-10O transport method (P writers, 1 file)|.
12.8.2 POSIX transport method (P writers, P Subfiles + 1 Metadata file)|

[12.9 Writing Time-Index into a Variable]. oo o000

[[210Reading StatistiCs]. v o o v v e e e e e

[13.1 Datatypes used in the ADIOS XML file]

B2 ADIOS APTS TASH . « « o o vovoe e e e e e e e e e e e e

[13.3 An Example on Writing Sub-blocks using No-XML APIsf.

List of Figures

[6.1 Server-friendly metadata approach: offset the create/open in time|
[6.2 DataTap architecture].

Abbreviations

ADIOS Adaptive Input/Output System

API Application Program Interface

DART Decoupled and Asynchronous Remote Transfers
GTC Gyrokinetic Turbulence Code

HPC High-Performance Computing

1/0 Input/Output

MDS Metadata Server

MPI Message Passing Interface

NCCS National Center for Computational Sciences
ORNL Oak Ridge National Laboratory

OS Operating System

PG Process Group

POSIX Portable Operating System Interface
RDMA Remote Direct Memory Access

XML Extensible Markup Language

Acknowledgments

The Adaptive Input/Output (I/O) system (ADIOS) is a joint product of the National Center of Com-
putational Sciences (NCCS) at Oak Ridge National Laboratory (ORNL) and the Center for Experimental
Research in Computer Systems at the Georgia Institute of Technology. This work is being led by Scott
Klasky (ORNL); Jay Lofstead (Georgia Tech, funded from Sandia Labs) is the main contributor. ADIOS
has greatly benefited from the efforts of the following ORNL staff: Steve Hodson, who gave tremendous
input and guidance; Chen Jin, who integrated ADIOS routines into multiple scientific applications; Norbert
Podhorszki, who integrated ADIOS with the Kepler workflow system and worked with Qing Gary Liu on the
read API. ADIOS also benefited from the efforts of the Georgia Tech team, including Prof. Karsten Schwan,
Prof. Matt Wolf, Hassan Abbasi, and Fang Zheng. Wei Keng Liao, Northwestern University, and Wang
Di, SUN, have also been invaluable in our coding efforts of ADIOS, writing several important code parts.
Essentially, ADIOS is componentization of I/O transport methods. Among the suite of transport methods,
Decoupled and Asynchronous Remote Transfers (DART) was developed by Prof. Manish Parashar and his
student Ciprian Docan of Rutgers University.

Without a scientific application, ADIOS would not have come this far. Special thanks go to Stephane
Ethier at the Princeton Plasma Physics Laboratory (GTS); Researcher Yong Xiao and Prof. Zhihong Lin
from the University of California, Irvine (GTC); Julian Cummings at the California Institute of Technology;
Seung-Hoe and Prof. C. S. Chang at New York University (XGC); Jackie Chen and Ray Grout at Sandia
(S3D); and Luis Chacon at ORNL (Pixie3D).

This project is sponsored by ORNL, Georgia Tech, The Scientific Data Management Center (SDM) at
Lawrence Berkeley National Laboratory, and the U.S. Department of Defense.

Chapter 1

Introduction

1.1 Goals

As computational power has increased dramatically with the increase in the number of processors, input/out-
put (IO) performance has become one of the most significant bottlenecks in today’s high-performance com-
puting (HPC) applications. With this in mind, ORNL and the Georgia Institute of Technology’s Center
for Experimental Research in Computer Systems have teamed together to design the Adaptive I/O System
(ADIOS) as a componentization of the TO layer, which is scalable, portable, and efficient on different clusters
or supercomputer platforms. We are also providing easy-to-use, high-level application program interfaces
(APIs) so that application scientists can easily adapt the ADIOS library and produce science without diving
too deeply into computer configuration and skills.

1.2 What is ADIOS?

ADIOS is a state-of-the-art componentization of the IO system that has demonstrated impressive IO perfor-
mance results on leadership class machines and clusters; sometimes showing an improvement of more than
1000 times over well known parallel file formats. ADIOS is essentially an I/O componentization of different
I/0O transport methods. This feature allows flexibility for application scientists to adopt the best I/O method
for different computer infrastructures with very little modification of their scientific applications. ADIOS has
a suite of simple, easy-to-use APIs. Instead of being provided as the arguments of APIs, all the required
metadata are stored in an external Extensible Markup Language (XML) configuration file, which is readable,
editable, and portable for most machines.

1.3 The Basic ADIOS Group Concept

The ADIOS “group” is a concept in which input variables are tagged according to the functionality of their
respective output files. For example, a common scientific application has checkpoint files prefixed with restart
and monitoring files prefixed with diagnostics. In the XML configuration file, the user can define two separate
groups with tag names of adios-group as “restart” and “diagnostic.” Each group contains a set of variables
and attributes that need to be written into their respective output files. Each group can choose to have
different I/O transport methods, which can be optimal for their I/O patterns.

1.4 Other Interesting Features of ADIOS

ADIOS contains a new self-describing file format, BP. The BP file format was specifically designed to support
delayed consistency, lightweight data characterization, and resilience. ADIOS also contains python scripts
that allow users to easily write entire “groups” with the inclusion of one include statement inside their
Fortran/C code. Another interesting feature of ADIOS is that it allows users to use multiple I/O methods
for a single group. This is especially useful if users want to write data out to the file system, simultaneously
capturing the metadata in a database method, and visualizing with a visualization method.

10

The read API enables reading arbitrary subarrays of variables in a BP file and thus variables written out
from N processor can be read in on arbitrary number of processors. ADIOS also takes care of the endianness
problem at converting to the reader’s architecture automatically at reading time. Matlab reader is included
in the release while the Vislt parallel interactive visualization software can read BP files too (from version
2.0).

ADIOS is fully supported on Cray XT and IBM BlueGene/P computers as well as on Linux clusters and
Mac OSX.

1.5 What’s new since version 1.3.1

With ADIOS 1.4.0, there are several changes and new functionalities. The four major changes are in the
Read APL:

e No groups at reading anymore. You get all variables in one list. There are no adios_gopen /
adios_gclose / adios_ing_group calls after opening the file.

e No time dimension. A 3D variable written multiple times will be seen as a 3D variable which has
multiple steps (and not as single 4D variable as in adios 1.3.1). Read requests should provide the
number of steps to be read at once separately from the spatial dimensions.

e Multiple reads should be "scheduled" and then one adios_perform_reads () will do all at once.

e Selections. Instead of providing bounding box (offset and count values in each dimension) in the read
request itself, a selection has to be created beforehand. Besides bounding boxes, also list of individual
points are supported as well as selections of a specific block from a particular writing process.

Overall, a single old adios_read_var () becomes three calls, but n reads over the same subdomain requires
1+ n+1 calls. All changes were made towards in situ applications, to support streaming, non-blocking,
chunking reads. Old codes can use the old read API too, for reading files but new users are definitely
encouraged to use the new read API, even if they personally find the old one simpler to use for reading data
from a file. The new APT allows applications to move to in situ (staged, or memory-to-memory) processing
of simulation data when file-based offline processing or code coupling becomes severely limited.

Other new things in ADIOS:

e New read APIL Files and streams can be processed step-by-step (or files with multiple steps at once).
Multiple read requests are served at once, which enables for superior performance with some methods.
Support for non-blocking and for chunked reads in memory-limited applications or for interleaving
computation with data movement, although no current methods provide performance advantages in
this release.

e Fortran90 modules for write and read APIL. Syntax of ADIOS calls can be checked by the Fortran
compiler.

e Java and Numpy bindings available (they should be built separately).

e Visualization schema support in the XML configuration. Meshes can be described using output variables
and data variables can be assigned to meshes. This will allow for automatic visualization from ADIOS-
BP files with rich metadata, or to convey the developer’s intentions to other users about how to visualize
the data. A manual on the schema is separate from this Users’ Manual and can be downloaded from
the same web page.

e Skel 1/0O skeleton generator for automatic performance evaluation of different methods. The XML
configuration, that describes the output of an application, is used to generate code that can be used to
test out different methods and to choose the best. Skel is part of ADIOS but it’s manual is separate
from this Users’ Manual and can be downloaded from the same web page.

11

Chapter 2

Installation

2.1 Obtaining ADIOS

You can download the latest version from the following website

http://www.olcf.ornl.gov/center-projects/adios

2.2 Quick Installation

To get started with ADIOS, the following steps can be used to configure, build, test, and install the ADIOS
library, header files, and support programs.

cd trunk/

./configure -prefix=<install-dir> --with-mxml=<mxml-location>
make

make install

Note: There is a runconf batch script in the trunk set up for our machines. Studying it can help you
setting up the appropriate environment variables and configure options for your system.

2.2.1 Linux cluster
The following is a snapshot of the batch scripts on Sith, an Intel-based Infiniband cluster running Linux:

export MPICC=mpicc
export MPICXX=mpiCC
export MPIFC=mpif90
export CC=pgcc

export CXX=pgCC
export FC=pgf90
export CFLAGS="-fPIC"

./configure --prefix = <location for ADIOS software installation>
--with-mxml=<location of mini-xml installation>
--with-hdfb=<location of HDF5 installation>
--with-netcdf=<location of netCDF installation>

The compiler pointed by MPICC is used to build all the parallel codes and tools using MPI, while the
compiler pointed by CC is used to build the sequential tools. In practice, mpicc uses the compiler pointed by
CC and adds the MPI library automatically. On clusters, this makes no real difference, but on Bluegene, or
Cray XT, parallel codes are built for compute nodes, while the sequential tools are built for the login nodes.
The -fPIC compiler flag is needed only if you build the Matlab language bindings later.

12

2.2.2 Cray XT5

To install ADIOS on a Cray XT5, the right compiler commands and configure flags need to be set. The
required commands for ADIOS installation on Jaguar are as follows:

export CC=cc

export CXX=CC

export FC=ftn

./configure --prefix = <location for ADIOS software installation>
--with-mxml=<location of mini-xml installation>
--with-hdfb5=<location of HDF5 installation>
--with-netcdf=<location of netCDF installation>

2.3 ADIOS Dependencies

2.3.1 Mini-XML parser (required)

The Mini-XML library is used to parse XML configuration files. Mini-XML can be downloaded from http:
//www.minixml.org/software.php

2.3.2 MPI and MPI-IO (required)

MPI and MPI-TO is required for ADIOS.

Currently, most large-scale scientific applications rely on the Message Passing Interface (MPI) library to
implement communication among processes. For instance, when the Portable Operating System Interface
(POSIX) is used as transport method, the rank of each processor in the same communication group, which
needs to be retrieved by the certain MPI APIs, is commonly used in defining the output files. MPI-1IO can
also be considered the most generic I/O library on large-scale platforms.

2.3.3 Python (required)

The XML processing utility utils/gpp/gpp-py is a code written in python using xml.dom.minidom. It is
used to generate C or Fortran code from the XML configuration files that can be included in the application
source code. Examples and tests will not build without Python.

2.3.4 Fortran90 compiler (optional)

The Fortran 90 interface and example codes are compiled only if there is an f90 compiler available. By default
it is required but you can disable it with the option --disable-fortran.

2.3.5 Serial NetCDF-3 (optional)

The bp2ncd converter utility to NetCDF format is built only if NetCDF is available. Currently ADIOS uses
the NetCDF-3 library. Use the option --with-netcdf=<path> or ensure that the NETCDF_DIR environment
variable is set before configuring ADIOS.

2.3.6 Serial HDF5 (optional)

The bp2h5 converter utility to HDF5 format is built only if a HDF5 library is available. Currently ADIOS
uses the 1.6 version of the HDF5 API but it can be built and used with the 1.8.x version of the HDF5 library
too. Use the option --with-hdf5=<path> when configuring ADIOS.

13

http://www.minixml.org/software.php
http://www.minixml.org/software.php

2.3.7 PHDF5 (optional)

The transport method writing files in the Parallel HDF5 format is built only if a parallel version of the HDF5
library is available. You need to use the option --with-phdf5=<path> to build this transport method.

If you define Parallel HDF5 and do not define serial HDF5, then bp2hb will be built with the parallel
library. Note that if you build this transport method, ADIOS will depend on PHDF5 when you link any
application with ADIOS even if your application does not intend to use this method. If you have problems
compiling ADIOS with PHDF5 due to missing flags or libraries, you can define them using

--with-phdfb-incdir=<path>,
--with-phdf5-1libdir=<path> and
--with-phdf5-1ibs=<1link time flags and libraries>

2.3.8 NetCDF-4 Parallel (optional)

The NC4 transport method writes files using the NetCDF-4 library which in turn is based on the parallel
HDF5 library. You need to use the option --with-ncdpar=<path> to build this transport method. You also
need to provide the parallel HDF5 library.

2.3.9 Lustreapi (optional)

The Lustreapi library is used internally by MPI_LUSTRE and MPI_AMR method to figure out Lustre param-
eters such as stripe count and stripe size. Without giving this option, users are expected to manually set
Lustre parameters from ADIOS XML configuration file (see MPI_LUSTRE and MPI_AMR method). Use the
configuration option --with-lustre=<path> to define the path to this library.

2.3.10 Staging transport methods (optional)

In ADIOS 1.4.0, a transport method using the DataSpaces library (Rutgers University) is available for
memory-to-memory transfer (staging) of data between two applications.

2.3.10.1 Networking libraries for staging

Staging methods use Remote Direct Memory Access (RDMA) operations, supported by specific libraries on
various systems.

Infiniband. If you have an Infininband network with ibverbs and rdmacm libraries installed, you can
configure ADIOS to use it for staging methods with the option --with-infiniband=DIR to define the path
to the Infiniband libraries.

Cray Gemini network. On newer Cray machines (XK6 and XE6) with the Gemini network, the PMI and
uGNTI libraries are used by the staging methods. Configure ADIOS with the options

--with-cray-pmi=/opt/cray/pmi/default \
--with-cray-ugni-incdir=/opt/cray/gni-headers/default/include \
--with-cray-ugni-libdir=/opt/cray/ugni/default/1lib

Portals. Portals is an RDMA library from Sandia Labs, and it has been used on Cray XT5 machines with
Seastar networks. Configure ADIOS with the option
--with-portals=DIR Location of Portals (yes/no/path_to_portals)

2.3.10.2 DataSpaces staging methods

The DataSpaces model provides a separate server running on separate compute nodes, into/from which data
can be written/read with a geometrical (3D) abstraction. It is an efficient way to stage data from one
application to another in an asynchronous (and very fast) way. Multiple steps of data outputs can be stored,
limited only by the available memory. DataSpaces can be downloaded from http://www.dataspaces.org
Build the DataSpaces method with the option:

14

http://www.dataspaces.org

--with-dataspaces=DIR Build the DATASPACES transport method. Point to the
DATASPACES installation.

--with-dataspaces-incdir=<location of dataspaces includes>

--with-dataspaces-libdir=<location of dataspaces library>

2.3.11 Read-only installation
If you just want the read API to be compiled for reading BP files, use the --disable-write option.

2.4 Full Installation

The following list is the complete set of options that can be used with configure to build ADIOS and its
support utilities:

--help print the usage of ./configure command}
--with-tags [=TAGS] 1include additional configurations [automatic]
--with-mxml=DIR Location of Mini-XML library
--with-infiniband=DIR Location of Infiniband

--with-portals=DIR Location of Portals (yes/no/path_to_portals)

--with-cray-pmi=<location of CRAY_PMI installation>
--with-cray-pmi-incdir=<location of CRAY_PMI includes>
--with-cray-pmi-libdir=<location of CRAY_PMI library>
--with-cray-pmi-libs=<linker flags besides -L<cray-pmi-libdir>, e.g. -lpmi
--with-cray-ugni=<location of CRAY UGNI installation>
--with-cray-ugni-incdir=<location of CRAY UGNI includes>
--with-cray-ugni-libdir=<location of CRAY UGNI library>
--with-cray-ugni-libs=<linker flags besides -L<cray-ugni-libdir>, e.g. -lugni
--with-hdfb=<location of HDF5 installation>

--with-hdf5-incdir=<location of HDF5 includes>
--with-hdfb5-1libdir=<location of HDF5 library>

--with-phdfb5=<location of PHDF5 installation>
--with-phdfb-incdir=<location of PHDF5 includes>
--with-phdf5-1libdir=<location of PHDF5 library>

--with-netcdf=<location of NetCDF installation>

--with-netcdf -incdir=<location of NetCDF includes>

--with-netcdf -libdir=<location of NetCDF library>

--with-ncd4par=<location of NetCDF 4 Parallel installation>
--with-ncé4par-incdir=<location of NetCDF 4 Parallel includes>
--with-ncd4par-libdir=<location of NetCDF 4 Parallel library>
--with-ncd4par-libs=<linker flags besides -L<nc4par_libdir>, e.g. -1lnetcdf
--with-dataspaces=<location of DataSpaces installation>
--with-dataspaces-incdir=<location of DataSpaces includes>
--with-dataspaces-1libdir=<location of DataSpaces library>
--with-lustre=<location of Lustreapi library>

Some influential environment variables are lists below:

CcC C compiler command

CFLAGS C compiler flags

LDFLAGS linker flags, e.g. -L<1ib dir> if you have libraries
in a nonstandard directory <1lib dir>

CPPFLAGS C/C++ preprocessor flags, e.g. -I<include dir> if you
have headers in a nonstandard directory <include dir>

CPP C preprocessor

CXX C++ compiler command

CXXFLAGS C++ compiler flags

15

FC Fortran compiler command
FCFLAGS Fortran compiler flags

CXXCPP C++ preprocessor

F77 Fortran 77 compiler command
FFLAGS Fortran 77 compiler flags
MPICC MPI C compiler command

MPIFC MPI Fortran compiler command

2.5 Compiling applications using ADIOS

ADIOS configuration creates a text file that contains the flags and library dependencies that should be used
when compiling/linking user applications that use ADIOS. This file is installed as bin/adios_config.flags
under the installation directory by make install. A script, named adios_config is also installed that can
print out selected flags. In a Makefile, if you set ADIOS_DIR to the installation directory of ADIOS, you can
set the flags for building your code flexibly as shown below for a Fortran application:

override ADIOS_DIR <your ADIOS installation directory>
override ADIOS_INC $(shell ${ADIOS_DIR}/bin/adios_config -c -f)
override ADIOS_FLIB := $(shell ${ADIOS_DIR}/bin/adios_config -1 -f)

example.o : example.F90
${FC} -g -c ${ADIOS_INC} example.F90 $<

example: example.o
${FC} -g -o example example.o ${ADIOS_FLIBZ}

The example above is for using write (and read) in a Fortran + MPI application. However, several libraries
are built for specific uses:

e libadios.a MPI + C/C++ using ADIOS to write and optionally read data
e libadiosf.a MPI + Fortran using ADIOS to write and optionally read data
e libadios_nompi.a C/C++ without MPI

e libadiosread.a MPI + C/C++ using ADIOS to only read data

e libadiosreadf.a MPT + Fortran using ADIOS to only read data

e libadiosread_nompi.a C/C++ without MPI, using ADIOS to only read data
e libadiosreadf_nompi.a Fortran without MPI, using ADIOS to only read data

e libadiosf_vl.a MPI + Fortran using ADIOS to write and, with the old read API to read
data

e libadiosreadf_vl.a MPI + Fortran using ADIOS old read API to read data

2.5.1 Sequential applications

Use the -D_NOMPT pre-processor flag to compile your application for a sequential build. ADIOS has a dummy
MPI library, mpidummy.h, that re-defines all MPI constructs necessary to run ADIOS without MPI. You can
declare

MPI_Comm comm;

in your sequential code to pass it on to functions that require an MPI_Comm variable.

If you want to write a C/C++ parallel code using MPI, but also want to provide it as a sequential tool on a
login-node without modifying the source code, then write your application as MPI, do not include mpi.h but
include adios.h or adios_read.h. for the sequential build. adios.h/adios_read.h include the appropriate
header file mpi.h or mpidummy.h (the latter provided by ADIOS) depending on which version you want to
build.

16

2.6 Language bindings

ADIOS comes with various bindings to languages, that are not built with the automake tools discussed above.
After building ADIOS, these bindings have to be manually built.

2.6.1 Support for Matlab

Matlab requires ADIOS be built with the GNU C compiler. It also requires relocatable codes, so you need
to add the -fPIC flag to CFLAGS before configuring ADIOS. You need to compile it with Matlab’s MEX
compiler after the make and copy the files manually to somewhere where Matlab can see them or set the
MATLABPATH to this directory to let Matlab know where to look for the bindings.

cd wrappers/matlab
make matlab

2.6.2 Support for Java

ADIOS provides a Java language binding implemented by the Java Native Interface (JNI). The program
can be built with CMake (http://www.cmake.org/) which will detect your ADIOS installation and related
programs and libraries. With CMake, you can create a build directory and run cmake pointing the Java
wrapper source directory (wrappers/java) containing CMakeLists.txt. For example,

cd wrappers/java
mkdir build

cd build

cmake

CMake will search installed ADIOS libraries, Java, JNI, MPI libraries (if needed), etc. Once completed,
type make to build. If you need verbose output, you type as follows:

make VERBOSE=1

After successful building, you will see libAdiosJava.so (or libAdiosJava.dylib in Mac) and AdiosJava.jar.
Those two files will be needed to use in Java. Detailed instructions for using this Java binding will be
discussed in Section [1.11

If you want to install those files, type the following:

make install

The default installation directory is /usr/local. You can change by specifying CMAKE_INSTALL_PREFIX
value;

cmake -DCMAKE_INSTALL_PREFIX=/path/to/install /dir/to/source

Or, you can use the ccmake command, the CMake curses interface. Please refer to the CMake documents
for more detailed instructions.
This program contains a few test programs. To run testing after building, type the following command:

make test
If you need a verbose output, type the following

ctest -V

2.6.3 Support for Numpy

ADIOS also provides a Python/Numpy language binding. The source code is located in wrappers/numpy.
This module is developed by Cython.

Like the Java binding, this Python/Numpy wrapper can be built by using CMake (http://www.cmake.
org/)). You can create a build directory and run cmake by pointing the source directory. For example,

17

http://www.cmake.org/
http://www.cmake.org/
http://www.cmake.org/

cd wrappers/numpy
mkdir build

cd build

cmake

CMake will search installed ADIOS library and Python/Numpy. Once completed, type make to build or
type the following for the verbose output.

make VERBOSE=1

After successful building, you will see adios.so. This file can be loaded in Python. Detailed instructions

for using this module in Python will be discussed in Section [I1.2
This program contains a few test programs. To run testing after building, type the following command:

make test

If you need a verbose output, type the following

ctest -V

18

Chapter 3

ADIOS Write API

As mentioned earlier, ADIOS writing is comprised of two parts: the XML configuration file and APIs. In
this section, we will explain the functionality of the writing API in detail and how they are applied in the
program.

3.1 Write API Description

3.1.1 Introduction

ADIOS provides both Fortran and C routines. All ADIOS routines and constants begin with the prefix
“adios_”. For the remainder of this section, only the C versions of ADIOS APIs are presented. The primary
differences between the C and Fortran routines is that error codes are returned in a separate argument for
Fortran as opposed to the return value for C routines.

A unique feature of ADIOS is group implementation, which is constituted by a list of variables and
associated with individual transport methods. This flexibility allows the applications to make the best use
of the file system according to its own different I/O patterns.

3.1.2 ADIOS-required functions

This section contains the basic functions needed to integrate ADIOS into scientific applications. ADIOS is
a lightweight 1/O library, and there are only seven required functions from which users can write scalable,
portable programs with flexible I/O implementation on supported platforms:

adios init—initialize ADIOS and load the configuration file

adios open—open the group associated with the file

adios group size—pass the group size to allocate the memory

adios write—write the data either to internal buffer or disk

adios read—associate the buffer space for data read into

adios _close—commit write/read operation and close the data

adios _finalize—terminate ADIOS

You can add functions to your working knowledge incrementally without having to learn everything
at once. For example, you can achieve better I/O performance on some platforms by simply adding the
asynchronous functions adios_start _calculation, adios _end calculation, and adios _end _iteration to your
repertoire. These functions will be detailed below in addition to the seven indispensable functions.

The following provides the detailed descriptions of required APIs when users apply ADIOS in the Fortran
or C applications.

3.1.2.1 adios_init

This function is required only once during the program run. It loads the XML configuration file and establishes
the execution environment. Before any ADIOS operation starts, adios_init is required to be called to create
internal representations of various data types and to define the transport methods used for writing. For
historical reasons, this function does not have an MPI_Comm comm argument, it is using MPI_COMM_WORLD

19

internally to ensure only one process is actually reading the XML file. Therefore, this function must be called
from all application processes.

int adios init (const char * xml_fname)
Input:
e xml fname - string containing the name of the XML configuration file

Fortran example:

call adios init ("config.xml", ierr)

3.1.2.2 adios open

This function is to open or to append to an output file. adios open opens an adios-group identified by
group_name and associates it with one or a list of transport methods. A pointer is returned as fd_p for
subsequent operations. The group name should match one of the groups defined in the XML file. The 1/0
handle The third argument, file name, is a string representing the name of the file. The last argument
mode is a string containing a file access mode. It can be one of these three mode specifiers: “r,” “w,” or “a.”
Currently, ADIOS supports three access modes: “write or create if file does not exist,” “read,” and “append
file.” The last argument is the MPI communicator comm that includes all processes that write to the file.
Individual writes can be called by individual processes, but adios_ group_size and adios_ close are collective
operations, that all processes under this communicator should call.

Note, that a file is not necessarily opened during this call. Some methods postpone the actual file open
to adios_ group__ size.

int adios open (int64_t * fd_p, comnst char * group_name,
const char * file_name, const char * mode,void *comm)

Input:

e fd p—pointer to the internal file structure

e group name—string containing the name of the group

e file name—string containing the name of the file to be opened
e mode—string containing a file access mode

e comm— communicator for multi-process coordination

Fortran example:

"w", comm, ierr)

call adios_ open (handle, "restart", "restart.bp", "w

3.1.2.3 adios group _size

This function passes the size of the group to the internal ADIOS transport structure to facilitate the internal
buffer management and to construct the group index table. The first argument is the file handle. The
second argument is the size of the payload (in bytes) for the group opened in the adios_open routine that
the specific process is going to write into the file. This value can be calculated manually, knowing the sizes
of all variables to be wri