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Abstract

Intrusion detection research has so far concentrated on techniques that
effectively identify the malicious behaviors. No assurance can be assumed
once the system is compromised. Intrusion tolerance, on the other hand,
focuses on providing minimal level of services, even when some compo-
nents have been partially compromised. The challenges here are how
to take advantage of fault tolerant techniques in the intrusion tolerant
system context and how to deal with possible unknown attacks and com-
promised components so as to continue providing the service. This paper
presents our work on applying one important fault tolerance technique,
acceptance testing, for building scalable intrusion tolerant systems. First,
we propose a general methodology for designing acceptance testing. An
Acceptance Monitor architecture is proposed to apply various tests for
detecting the compromises based on the impact of the attacks. Second,
we make a comprehensive vulnerability analysis on typical commercial-
off-the-shelf (COTS) web servers. Various acceptance testing modules
are implemented to show the effectiveness of the proposed approach. By
utilizing the fault tolerance techniques on intrusion tolerance system, we
provide a mechanism for building reliable distributed services that are
more resistant to both known and unknown attacks.
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1 Introduction

Network security research [15, 27] has in general emphasized making informa-
tion systems secure by keeping intruders out. Confidentiality and integrity have
been achieved by encrypting critical information and limiting access to it only
to authenticated users. However, since no security precautions can guarantee
a system not be penetrated, once a system is compromised or even just under
attack, it will be left in a vulnerable and unpredictable state, which is not ac-
ceptable for mission critical applications or services. As a second line of defense,
intrusion detection and response research [2, 4, 16, 21] has mostly concentrated
on known and well-defined attacks. This narrow focus of attacks has accounted
for both the successes and the limitationes of many commercial intrusion detec-
tion systems (IDS). A number of well respected research and commercial IDS
have been evaluated at MIT Lincoln Labs in the past two years [19]. The re-
sults showed that new and novel attacks present formidable challenges to these
systems.

In order to overcome the above problems, the SITAR (Scalable Intrusion-
tolerant Architecture for Distributed Services) [29] architecture (see Figure 1)
is proposed to provide a framework to build intrusion tolerant system for dis-
tributed services. It has the following novel aspects: (1) We focus on one generic
class of services (network-distributed services built from COTS components) as
the target of protection. Specifically, we discuss the framework in a web service
context to make our presentation tangible. (2) Two specific challenges are ad-
dressed in this architecture. The first is how some of the very basic techniques
of fault tolerance (e.g., redundancy, diversity and acceptance test) apply to our
target. The second is how we deal with external attacks and compromised com-
ponents, which exhibit very unpredictable behavior compared to accidental or
planted faults. (3) Our dynamic reconfiguration strategies will be based on the
intrusion tolerant model built within the architecture.

In the SITAR architecture, the Acceptance Monitor plays an important role
in detecting compromises caused by external attacks and reporting these com-
promises through intrusion triggers. Its main functionality is acceptance test-
ing, which applies pre-designed application-specific tests to both requests and
responses and detects system compromises primarily based on the impact of
the attack. The results of the acceptance testing can help to determine (1)
what kind of the compromises the system has, (2) which software component
is possibly involved, and (3) whether the response generated by the software
component is still valid.

The rest of the paper is organized as follows. In Section 2 we propose a gen-
eral Acceptance Monitor design methodology and a generic monitor architec-
ture to effectively apply tests on various COTS service. Section 3 describes the
implementation of Acceptance Monitors for web services based on the generic
Acceptance Monitor design. Section 4 presents the experimental analysis on de-
tecting web server compromises and discusses detection coverage of the Accep-
tance Monitors that we designed. Section 5 discusses the related work. Finally,
we make conclusions and discuss the future work in Section 6.
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Figure 1: Overview of SITAR architecture

2 Acceptance Monitor Design

As mentioned above, the main functionality of an Acceptance Monitor is to
detect the compromises of COTS servers through acceptance testing. With the
result of acceptance testing, the system adaptively reconfigures its components
so that the impact caused by attack can be masked and the damage can be
recovered.

The role of the Acceptance Monitor in the system architecture is shown in
Figure 1. An Acceptance Monitor applies acceptance testing on client requests
and the server responses. When an Acceptance Monitor detects any compro-
mise, it generates intrusion triggers for the Adaptive Reconfiguration Module.
Based on the content of the intrusion triggers, the Adaptive Reconfiguration
Module takes corresponding actions such as isolating compromised components,
reconfiguring system resources and enforcing new security policies. In addition
to the compromise detection, an Acceptance Monitor also determines whether
or not the server response is valid. It gives the response’s validity result to Bal-
lot Monitors so the Ballot Monitors can pick only valid responses. To improve
fault tolerance, SITAR introduces redundancy and diversity of COTS service.
This redundancy and diversity requires one or more Acceptance Monitors to
participate in the detection by processing requests and responses. The redun-
dancy level and the work assignment among Acceptance Monitors for different
COTS servers are determined by the Adaptive Reconfiguration Module and the

3



Proxy Server.
When we design the Acceptance Monitors for generic COTS services, we

need to consider two important aspects: (1) what kind of acceptance testing
measures can be used and (2) how the Acceptance Monitors can efficiently
collaborate with other distributed components in the SITAR system.

2.1 Design methodology

2.1.1 Acceptance testing measures

In fault tolerance terms, acceptance testing is a programmer or developer-
provided error detection measure in a software module [18], in the form of a
check on the reasonableness of the results calculated. It usually consists of a
sequence of statements that will raise an exception if the state of the system is
not acceptable. If any exception is raised by the acceptance test, the module
is said to have failed or been compromised. In our Acceptance Monitor, we
include acceptance testing modules to detect the compromises caused by any
errors, including both accidental faults malicious attacks. The source of the
testing is mainly the responses from the COTS server. Different services re-
quires different types of testing measures. We can broadly classify the testing
measures into following categories.

a. Requirement test: In many cases, some conditions are imposed to complete
a task. These conditions can be represented as an expected sequential order of
events or a subset of given events. The requirement test is to make sure that the
imposed conditions are satisfied. For example, if an attacker stored a back-door
code that enables the server to send some message to a client without a relative
request, we will observe some violations in the required sequential order.

b. Reasonableness test: Reasonableness test is used to detect software/system
failures through pre-computed ranges, expected sequences of program states, or
other relationships that are expected to be satisfied. Reasonableness checks are
based on physical constraints, while satisfaction of requirements tests are based
on logical or mathematical relationships.

c. Timing test: In fault tolerance, timing test is used in systems with time-
sensitive components to determine whether the execution time meets the con-
straints. In our system, we can use timing test to detect the denial of ser-
vice(DoS) [5] compromise in both time-sensitive and non-time-sensitive services.
In time-sensitive services, restricted time parameters are defined for the COTS
server’s response arrival time. In non-time-sensitive services, reasonable time
parameters for module execution are also given. Based on such timing checking,
we can determine whether there is a DoS compromise or service degradation.
Finding out the reasonable time parameters is not simple. A bad value can re-
sult in many false alarms. A learning process can help to estimate the reasonable
range of time parameters.

d. Accounting test: The accounting test is used for transaction-based applica-
tions that involve simple mathematical operations. Examples are airline reser-

4



vation systems, library records, inventory control and control of hazardous ma-
terials. A tally for both the total number of records and sum over all records of a
particular data field can be compared between source and destination, whenever
a large number of records are transmitted or reordered.

e. Coding test: Theoretically, coding test is based on redundancy in the rep-
resentation of the target data we want to protect. The redundant check data
are maintained in some fixed relationship with the non-redundant data repre-
senting the value of the payload. Errors that result from a corruption of either
form of data can violate this relationship, and if the relationship does not hold,
data corruption will be detected. Traditionally, the redundant data are within
the data. In our system, the redundant data of the objects can be kept in the
Acceptance Monitor because the Acceptance Monitor is more trustworthy. The
problem of separating the redundant data from the object is that the redundant
data will be out of date if the object has been modified legally. The representa-
tion of the redundant data can be the cryptographic checksum or the hash-code
of the original data. Many algorithms are widely used for this purpose, such as
CRC [22], MD5 [25], and SHA [24].

2.1.2 Communication and collaboration environment

An Acceptance Monitor supports the following communication primitives with
other SITAR components:

a. Registering/unregistering for a given connection: When a client asks for a
COTS service, it sends a connection request to the Proxy Server. Before setting
up the connection, the Proxy Server needs to choose Acceptance Monitors to
process the client’s requests and COTS server’s responses. After Proxy Server
and Adaptive Reconfiguration Module decide the redundancy level and working
assignment among available Acceptance Monitors, the Proxy Server multicasts
the working assignment and waits for the confirmations from Acceptance Mon-
itors. If some of the Acceptance Monitors fail to confirm, the Proxy Server
chooses other available Acceptance Monitors or changes the redundancy level of
Acceptance Monitors. An Acceptance Monitor that sends a confirmation will
be a registered Acceptance Monitor for this new connection. When a COTS
server stops working for this connection, the Acceptance Monitor that is testing
this server needs to unregister for the connection.

b. Reporting validity of a server response to Ballot Monitors: As Ballot Moni-
tors only pick up valid COTS server responses and Acceptance Monitors check
the validity of COTS servers’ responses through acceptance testing, Ballot Mon-
itors needs to know from Acceptance Monitors which responses are valid.

c. Reporting compromises to the Adaptive Reconfiguration Module: In SITAR,
the Adaptive Reconfiguration Module receives intrusion triggers, evaluates in-
trusion threat, tolerance objectives, costs, as well as performance impacts, and
generates new configurations for the system. An Acceptance Monitor generates
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an intrusion trigger when it detects a compromised COTS server through ac-
ceptance testing. The trigger to the Adaptive Reconfiguration Module contains
the information of how serious the threat is, which type of the compromise has
been detected, and which server is compromised.

As SITAR components are distributed, a flexible and reliable communication
environment is very important. When building such a communication environ-
ment, we also needs to make sure that the distributed collaboration environment
should meet the scalability requirements of the SITAR components.

As distributed tuplespace [13] provides dynamic and flexible coalition envi-
ronment for the distributed system, we choose to use it as our SITAR collabora-
tion space. Tuplespace was first developed for the Linda coordination language
[7]. It is a content-addressable shared memory. Each element of the space is
a tuple, which is an ordered list of type-value pairs. To retrieve a tuple from
the space, a template is provided, in which a subset of the tuple elements can
be left blank. A matching tuple is one which matches the values provided by
the template and the types of the blank entries in the template. Like tradition
message passing, tuples are passed by value, not by reference, and may be freely
copied.

JavaSpaces1 [8] is a implementation of the tuplespace. It combines the con-
cept of the tuple space with the Java language. The JavaSpaces services are
built from the distributed programming facilities of Jini [14]. The tuples in
JavaSpaces are objects which implement the Entry interface. JavaSpaces im-
plements the following operations that control the contents of the tuple: write
places an object into the space; read retrieves a copy of a matching tuple; take
gets and removes a matching tuple from the space. The non-blocking forms
of read and take are called readIfExists and takeIfExists. In addition to these
basic operations, JavaSpaces provides three other mechanisms for space-based
coordination: (1) lease, which is a time limit associated with a tuple, (2) trans-
action, which is a collection of operations that are performed atomically, and
(3) distributed event, which allows an object to be notified if a particular type
of tuple is added to the space.

The reference implementation of JavaSpaces, provided by Sun Microsystems,
uses a centralized tuplespace server. Other implementations [20] or enhance-
ments [12] provide for distributed JavaSpaces servers with replication for fault
tolerance.

2.2 Generic Architecture of an Acceptance Monitor

According to the above methodology, we designed the generic Acceptance Moni-
tors architecture as shown in Figure 2. An Acceptance Monitor contains a group
of acceptance testing modules (we call them workers). Each worker checks for
a unique connection within the monitor. A worker is created after its monitor
registers for a connection. The number of workers in a monitor represents the
number of connections it handles. A worker closes itself once the corresponding

1JavaSpaces and Java are registered trademarks of Sun Microsystems Inc.
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Figure 2: Generic Acceptance Monitor architecture

COTS server stops working for the connection. The communication interface is
the interface between the Acceptance Monitor and the SITAR communication
space.

The main functionality of each worker is to process requests and responses
for a given connection. Inside each worker there are a response processor, a
waiting queue, and a request/response listener. The logic flow of the worker
components is also shown in Figure 2.

The response processor, shown in Figure 3, includes a group of acceptance
testing units (we call them checkers) that apply acceptance testing for a given
response. Different units, according to their names, uses different testing mea-
sures. The final testing results from the units will be collected by a result
marshaller. Based on the testing result, the marshaller generates a validation
report and intrusion triggers.The worker sends marshaled response via the re-
sponse processor.

The waiting queue in the worker contains a list of requests or request/response
pairs. When the request processor is idle, it retrieves a complete request/response
pair from the waiting queue. When a request just arrives at the waiting queue,
the timing checker is activated for its response. If the response does not arrive
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Figure 4: Registering for a connection

within the timeout threshold, the timing checker raises a timeout exception.
The request/response listener listens on the incoming request and outgoing

response associated with the connection. When a request is received, it needs to
pass a parser first. If a request fails the parsing, the worker drops the request.
Otherwise the request will be queued. When the worker finishes parsing the
request, it generates a request validation report indicating whether or not this
request is valid.

As we discussed in section 2.1.2, an Acceptance Monitor collaborates with
other SITAR components through a JavaSpaces. The communication interface
of an Acceptance Monitor supports these collaborations. The entry designed
for collaboration and their flow are as follows:

• A Proxy Server multicasts the working assignment by writing “work order
request” entries into the JavaSpaces. An available Acceptance Monitor
takes one of the entries and writes a “work order request acknowledgment”
entry for registration. See Figure 4. When an Acceptance Monitor stops
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Figure 5: Protocol of verifying a request

working for a connection, the interface puts a “connection close alert” into
the JavaSpaces.

• The interface read a client request from the JavaSpaces and writes back a
“request validation report” in which there is a boolean field named “valid”.
The valid field with “true” indicates that the request passed the parsing
successfully. Otherwise the request fails the parsing. See Figure 5.

• The communication interface reads server responses. After checking them
it writes back “response validation report” entries. As the “request valida-
tion report”, the “true” value in “valid” field in a response report indicates
that the response is acceptable. Otherwise it is not acceptable. These re-
port entries will be taken by Ballot Monitors. See Figure 6.

• When a worker detects any compromise of a COTS server, it writes an in-
trusion trigger entry through the communication interface into the JavaS-
paces. The element of the entry includes: connection ID, Acceptance
Monitor’s index number, COTS server’s physical name, trigger type and
log message.

As current JavaSpaces lacks security features such as confidentiality, authenti-
cation and authorization checking, we plan to build an improved collaboration
environment on secured JavaSpaces which is developed in Yalta [11] project.

To summarize, we have introduced the generic architecture of the Acceptance
Monitor, which is designed to accomodate a variety of COTS services. Since
the acceptance testings determine what a COTS server “should do” or “should
not do”, Acceptance Monitors are highly application dependent. When we are
implementing Acceptance Monitors for specific COTS service, we need to know
which acceptance testing measure is appropriate for this service, in another
words, which acceptance testing unit is to be activated in a response processor.
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Figure 6: Protocol for verifying a response

Also, different COTS services use different protocols, so the parser within the
request/response listener must be adapted for the target COTS service.

3 Implementation of Acceptance Monitors for

Web Servers

Based on the generic Acceptance Monitor design, we implemented Acceptance
Monitors for web servers. To determine which acceptance testing measures are
appropriate for detecting compromise of web servers, we need to know what
kinds of faults reside in a web server and what are the possible security com-
promises related to those faults. To do so, we investigated most of the web
server’s vulnerabilities advised in Bugtraq [26], which is a full disclosure mod-
erated mailing list archive. This archive contains the detailed discussion and
announcement of computer security vulnerabilities: what they are, how they are
exploited, and how to fix them. This work is conducted in two phases. First,
web server compromises are classified based on their possible impacts. Sec-
ond, acceptance testing modules for web servers are implemented and verified
through experimental analysis.

3.1 Vulnerabilities and Compromises for Web Servers

The Apache [3] and IIS [23] servers are chosen in our study since they are the
most commonly used web servers in the Internet and they have many add-on
software modules developed to support various web-based services. From 1996
to March 20, 2001, 41 Apache-related vulnerabilities and 84 IIS-related vulner-
abilities were reported. We analyzed most of the cases, as shown in Table 1 and
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Table 1: Apache related vulnerabilities: the table is filled with Bugtraq ids, dir
means directory disclosure, L means local attack

DoS integrity confidentiality command execu-
tion

others

input validation 552 2100 1587 1488
1084 1081 968
1814

2023 1912 886

boundary condi-
tion

1642 1066 552
192

1191 2048 1861 1570
1109 307 286
2252

access validation 657 1876 582(dir)
2280(dir) 1193
1057 689 167 189
190 149

529 1565

failure to handle
exceptional con-
dition

2843 1608 1819
2453 1476 579
2440 2441 1868
1190 2218 1089

1021 882

configuration 2110 1818 1065 194
design 521 658 1181 1174(dir) 1832

1499 1734 1108
978 559 447 229
2074

race condition 501(L)
unknown 465 193 195 1594 1595

2. Based on the investigation, we found the following types of vulnerabilities
residing in web severs: (1) Boundary condition error; (2) Access validation er-
ror; (3) Input validation error; (4) Failure to handle exceptional conditions; (5)
Race condition error.

Since we are focusing on intrusion tolerance by analyzing the responses, it
is necessary to analyze the possible impacts of the exploitations. So we came
up with a classification of the web server’s compromises based on their impacts,
shown in Figure7.

Through the case study and classification, we found out that, although the
possible errors share some common attributes (i.e., many can be classified into
the same error type), the actual exploitation of each error type may have many
different forms. However, various exploitations of many errors have the same
impact. This fact motivates us to concentrate on analyzing the impacts from
the responses.

3.2 The implementation of an Acceptance Monitor for

web server

Based on the compromise analysis, we implemented following acceptance testing
units for web servers:

Requirement checker: This checker predicts possible status of each field of
the response according to the request and the COTS server’s current conditions.
If the response is not within the expected status, the checker will report the
exception. The requirement checking process is shown in Figure 8. The checker
divides an HTTP request into atomic requests. A condition analyzer generates
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Table 2: IIS related vulnerabilities: the table is filled with Bugtraq ids, dir
means directory disclosure, L means local attack

DoS integrity confidentiality command execu-
tion

others

input validation 2503 2407 1284
2518 2504 2060
1896 1990 2300

2286 776 629

boundary condi-
tion

1988 1821 2409 2206 1707
1557

1570 2410(root priv-
ilege) 1876(up-
load)

access validation 2171 1457 2376
failure to handle
exceptional con-
dition

1868 1760 2216

configuration 2454(L) 1238 1023
design 1531 337 2205

1728 1532
race condition 2182(L)
unknown 306 1548 649 98 1575(root privi-

lege)
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possible response patterns for each atomic request. These responses patterns
include (1) the possible HTTP response patterns when a request is satisfied,
(2) the HTTP response patterns when a request is not satisfied, and (3) no
response. Except no response, each pattern gives a reasonable scope HTTP
response header status, such as the status code, and the length of the possible
payload. When the patterns are generated, a comparator tries to match the real
HTTP response with the patterns. If the HTTP response does not match any
possible combination of the patterns, the checker generates a exception.
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Figure 8: Requirement checking process

Coding Checker: This checker is used to test if the signature of the re-
sponse’s data matches the expected signature of a corresponding file that should
be generated by the server. In each Acceptance Monitor, a small cache is main-
tained to dynamically store information of most frequently visited web pages
of the relevant web server. Information for each page includes file length, last
modified date, hash code of the file content, and algorithm for the hash code
computation. To obtain such information, Acceptance Monitors assume that
a web page first delivered by a web server is not the defaced page and extract
information from the page. Even under some circumstance a coding checker’s
cache loads a defaced information, it will be detected by Ballot Monitors through
voting. The functionality of coding checker is to detect some confidentiality and
integrity compromises in the web servers. The coding checking process is shown
in Figure 9.

Timing checker: A timing checker is immediately activated when a request
arrives at the waiting queue of a acceptance worker. According to the contents
of the request, the timing checker determines a reasonable timeout value for the
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response. If the response does not arrive before the timeout, the timing checker
generates a timeout intrusion trigger. Otherwise it will be deactivate by the
worker when the response arrives. This timing checker usually can detect denial
of service compromise.

Access checker: Access checker uses reasonableness test measure on the
response. It checks if the response violates any access control policies. If it
does, the access checker raises exception. The access checking process is shown
in Figure 10 . When a HTTP response’s status code indicates that a client’s
request is satisfied, the access checker analyzes the request and generates a
list of visiting locations the server used for the requested service. If any of the
locations is not authorized for the client, then there must be some access control
violation and the checker raises an exception.

Validation checker: Validation checker also uses reasonableness test mea-
sures on the response. The validation checker has a reasonable range of each
field of an HTTP header. If the value in a header field does not scale down to
its reasonable range, the checker raises its exception. The validation checking
process is shown in Figure 11.

In addition to the above acceptance testing units’ implementation, we also

14



server response

response


parser


implied?


range

of headers


unknown

header?


headers


+
 exception
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used HTTP request parser as the request parser within the request/response
listener of a worker. The Acceptance Monitor framework we implemented is
based on the generic architecture of an Acceptance Monitor.

To verify how Acceptance Monitors can detect compromises successfully, we
did some case studies and experiments on fault injection and attack simula-
tion. One of the recent experiments, introduced in the following section, is the
CodeRed [9] fault injection and effect detection. For detection of other known
compromises, the testing and case study results are summarized in Section 4.4.

4 Experimental Analysis: Fault Injection, Com-

promises Detection and Detection Coverage

In this section, we performed experimental analysis on SITAR prototype. First,
we used CodeRed attack as an example to show how Acceptance Monitors can
successfully detects the compromise. Then, we discuss the detection coverage
for web services based on our case studies and experimental results.

4.1 CodeRed attack

In July 2001, a virus, named CodeRed [9], was widely spreading throughout
IIS Web servers on the Internet via the IIS .ida buffer-overflow vulnerability
[10] that was published early in June, 2001. A CodeRed worm has following
behaviors once it resides in a vulnerable IIS web server:

• Send a “GET” request back to the attacking machine to indicate that the
local machine has been infected successfully.

• Generates a list of random IP addresses and spreads itself by probing
remote machines.

• Launches a Denial-of-Service attack against www1.whitehouse.gov from
the 20th-28th of each month.

• Defaces web pages on vulnerable web servers with the phrase “Hacked by
Chinese”.
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Figure 12: Experiment: scenario of SITAR system

4.2 Experimental environment

To validate the SITAR especially the Acceptance Monitors, we setup our test
environment as shown in Figure 12. In the experiment, a simulated IIS web
server is built on a windows machine. This simulated IIS web server is a modi-
fied mini httpd [1], which implements all basic features of a small HTTP server.
We injected faults in this server so that it can emulate the CodeRed worm’s
behaviors when it receives a given malicious HTTP request. We also set up
two Apache servers on two Linux machines. These two Apache web servers
are invulnerable to the CodeRed attack. Besides the three web servers, we
set up three Acceptance Monitors, one Ballot Monitor, one Proxy Server and
one Adaptive Reconfiguration Module. The configuration of the Proxy Server,
Acceptance Monitors and Ballot Monitor for processing client requests and re-
sponses is also shown in Figure 12. Three available Acceptance Monitors and
Web servers process all requests on a single connection between a client and the
proxy. On the same connection, each Acceptance Monitor processes responses
from one of the three web servers. The Ballot Monitor collects validation report
from all the three Acceptance Monitors. The Adaptive Reconfiguration Module
receives intrusion triggers from all three Acceptance Monitors.

4.3 Results

After we setup environment, we send a malicious request that represents the
CodeRed attack to the simulated IIS server. As a result, when the server sends
a “GET” request back to the client, the Adaptive Reconfiguration Module re-
ceives an intrusion trigger from the Acceptance Monitor that is bound with
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Figure 13: Experiment: verifying responses

the simulated IIS Server. The content of the intrusion trigger indicates that
there is an exception raised by a requirement checker indicating the sequential
order error of the response. After the simulated IIS is under attack, we visit
normal web page from the web browser. Every time after request is sent, the
web browser gets a normal web page from the one of the Apache servers and the
Adaptive Reconfiguration Module gets an intrusion trigger from the Acceptance
Monitor bounded with the simulated IIS server. This time the intrusion trigger
indicates that a coding checker detected a defaced web page from the simulated
IIS server. See Figure 13.

4.4 Acceptance testing coverage

After we did case studies [30] and experiments, we evaluated the coverage of
compromise detection, which is presented in Table 3. All the DoS compromises
can be detected through the timing check measure. Integrity compromises can
be detected by coding check. In addition, the reasonable and requirement checks
can handle the integrity problem caused by web server’s input validation error,
access validation error and failure to handle the exceptional conditions. Confi-
dentiality compromises can be detected through the reasonableness check and
requirement check. The requirement and reasonableness checks also can detect
command execution compromises caused by access validation and the failure
to handle exceptional condition. These test measures, however, cannot detect
some categories of errors under some specific conditions, such as the confiden-
tiality and command execution compromises caused by a boundary condition
error.
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Table 3: Acceptance testing coverage

Vulnerability DoS Integrity Confidentiality Command Execution

Input validation error T,R,A,V C,R,A,V C,A,V

Boundary condition error T C

Access validation error T,R,A,V C,R,A,V R,A,V R,A,V

Failure to handle exceptional conditions T C,R,A,V R,A,V R,A,V

Configuration error T C R,A,V

Design error T C R,A,V

Unknown T C

T: Timing checker C: Coding checker R: Requirement checker
A: Access checker V: Validation checker

5 Related work

Intrusion tolerance is a new technique that seeks to use the fault tolerance
technology to build up systems that can provide secure and reliable service
even when the system is under attack. In this section, we discuss some related
research work in intrusion tolerance area.

The HACQIT(Hierarchical Adaptive Control for QoS Intrusion Tolerance)
[28] project, developed by Teknowledge and UC Davis security Lab, is to build
a intrusion tolerance COTS service by using fault-tolerance paradigms and by
extending the techniques of intrusion detection to achieve error detection. This
project relies primarily on error-detection methods where the errors are detected
in the integrity or performance aspects of running processes through specifica-
tion based analysis. To achieve effective recovery and reconstitution, HACQIT
employs a hierarchical model in which each level in the hierarchy recovers as
best as it can to a consistent states that is “close” to a state just prior to the
attack, and then makes that recovered state available to the next higher level.
Similar as SITAR technology, the HACQIT includes error detection mechanism
as the base of system reconstitution. Different from the SITAR, it performs de-
tection through violation of QoS specifications and specification based intrusion
detection.

DRAPER Laboratory developed Kinetic Application of Redundancy to Mit-
igate Attacks (KARMA) [17]. This project targets at: emploies only a small
set of trusted components to protect a large set of untrusted unmodified COTS
servers and databases; tries to minimize loss of data confidentiality and integrity
in the presence of a successful attack on one of the servers and tolerates attacks
whose specific signatures are now known a priori.

The ITSI (Intrusion Tolerant Server Infrastructure) [6] developed by Secure
Computing uses independent network layer enforcement mechanisms to reduce
intrusions, prevent propagation of intrusions that do occur, provide automated
load shifting when intrusions are detected and support automated server recov-
ery. In this architecture, a detection/initiating agent is used to send alert of
spoofing violations, sniffing violations and matching on any filter rule that has
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alerting enabled. According to alert and PEN rules, the system will shift traffic
among the server cluster.

Similar to SITAR project, these projects use dynamic configuration strat-
egy and recovery technology to reconstitute system and mask the compromised
component so that the system can still provide service with tolerate degradation
level. Further more, all the projects, including the SITAR, uses error detection
as the basic input of dynamic configuration.

Different with SITAR, all the above projects use rule-based or statistical-
based intrusion detection technology to build error detection mechanism. The
reason SITAR uses acceptance testing to detect error of compromised COTS
services is, we hope to use acceptance testing to improve the detection on com-
promise caused by known attack. Through analyzing known impacts, we expect
to handle both known and unknown intrusions.

6 Conclusion and future work

In this paper, we discussed the acceptance test methodology and the design of
the Acceptance Monitors in the intrusion tolerant system context. A generic
Acceptance Monitor architecture is proposed and the various acceptance test
measures are discussed. Acceptance test by nature is highly application depen-
dent. Fine tuning in our system helped to achieve high efficiency. To apply
the Acceptance Monitor methodology for detecting the compromises of the web
servers, we performed a detailed and comprehensive investigation of Bugtraq-
advised vulnerabilities. Our conclusion is, although the exploitations of the
errors can take quite different forms, the kinds of the compromise impacts are
limited. So we classified those compromises according to their impacts and spec-
ified the acceptance test measures based on the classification results. Through
case studies and experiments, we showed how the Acceptance Monitor can effec-
tively detect the compromises and we also evaluated the coverage of compromise
detection.

In our future work, we would like to pursue two directions. First, we plan
to improve the communication infrastructure using secured JavaSpaces so we
can have enhanced security even when the SITAR architecture itself is under
attack. Second, we will implement an open architecture of acceptance testing
units to enable the plug and play fashion of Acceptance Monitors.
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