Statistical Anomaly Detection for Link-State Routing Protocols *

Diheng Qu, Brian M. Vetter

Feiyi Wang, Ravindra Narayan, S. Felix Wu

Computer Science Department
North Carolina State University
Raleigh, NC 27695
{dqu, wu}@eos.ncsu.edu

Abstract

The JiNao project at MCNC/NCSU focuses on detect-
ing intrusions, especially insider attacks, against OSPF
(Open Shortest Path First) routing protocol. This paper
presents the implementation and experiments of the Ji-
Nao’s statistical intrusion detection module. Our imple-
mentation is based upon the algorithm developed in SRI’s
NIDES (Next-generation Intrusion Detection Expert Sys-
tem) project. Some modifications and improvements to
NIDES/STAT are made for a more effective implementa-
tion in our environment. Also, three OSPF insider attacks
(e.g, maxseq, maxage, and seq++ attacks) have been
developed for evaluating the efficacy of detecting capability.
The experiments were conducted on two different network
routing testbeds. The results indicate that the proposed sta-
tistical mechanism is very effective in detecting these routing
protocol attacks.

1 Introduction

The ever growing usage of the Internet has brought with
it an increased reliance on the network infrastructure which
makes it all possible. Routing (e.g., RIPv2, EIGRP, BGP,
and OSPFv2) and network management (e.g., SNMPv3/ng)
protocols form the core heart of this infrastructure. Until
recently, the security of these protocols has not been fully
emphasized. However, there is a growing awareness of the
potential consequences of attacks aimed the infrastructure,
particularly the routing protocols.

The JiNao project [3] at MCNC/NCSU focuses on de-
tecting intrusions, especially insider attacks, against network
routing protocols. Here,"insider" refers to a trusted entity

*This work is supported by the U.S. Department of Defense Advanced
Research Projects Agency and the U.S. Air Force Rome Laboratory under
contract F30602-96-C-0325.

0-8186-8988-9/98 $10.00 © 1998 IEEE

62

Y Frank Jou
Fengmin Gong, Chandru Sargor
Advanced Networking Research
MCNC
RTP, NC 27709

{jou}@menc.org

participating the routing information exchange process or
an outsider with the capability to intercept and modify the
information exchange channels. Many insider attacks for
link state routing protocols have been mentioned or dis-
covered [5]. For example, in [8], we have discovered and
implemented a new OSPF insider attack which allows the at-
tacker to control the network topology for up to one hour by
injecting a small number of bad OSPF PDUs. This attack is
due to an implementation bug on many commercial routers.
One particular major router vender has recently responded
to our discovery by giving us a new version of their router
software which makes the attack less effective.

One approach to defend routers against insider attacks
is to depend on intrusion detection systems (IDS). The IDS
approach may be relatively more acceptable to the industry
as it requires no changes to the routing protocols themselves.
The JiNao system currently under development takes this in-
trusion detection approach to handle insider attacks.In this
paper, we limit our discussion to the statistical intrusion
detection mechanisms for protecting link-state routing pro-
tocols. We have applied the statistical ID algorithm [2, 7]
developed in SRI’s NIDES (Next-generation Intrusion De-
tection Expert System) for detecting anomaly of link state
routing protocols. Some modification and improvements are
made, as will discuss later, to make the implementation more
effective in our environment. To support our experiment, we
implemented the NIDES algorithms for the OSPF routing
protocol and three OSPF insider attacks (maxseq, maxage,
and seg ++), all running on both NCSU’s and MCNC’s rout-
ing testbed. As will be presented later, our results show that
our proposed methodology is very effective in detecting
these routing protocol attacks.

In the next section, we briefly introduce some background
information about the NIDES/STAT algorithm. We assume
that the reader has some background about OSPF [4]. Sec-
tion 3 presents three insider attacks regarding their their
design, implementation, and effect. The detailed discussion
of the implementation of NIDES/STAT algorithm is in Sec-

tion 4, while the experimental results are provided in Section
5. Finally, in Section 5, we discuss our experience in using
NIDES/STAT for detecting given router attacks.

2 The NIDES/STAT Algorithm

2.1 Mathematical Background

The NIDES/STAT algorithm monitors a subject’s (either
a user or a software program) behavior on a computer sys-
tem, and raises alarm flag when the subject’s current (short-
term) behavior deviates significantly from its expected be-
havior, which is described by its long-term profile. This is
achieved with a x?-like test [6] for comparing the similarity
between the short-term and long-term profiles.

Here are some notations for the NIDES/STAT algorithm:
let the current system behavior be a random variable under
the sample space S. Events, 1, E, . . . E}, represent a par-
tition of S, where these % events are mutually exclusive and
exhaustive. Let py, p2, ... pr be the expected probabilities
of the occurrence corresponding to events £y, Ey, ... Fy.
To verify if the random variable really has the distribution
depicted by p1, p2, - . . pr, €xperiments are repeated N times
independently, where N is a large number. N is also re-
ferred as sample size. Let Y; represents the real number
of occurrence for event F;, we have Ef:I(YZ-) = N. Let
p; represents the empirical probability for event E;, i.e.
p; = Y;/N. Then we test the hypothesis

Ho:pi=pii=12,... k.

and
H, : Hy is not ture.
Let
Q_X’“:(Y;—pri)z
- _— N X pi

If the independence is assumed between events F;, 1 <
i < k, it has been proven that, for a large N', @ has an
approximate x distributionwith (k — 1) degrees of freedom.
To get accurate approximation, it is suggested that N should
be larger than 50 and (N x p;) should be larger than 5.
Otherwise, several "rare” events should be merged together
to form a new event E; such that (N x p;) would exceed 5.

Intuitively, @ measures the "closeness" of the observed
numbers to the corresponding expected numbers. If Q is
“small,” Hy is accepted as a true hypothesis. If these N’
experiments (where N’ is a large number) are assumed in-
dependent, @ has a x? distribution with k — 1 degrees of
freedom. Let ¢ be an instance of Q. IfPr(Q > ¢) < « (or
g > x4(k — 1)) where « is the desired significance level
of the test, the hypotheses is rejected. In the context of our

63

application, it means that the short-term profile is statisti-
cally different from its long-term profile which allows us to
draw a conclusion that an anomalous behavior has occurred.
Two kinds of errors are defined. Bpe I error means that the
hypotheses is true but is rejected. Tjpe II error means the
Hypotheses is false, but is accepted. The probability that
Type I error occurs is also refereed as false positive rate,
while the probability for type II error is refereed as false
negative rate.

In practice, however, the assumption of independence
may not be true. Furthermore, there may be insufficient
observations for some bins in the data stream on which @) is
based. Therefore, Q may not have a x? distribution. SRI’s
NIDES/STAT proposes a way to track the values of @) in
order to establish an empirical probability distribution for
Q. This distribution, along with distribution of the system’s
expected behavior, is saved in a long-term profile, which is
updated once per day in a real-time operation.

The NIDES/STAT algorithm defines another variable S
which is transformed from the tail probability of) distribu-
tion such that S has a half-normal distribution. The purpose
of defining .S variable is to allow the degree of abnormality
from different types of measures to be added on a compara-
ble basis. The formula for S is:

s=¢0-1E20,

where Pr(Q > q) is the tail probability and ¢ is the cumu-
lative normal distribution function of an N (0, 1) variable.

2.2 Real-Time Intrusion Detection

The NIDES/STAT algorithm is capable of conducting real
time intrusion detection. The statistical component receives
audit data in real time, which serve both to score current
behavior and to update long-term profiles. The former oper-
ation is only possible after a period of initial statistical profile
training. When a new audit record is received, the statistical
component applies a fading factor to the short-term profile
before newly arrived record is incorporated (see next sub-
section for more details). This updated short-term profile is
then compared against the system’s long-term behavior by
computing the values of) and S. The statistical module
also maintains summaries of all the activities since the last
long-term profile update. At the end of the day (or any ap-
propriate period of time for updating the long-term profile),
the existing long-term profile is exponentially faded, and
the summary of activities for that day being maintained by
the statistical component is incorporated to produce a new
long-term profile.

2.3 Weighted Sums (Effective N, N.;;)

The sample size N dictates the time span of so called
“short-term.” Intuitively, a “sliding window” can be imple-
mented to keep the most recent V pieces of audit records.
Whenever a new audit record arrives, the window slides
to cover it and the oldest record in the previous window
is discarded. Then, Y;,1 < i < k, are updated to obtain
the new values of @ and S. However, when N is too big,
the “sliding window” scheme may consume too much com-
puting resources. To deal with this problem, a weighted
sum scheme (called effective NV, or N.;;) was proposed in
NIDES/STAT. Let 7, be defined as a short-term fading fac-
tor. When a new event E; occurs, all ¥;,1 < j < k are
re-calculated with the following formula:

y}new - {

Y xr, 41 ifj=i

Y x 7, if j #
and,
k k
S = D) = Y () x ek L= N x kL.
i=1 i=1

By using this scheme, the calculations can be done recur-
sively and efficiently. The computing time is proportional
to k, which is the number of events. Typically, it is much
smaller than the sample size V. Also this scheme saves lots
of memory since it only requires to remember k variables
rather than NV records. It can be easily derived that N,y
has an asymptotic value of (1—;1;3

24 Long-term Profile Training

Training is the process by which the statistical component
learns normal behavior for a subject. In NIDES/STAT, the
profile training consists of three phases:

Category, C-Training: to learn the subject’s expected be-
havior, i.e., probabilities for events, F;;

Q Statistics, Q-Training: to learn empirical distribution
for Q statistic which measures the deviation between
short-term observations and long-term expected cate-
gory distributions;

Threshold, T-Training: wherein the system establishes the
threshold for the measures.

After the training, by updating long-term profile at a regu-
lar interval (for example, once per day), the algorithm altows
adaptation to graduate changes of a subject’s behavior. A
long-term fading factor 7 is defined so that the profile will
"forget" the ancient data gradually. On the other hand, if
the system behavior changed abruptly, e.g., system upgrade,

64

the statistical component must provide a way to learn this
change more quickly. For example, it may discard the old
long-term profile, and go through the three phases training
again.

2.5 Apply Partition

NIDES defines four classes of measures: (1) activity
intensity measure, which measure whether the volume of
activity generated is normal; (2) categorical measure, whose
values are by nature categorical, like OSPF packet type. (3).
continuous or counting measures, whose values are numeric,
like LSA (Link State Advertisement) age or CPU usage,
and (4) audit record distribution. We found the first three
classes useful for detecting routing protocol attacks. And,
we made some modifications when dealing with the activity
intensity measure. We used the same formula (please refer
to Section 4.1) to map the volume of the system’s audit data
to a floating point number. Then, we treat it as a counting
measure, instead of the approach proposed in NIDES [2].

3 OSPF Attacks

In order to validate the propose statistical approach,
we have implemented three OSPF insider attacks for the
FreeBSD platform.

3.1 Attack 1: Simple Modification

When the attacker receives a LSA, it can modify the link
state metric and increase the LSA sequence number by 1
(i.e., Seq++). The attacker also needs to re-compute both
the LSA and OSPF checksums before the tampered LSA is
re-injected into the system. This attack LSA, because it has
abigger LSA sequence number, will be considered “fresher”
by other routers. And, eventually it will be propagated to the
originator of this particular LSA. The originator, according
to the OSPFv2 specification, will “fight-back” with a new
LSA carrying correct link status information and an even
fresher sequence number.

3.2 Attack 2: Max Age

When the attacker receives a LSA, it can modify the LSA
age to MaxAge (i.e,, 1 hour), and then re-compute only the
OSPF checksum before the tampered LSA is re-injected into
the system. This attack LSA, with the same sequence num-
ber but MaxAge, will cause all routers to purge the corre-
sponding LSA from their topology database. Eventually, the
originator of this purged LSA will also receive the MaxAge
LSA. The originator, according to the OSPFv2 specifica-
tion, will “fight-back” with a new LSA carrying correct link
status information and a fresher sequence number.

3.3 Attack 3: Max Sequence Number

When the attacker receives a LSA, it can modify the
link state metric and set the LSA sequence number to
OxX7FFFFFFF (i.e, MaxSequenceNumber). The attacker
also needs to re-compute both the LSA and OSPF check-
sums before the tampered LSA is re-injected into the sys-
tem. This attack LSA, because it has the biggest LSA se-
quence number, will be considered the “freshest” by other
routers. And, eventually it will be propagated to the orig-
inator of this particular LSA. The originator, according to
the OSPFv2 specification, “should” first purge the LSA (set-
ting MaxAge) and then flood a new LSA carrying correct
link status information and the smallest sequence number:
0x80000001.

4 Statistical Measures

The selection of statistical measures should base on good
understanding about the system itself as well as all possible
attacks that may influence the system’s normal behavior. On
one hand, we can choose a large number of different statis-
tical measures such that the statistical IDS would be very
sensitive to intrusions. This implies that we, simultaneously,
monitor many different aspects of the system’s behavior. On
the other hand, a real-time intrusion detection system should
not introduce too much performance overhead.

4.1 Data Volume

The first measure we chose is data volume which is one
of the activity intensity measures. This measure monitors
the inter-arrival time of all the OSPF packets which a router
receives. In a stable routing domain, routers exchange rout-
ing information regularly, the volume of the traffic tends to
have a fixed pattern. As we mentioned earlier, attacks may
invoke "fight back", which will cause additional routing traf-
fic. In fact most anomalies tend to manifest their abnormal
behaviors through data volume variation. Therefore, this
measure is useful in detecting these anomalies.

The data volume is represented by a floating point num-
ber, R, which is calculated by following formula:

Ry = Rp_y x 20070x8T) 4]

where 77 is a predefined constant, and 67 is the event inter
arrival time. In Section 6.1 we will discuss how to determine
the sample space for R,,, which is cut into 32 bins on a
geometric scale.

4.2 OSPF Type

There are 5 types of OSPF packets: (1) Hello, (2)
Database Description, (3) Link State Request, (4) Update

65

and (5) Acknowledge. In a routing domain, each OSPF
router will send Hello packets to its adjacent neighbors at
a fixed interval. Type 2 and 3 OSPF packets are used only
when a new adjacency is initialized. Update OSPF packets
(type 4) are sent out by each router at a same interval to
maintain the freshness of its LSAs. Each updated LSA has
to be acknowledged. But a router may choose to delay the
acknowledgment, so that it can put several LSA acknowl-
edgments in one OSPF packet later to save some bandwidth,
Under a normal condition, the distribution of OSPF packet
type is very stable. If some attack occurs, it may be dis-
turbed.

43 LSA Age

In OSPF, each LSA has an “age” field in its header de-
scribing how long this LSA has been living. When an
LSA travels through the network, the intermedia routers
will change this field, adding transmission delay and pro-
cessing delay to it. An LSA is also aged regularly when it
is in a router’s database. OSPF protocol specifies that if an
LSA’s age is larger than one hour, it must be discarded. If
any intermedia router is comprised, it may modify this field
to a larger number to disturb down-stream routers. Also,
like the mutable TTL (Time To Live) field in IP header, the
“age” field is not included when calculating LSA checksum.
So it’s easy for an intruder to modify this field without being
detected. This measure is chosen specifically to protect this
weak point.

LSA “age” is a counting measure. The possible value is
from 0 to 3600 (in the unit of second, 3600 seconds = 1 hour
). The space is lineally cut into 30 bins with 120 seconds
per bin.

5 Experiment Results

In this section, we will present our experimental results
in applying the statistical intrusion detection mechanism to
handle various network router insider attacks. We will first
evaluate the false positive rate. Then, we will show some
testing results for three attacks, simple modification attack,
max sequence attack, and max age attack. Please note that
the results are either Red Alarm, Yellow Alarm, or Normal,
which represent “< 0.5%” (tail probability of () distribu-
tion), “between 0.5% and 5%, or “> 5%” respectively.

5.1 Testbeds

We have set up two testbeds for the JiNao project, one
in MCNC and the other in NCSU. The topology of these
experimental testbeds are shown in Figure 1.

Area 10

AR: Area Router, ABR: Area Border Router, BAR: Backbone Area Router

Figure 1. Topology of NCSU/MCNC testbeds

5.2 Evaluation of False Positive Rate, fp

We define false positive rate as the probability that the
statistical component will raise alarm flag while under nor-
mal condition. We evaluated the value on the base of a
one-day period, using the following equation:

_ number of alarm
" The total number of observation in a day

fr

Table 1 shows the average results that we have collected

from the two testbeds.
The high false positive rate for data volume measure is
caused by the way we calculate R,,,

Ry = Rp_1 x 207 %8T) 4 1.

Since routers do not have a globe synchronized clock,
they generate events according their own timers. Then the
interval time between two events which are generated by two

66

Routers || data volume | OSPF packet type | LSA age
shang 5.18% 0.00% 0.00%
norwalk 19.87% 0.00% 0.00%
BAR2 0.00% 0.00% 0.00%
AR4.1 0.00% 0.00% 0.00%
ABR3 22.46% 0.00% 0.00%
ABR4 0.00% 0.00% 0.00%

Table 1. Average False Positive Rate

different routers is changing all the time, i.e.67" is drifting.
This makes R, unstable. Sometimes, if R, is near the
boundary of two categories, a small change in R,, will make
it jump from one category to another. This will result in
high false positive rate.

5.3 Test Results for Simple Modification Attack

The attacker, A, chooses one particular router, B, as the
victim. Whenever it receives a LSA originated by B, A
will modify the "cost" field (called metric in LSA) to the
largest value, which means the link is down, and broadcast
it other routers. This is going to cause “fight back”, which
we mentioned before.

The following results are collected from MCNC'’s
testbed. We run the statistical module on four different
routers, BAR2, AR4.1, ABR3, ABR4 (Please refer to Fig-
ure 1 for their locations). The attacker resides on ABRS.
In the tables, "Target" means the victim B, N means the
number of attacks, i.e. after modifies N LSAs, the attacker
will quit.

Routers || data volume | OSPF packet type | LSA age
BAR2 Red Alarm Red Alarm Normal
AR4.1 Normal Normal Normal
ABR3 Red Alarm Red Alarm Normal
ABR4 Red Alarm Red Alarm Normal

Table 2. N= 15, Target : ABR2

Table 2 shows the result when we attacked ABR2 from
ABRS. The attacker ran an interception module on ABRS
to intercept all the OSPF packets before they enter ABR5’s
OSPF protocol engine. If it was not interested in a packet,
the attacker would just let it go (to ABR5’s routing daemon
). But if it found an OSPF update packet containing an
LSA which is originated by ABR2 to advertise its links, the
attacker would change the link state from up to down, in-
crease the sequence number by 1, re-compute the checksum,

and forward it to ABRS. In this case, ABRS was tricked to
think: oh, ABR2’s links are down. It put the LSA into its
database, and sent an acknowledge packet back to BARI.
BAR1 was waiting for the acknowledgment for the correct
LSA. By comparing the headers, BAR1 found the ABR5’s
ack was not what it expected. So it re-sent the correct LSA
to ABRS again. This time, the attacker didn’t do anything,
justlet it go. Now, ABRS thought: my database has a newer
version of this LSA (since its sequence number is higher),
but BART1 still has the older one, I have to send him my
copy to make our database consistent. Then BAR1 got the
newer copy, which in fact was created by the attacker. It
forwarded it further to all its neighbors. Soon everyone,
ABRI, ABR2, ABR3, ABR4 and BAR2, got the bad LSA.
ABR?2, which is the legal originator, fought back. The at-
tacker did the same thing for 15 times, then quit. All the
routers in the backbone area observed the abnormal traffic,
while router AR4.1, which is in Area 4, hadn’t been dis-
turbed. So in table 2, we can see that AR4.1 didn’t raise any
alarm. All other routers detected the anomaly by the data
volume measure and OSPF packet type measure. Because
the fight back brought additional routing traffic, especially
additional OSPF update/ack packets.

Table 3 shows the result for another similar attack. The
only difference is that router ABR3 was the victim this time.

Routers || data volume | OSPF packet type | LSA age
BAR2 Red Alarm Red Alarm Normal
AR4.1 Normal Normal Normal
ABR3 Red Alarm Red Alarm Normal
ABR4 Red Alarm Red Alarm Normal

Table 3. N= 15, Target : ABR3

5.4 Test Results for Max Sequence Attack

We ran the statistical module on BAR2, AR4.1, ABR3,
and ABR4. But this time the attacker resides on ABR2, and
the victim is ABRS. Table 4 shows the result of the max
sequence attack.

Routers || data volume | OSPF packet type | LSA age
BAR2 Red Alarm Red Alarm Normal
AR4.1 Normal Normal Normal
ABR3 Normal Normal Normal
ABR4 Normal Normal Normal

Table 4. Max sequence attack

As mentioned before, because of the implementation bug,

the routing daemon process can not handle max sequence
attack correctly. The victim will keep fighting back with
its neighbor. So, BAR2 has detected the anomaly, since it
is adjacent to ABRS. But all other routers did not know
that something has been going wrong. This also implies
that to protect a routing domain, one need to run Jiano
on several routers to increase the odds to detect intrusions.
This also confirms our suggestion in [8] that routing protocol
design and implementation should avoid Ait-and-run attacks
as much as possible.

Please note we also ran the max sequence attack against
a commercial router in NCSU’s testbed. With the original
version of routing software, the commercial router is vul-
nerable to the max sequence number attack. However, after
we contacted the vender of this particular router, they have
responded to our discovery a few months ago by giving us
a new version of their router software which has fixed the
bug. With the fixed version, the max sequence attack caused
a global fight-back in backbone area (just like the simple
modification attack). When the attacker only launched one
max sequence attack, the bad LSA was purged out (by the
originator’s fight-back) in a few seconds. If the attacker
kept attacking, all the JiNao module in the backbone area
reported the anomaly.

5.5 Test results for Max Age Attack

We ran the statistical module on ABR2, ABR3, ABR4,
ABRS5 and BAR2. The attacker was on BAR1 and launched
10 max age attacks. The victim is ABR2, and Table 5 shows
the result.

67

Routers || data volume | OSPF packet type | LSA age
ABR2 Red Alarm Normal Red Alarm
ABR3 Red Alarm Normal Red Alarm
ABR4 Red Alarm Normal Red Alarm
ABRS Red Alarm Normal Red Alarm
BAR2 Red Alarm Normal Red Alarm

Table 5. Max age attack

5.6 Other Abnormal Situations

Statistical Module will raise alarm flag whenever sys-
tem’s current behavior deviates too much from its historical
behavior. In certain cases, alarm flags may mean anomaly
rather than attack. For example, when a router is restarted,
the normal routing traffic pattern will be disturbed while the
router brings up its adjacencies by exchanging information
with its neighbors. The statistical components should be
able to detect this kind of anomaly.

Routers || data volume | OSPF packet type | LSA age
BAR2 Red Alarm Red Alarm Red Alarm
AR4.1 Normal Normal Normal
ABR3 Red Alarm Red Alarm Red Alarm
ABR4 || Red Alarm Red Alarm Red Alarm

Table 6. Restart router ABR1

Table 6 shows the result when router ABR1 was restarted
(the routing daemon was brought down first, then brought
up immediately), it tried to re-establish the adjacency rela-
tionship with its neighbors and sent them LSA to advertise
its links. The sequence number was reset to 0x80000001.
But the outside world still had the LSA which ABR1 adver-
tised before it "crashed". Though those copies were older,
they had higher sequence numbers. Hence ABR1 had to
send out max age LSAs to purge the older copies from the
other routers’ database. This caused anomaly not only in
data volume and OSPF packet type, but also in LSA age
because of the max age LSAs.

6 Experience and Improvement

In the following sections, we present some experiences
gained and improvements made in the implementation of
NIDES/STAT algorithm.

6.1 How to Deal with Counting and Intensity
Measure

6.1.1 Max Value

As mentioned in Sections 2.5 and 4, we treat the intensity
measure the same as a counting measure. One common
property shared by these two classes of measures is that the
behavior are represented by a number, R,,, which can be ei-
ther integer or floating pointnumber. Counting measures are
transformed to categorical measures by cutting R,,’s range
into several bins to constitute a set of partitioned events. An
interesting issue here is how to determine the possible range
of R,,. One need to set an upper bound, Rprqe, for R, so
that Prob(R,, > Rpaz) < threshold. For some counting
measures, it’s trivial to set the upper bound. For instance,
the range for the LSA age is an integer number from 0 to
3600 (seconds). But for data volume, it depends on the
number of neighbors and the size of the routing domain. So
Rarqz can not be hard coded in the program.

Our module provides a way to find out what the R4,
should be. In the training phase, a sub-state is defined to
collect R,’s mean value and standard deviation. Rpr.e is
calculated by adding R,,’s mean value to four times of its

68

f(x)
0.50

030
020 1=3

0.10

Figure 2. chi-square distribution

standard deviation. This scheme did well in our testing.
Also we found that the implementation is not very sensitive
to Rpsa4z- Butatoo high or too low upper bound will harm
the detecting effectiveness.

6.1.2 Number of Bins

Another problem is how to define N, which is the total
number of bins. In NIDES algorithm, a magic number 32
is chosen. But we felt it’s better for the user to make the
decision, while given 32 as the default value.

There are some trade-offs when choosing N. If Ny is
too small, the bins are too "coarse”. In some cases, one may
find most values reside in the one or two bins, which results
in insensitivity to intrusions. On the other hand, if N, is
too big, the bins tend to be too "fine", so that lots of them
would be associated with very small probabilities. Not only

. does it require more system resources for book-keeping and

updating due to the pre-condition: Ny X p; > 5, it will
also introduce extra overhead to merge those rare categories.

Another performance penalty will be introduced if IV} is
too big. As a simple example, let’s assume independence
between all these bins. Then, Q’s distribution will be x2
with degrees of freedom (Np — 1). The larger the degrees of
freedom is, the fatter the chi-spare curve will be, as shown
in Fig. 2. This leaves the 's distribution very hard to track
and handle. '

6.2 How to Determine Half-Life Parameters and
the Window Size.

Due to the nature of the routing protocol, the measures
do not behave in a random fashion but with a periodic pat-
tern. The strong periodic patterns are attributed to the fact
that OSPF routers exchange information periodically, like
sending out Hello packet every 10 seconds for Ethernet, and
refreshing old LSA every half an hour. Since NIDES al-
gorithm computes average probabilities, in order to obtain
sensible results the window size should be multiplies of the
period. If this can’t be achieved, the window size must

be long enough to cover several periods, so that when the
window is sliding, the average probabilities would not be
changed dramatically. For instance, we assume to have two
events £ and E, with p(E1) = 0.5, p(F>) = 0.5. Experi-
ments yield a stream of events: F'l, E'1, F1, E2, E2, E2,
El, E1,FEl, E2,E2, E2, ... Table 7 gives the relationship
between window size and the "real" observations of average
probabilities.

Window Size || p(£1)’ min/max | p(E,)’ max/min
6,12,18,... 0.50/0.50 0.50/0.50
3 0.00/1.00 1.00/0.00
9 0.33/0.67 0.67/0.33
15 0.40/0.60 0.60/0.40
21 0.43/0.57 0.57/0.43

Table 7. Window size and Average Probabili-
ties

6.3 How to Train the Long-Term Profile

As mentioned in section 2, there are three phases to train
the long-term profile. How to determine the training periods
for these three phases is not a trivial task. Some experience
are given below according to our experiments. The require-
ment for C (category) training is somehow not as critical as
that for the other two training process. If this training period
is not long enough, the error will be big for those p;’s (refer
to section 2.1 for the definition of p;) with small values.
But remember, in calculating (), we have a pre-condition
: N x p; > 5. If this does not hold, merge will need to
take place. Since those events whose Y;’s are small tend to
be merged together, it therefore reduce the necessity to get
those small p;’s precisely.

But in the @ training phase, even small error in the)’s
distribution will potentially have an effect in the calculation
: P = Prob(Q > q), which can be rewritten as :

P= /q " fol@)da.

in which fo(z) is Qs probability density function

The function fq (z) is depicted in Figure 3. If the training
period is not long enough, one will not get the long tail part
of fo(z) correctly because of lack of occurrence of big ¢
value, so the the curve tends to be the one drawn in dashed
line. The threshold, a, has been moved left hand.

To solve this problem, we defined a state called half func-
tional state, which can be entered after a measure finishes
its C(category) training phase. Theoretically, a measure
in this state is not ready for intrusion detection, since (}’s

1oimmoes x

1 1
8 a 10 2a 14

L L L
2 4 6

Figure 3. Q training

distribution is unknown. But in practice, we temporarily
assume independence between categories, i.e., () has a x?
distribution, and use chi-square test to compare system’s
current behavior with its expected behavior. At the same
time, Q’s real distribution is being established, so that the
measure may transit to full functional state at proper time.
This scheme did very well in our testing.

Of course, our tests are not exhaustive. It is possible that
for some measures, one has to wait until ()’s distribution has
been fully established before proceeds with any intrusion
detection.

6.4 How to Provide Adequate Information to Help
Conduct Inquiries?

Due to the nature of statistical approach, false positive
alarm will be raised even without intrusion activity. A good
deal of the system security officer’s time will therefore be
devoted to investigating what causes the false alert. The
statistical procedure must provide the security officer with
understandable information that can be used to identify the
reason of an alarm in a timely fashion.

In our module, whenever an alarm is raised, the module
provides several pieces of information. First is the distribu-
tions : the expected one and the observed one. Table 8 gives
such an example. One can see that the number of Type 4
packets is about 34% more than expected.

OSPF Type || Expected Dist. | Observed Dist.
Type 1 0.9307 0.9158
Type 2 0.0000 0.0000
Type 3 0.0000 0.0000
Type 4 0.0410 0.0549
Type 5 0.0283 0.0293

Table 8. Difference in distributions

Second, each measure has a queue (in fact, it is im-
plemented as a hash table) associated with each event. For
measures dealing with OSPF packets, like data volume mea-
sure and OSPF packet type measure, the queue saves (OSPF

header, number of occurrence) pairs using OSPF header as
the key. When compare two OSPF headers, only two fields
are considered, one is OSPF router ID, the other is OSPF
area ID. For measures dealing with LSA, like LSA age mea-
sure or those dynamically added LSA measures, the queue
saves the (LSA header, number of occurrence) pairs in it.
When one conducts comparison, only LS type, link state
ID and advertising router ID are taken into consideration.
Again taking OSPF packet type measure as an example,
when a type ¢ OSPF packet is received (i.e., event E; oc-
curs), the header of the packet will be logged into the queue
associated with F;. If the header is already in the queue,
increase the "number of occurrence", if not, add a new en-
try to it. Armed with this information, the security officer
could quickly identify which router cause the problem and
conduct further investigation.

For example, in Section 5.6, Table 6 shows that when
router ABR1 was restarted, several statistical components
raised alarm flags, including the LSA age measure on router
BAR?2. This measure first dumped a distributiontable (Table
9) like what we have seen in the previous section. From this
table, we know that the anomaly was caused by observing
of too many LSAs whose ages were in bin 29.

LSA Age Bin || Expected Dist. | Observed Dist.
0 0.99914 0.98535

1 0.00000 0.00000

28 0.00000 0.00000

29 0.00086 0.00907

Table 9. Difference in distributions

7 Conclusions

In this paper, we present the statistic intrusion detection
approach taken by the JiNao network infrastructure protec-
tion project at MCNC/NCSU. We discuss our ideas, design,
implementation, experimental results as well as the valuable
experience we got. We take the NIDES/STAT algorithm as
a starting point, and we have shown how to apply and ex-
tend the NIDES/STAT approach to detect intrusions in the
domain of network routing protocols. Although our presen-
tation here focuses only on OSPF, our design, implementa-
tion and experience can be ported to protect network routing
protocols in general.

Through our experiments with three OSPF insider at-
tacks: seqg++, maxseq, and maxage running on two
different routing testbed, the results show that the proposed
statistical mechanism is very effective in detecting these

70

three attacks. The attacks can be detected, in fact, even
when the network testbed itself is not very stable. We im-
plemented the NIDES/STAT algorithm for detecting OSPF
anomalies. While some modifications and improvements
are needed to make it work better for our system, we found
that the algorithm in general is easy to understand, imple-
ment and yet effective to detect anomaly. The performance
overhead it incurs in terms of disk space and computing time
is rather minor.

References

[1] S. Cheung and K. Levitt. Protecting Routing Infrastructure
from Denial of Service Using Cooperative Intrusion Detec-
tion. In New Security Paradigms Workshop, Cumbria, UK,
September 1997.

H. S. Javitz and A. Valdes. The NIDES Statistical Compo-

nent: Description and Justification. Technical report, SRI

International, March 1993.

F. Jou, F. Gong, C. Sargor, S. F. Wu, and R. Cleaveland.

Architecture Design of a Scalable Intrusion Detection System

for the Emerging Network Infrastructure. Technical Report

E296, Adavnced Network Research, MCNC, April 1997.

J. Moy. OSPF Version 2. Network Working Group Request

for Comments: 2178, July 1997.

S. Murphy and M. Badger. Digital Sighature Protection of the

OSPF Routing Protocol. In Internet Society Symposium on

Network and Distributed Systems Security, 1996.

[6] R. V. H. . E. A. Tanis. Probability and Statistical Inference.
Macmillan Publishing Company, 4th edition, 1993.

[71 A. Valdesand D. Anderson. Statistical Methods for Computer
Usage Anomaly Detection Using NIDES. Technical report,
SRI International, January 1995.

[8] B. Vetter, F. Wang, and S. Wu. An Experimental Study of
Insider Attacks for the OSPF Routing Protocol. In /EEE
International Conference on Network Protocols (ICNP), pages
293-300, October 1997.

2]

B3]

4]
[5]

