
SC2001: November 10-16, 2001

Multilevel Parallelism:
Case Studies and Lessons Learned

Daniel Duffy1,2 and Mark Fahey3

1Computational Grid Group
2Computer Science and Engineering Group

Computer Sciences Corporation
ERDC MSRC
Vicksburg, MS

3Center for Computational Sciences
University of Tennessee

Oak Ridge National Laboratory
Oak Ridge, TN

SC2001: November 10-16, 2001

Outline

 ERDC MSRC
 ORNL
 Introduction

– Parallel Strategies
– Processes versus threads
– Hybrid Model

 OpenMP and Pthreads Overview
 Example: Calculating Pi

SC2001: November 10-16, 2001

Outline (continued)

 Tools
– Totalview
– Vampir
– KAP Pro Tools

 Implementing Mixed-Mode Codes
 Case Studies

– STWAVE
– CGWAVE
– SARA-3D
– FEMWATER123

 Lessons Learned
 Future
 1-D Laplace Example

SC2001: November 10-16, 2001

ERDC MSRC
http://www.wes.hpc.mil

 U.S. Army Engineer Research and Development Center Major
Shared Resource Center, Vicksburg, MS

– Hardware:
 2 Compaq machines (soon): 256 ES40 and a 512 ES45
 Origin 3800: 512 processor single system image
 IBM Power3 SMP: 16 nodes (8-way); leaving soon
 Cray T3E: recently upgraded

– 512 600 MHz processors with 256 Mbytes of memory
– 256 675 MHz processors with 512 Mbytes of memory

– Computational Science and Engineering Group:
 Computer Scientists, Mathematicians, Earth Scientist, Physicist
 Benchmarking
 Porting/Parallelizing/Optimizing Code
 Algorithm development and research
 Tools development
 Education

– Computational Grid Group
 Developing a Computational Grid for the DoD based on Globus!

SC2001: November 10-16, 2001

ORNL
http://www.ccs.ornl.gov

 DOE High Performance Computing Research Center
at Oak Ridge National Laboratory, Oak Ridge, TN

– Hardware
 IBM Power4: 24 nodes each with 32 1GHz processors being

delivered
 IBM Power3: 176 4-way and 8 2-way 375 GHz
 Compaq SC40: 64 node 4-way 667 MHz
 Compaq SC40: 16 node 4-way 667 MHz

– Computer Science and Mathematics Division
 high performance computing
 applied mathematics
 intelligent systems
 advanced computing systems
 new ways to solve problems beyond the reach of most computers
 software tools

SC2001: November 10-16, 2001

What is Multilevel Parallelism?

 Often referred to as dual-level parallelism, mixed mode
or hybrid programming model

 Contains some mixture of at least two of the following:
– MPI
– OpenMP
– Pthreads
– Shmem
– Fork
– Other

 In general, multilevel parallelism is the mixture of at
least two methods of parallel paradigms in the attempt
to create a program that scales better and runs faster
than can be obtained with only a single method.

SC2001: November 10-16, 2001

Why Multilevel Parallelism?

 Memory limitations:
– Some shared memory nodes may not have enough memory for x

copies of the executable.
 Intensive Operations:

– Each MPI process contains a large number of computations.
– Speed these areas up with threads.

 Ease of Use:
– Using threads to perform loop-level parallelism within MPI processes

is relatively easy.
– Usually, the number of source code lines that need to be added is

generally small.
 Portability:

– With OpenMP, directives can be ignored at compile time.
– Follow the standard, either OpenMP or Pthreads

 Disk limitations:
– If large amounts of I/O are needed for each MPI process, threads can

allow the number of I/O requests to be kept to a minimum.

SC2001: November 10-16, 2001

Architecture: Distributed Memory

 Each node contains a single processor with its own
memory

 Nodes are tightly coupled via switches or routers
 Classic Examples:

– T3E: nodes positioned within a torus architecture
– IBM SP: nodes connected through switches

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

SC2001: November 10-16, 2001

Architecture: Shared Memory Processors (SMP)

 N processors all share a single address space: Single
System Image (SSI)

 Path to the memory is either:
– Uniform Memory Access (UMA): the same for each processor
– Non-uniform Memory Access (NUMA): different depending on

the physical position of the processor
 Examples:

– SGI Origin Series
– Sun E10K

CPU

Memory

CPU CPUCPU

SC2001: November 10-16, 2001

Architecture: Distributed-Shared Memory Processors
(DSMP)

 Each node contains n processors that share
the memory on that node only.

 Many nodes are loosely connected
 Examples:

– IBM Power3, Compaq SC40 and SC45
– IBM Power4, Compaq GS320

CPU

Memory

CPU CPUCPU CPU

Memory

CPU CPUCPUCPU

Memory

CPU CPUCPU

SC2001: November 10-16, 2001

Message Passing Interface (MPI)

 Standard for message passing
– MPI Standard 1.1
– MPI Standard 2.0

 MPI is a library specification, not a languange
 Model: a collection of processes

communicating via messages
 Can be used on most every architecture

– Vendor supplied libraries
– MPICH
– Other implementations

 http://www.mcs.anl.gov/mpi/

SC2001: November 10-16, 2001

OpenMP

 Application Program Interface (API) that supports multi-
platform shared-memory parallel programming in
C/C++ and Fortran

 Available on most architectures, including Unix
platforms and Windows NT platforms

 Standard for shared memory programming
– Fortran 2.0
– C/C++ 1.0

 Comprised of
– Compiler directives
– Environment variables
– Library routines

 Excellent web site: http://www.openmp.org/

SC2001: November 10-16, 2001

Pthreads

 Posix C API thread library: IEEE POSIX
1003.1c standard (1995)

 Created to provide a standard for vendor
specific threading capabilities

 Fortran interface
– ERDC MSRC:

 http://www.wes.hpc.mil/hard_soft/pthreads.htm

– IBM xlf7.1
 Nice tutorial:

http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html

SC2001: November 10-16, 2001

Other Common Strategies

 Shmem
– Originally the Cray message passing library
– Small number of routines
– Single-sided
– Very fast
– Not always portable

 Fork
 Automatic Parallelization: -apo

– Most vendors supply an option to the compiler
– Use with caution
– Not very sophisticated

SC2001: November 10-16, 2001

Parallel Strategies: Task Level (1)

 Task level parallelism at the input data level,
sometimes called embarrassingly parallel:
– Relatively easy to do.

– Typically, minimal Message Passing.

– Executable may not fit on a node:
 If a.out uses x amount of memory, mpirun –np y will use

x*y amount of total memory.

 This may be infeasible on some shared memory nodes.
For example, the IBM SMP at ERDC has only 4 Gbytes of
memory per 8-way node.

SC2001: November 10-16, 2001

Parallel Strategies: Task Level (2)

mpirun –np 4 a.out

Each processor works on
a unique input set! Little
or no communication!

a.out

a.outa.outa.outa.out

PE 0:
Input
Set 0

PE 1:
Input
Set 1

PE 2:
Input
Set 2

PE 3:
Input
Set 3

Stop

Stop
Stop

Stop

end

Load Balancing is an issue!
Some PEs may finish their work
before others!

Size of executable for each PE
remains the same!

SC2001: November 10-16, 2001

Parallel Strategies: Domain Level (1)

 Parallelism by domain decomposition or
substructuring:
– Relatively difficult to do.

– Usually Message Passing Intensive.

– The size of the executable usually shrinks as the
number of processors used grows.
 If a.out uses x amount of memory, mpirun –np y will

typically use x amount of total memory.

 Per process, a.out will use roughly x/y amount of memory.

SC2001: November 10-16, 2001

Parallel Strategies: Domain Level (2)

mpirun –np 4 a.out

Size of executable for each
PE is smaller!

a.out

a.outa.outa.outa.out

PE 0:
Domain 0

Pass
Messages

end

PE 1:
Domain 1

PE 2:
Domain 2

PE 3:
Domain 3

Pass
Messages

Pass
Messages

Pass
Messages

Repeat Repeat Repeat Repeat

Each processor works on
a unique domain! Messages
must be passed in order to
communicate results!

Load Balancing is still an issue!
PEs are dependent on results
obtained from other PEs!

SC2001: November 10-16, 2001

Processes versus Threads
MPI versus OpenMP/Pthreads

 Processes
– Contain information about

program resources and
execution state, e.g.

 IDs
 Stack
 Registers

– Have their own address
space

– Can have multiple threads
 MPI

– Many processes
– Shared-nothing architecture
– Explicit messaging
– Implicit synchronization
– All or nothing parallelism

 Threads
– Execute within a process
– Same address space
– Share Process’s stack space
– Thread specific data

 OpenMP/Pthreads
– 1 process, many threads
– Shared everything

architecture
– Implicit messaging
– Explicit synchronization
– Incremental parallelism

SC2001: November 10-16, 2001

Processes versus Threads Continued

Processes: Threads:

Taken from:
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html

SC2001: November 10-16, 2001

MPI versus Threads:

Functionality MPI Threads

Ease of Use: Harder OpenMP: Easy
Pthreads: Harder

Portability: Standard1 OpenMP: Standard2

Pthreads: Posix

Overhead: Large Small

Capability/Functionality: Very High High
1Most vendors do not support all of the MPI-2 standard, though many of the MPI-IO
functionality is supported.
2Though a standard, not all functionality may be supported (it usually is, but be
careful).

SC2001: November 10-16, 2001

OpenMP versus Others:

Thread Architectures Ease of Use Overhead Portability
Type

OpenMP SMPs Very Easy Small High
Distributed1

Pthreads SMPs Hard Small High

Fork SMPs Not Easy Larger Low2

Vendor Specific Depends Small None

1Coming soon!
2Stick to the Posix standard calls and the portability will be high.
However, fork calls may not be the most portable solution for all
architectures.

SC2001: November 10-16, 2001

Parallel Strategies: Multilevel

a.out

a.outa.outa.outa.out

PE 0:

Pass
Messages

end

PE 1: PE 2: PE 3:

Pass
Messages

Pass
Messages

Pass
Messages

Repeat Repeat Repeat Repeat

PE 0:

Pass
Messages

Each Process Spawns Threads:
Pay the price of overhead!

SC2001: November 10-16, 2001

Hybrid Programming Model

 Message passing across nodes
 Shared memory within a node

– Explicit via POSIX threads or Fork
– Implicit via SMP compiler (e.g., OpenMP)

 Usually only one thread calls MPI
– Fork after and join before MPI calls
– In general, use threads within MPI rather than the other way

around

 Can provide better scalability than either MPI or
threads alone

 Note: most of this tutorial will focus on MPI+OpenMP

SC2001: November 10-16, 2001

A Few Things to Remember

 Easier to use while still maintaining the portability of the code.
 OpenMP currently only works on shared memory machines, while

MPI works on most all platforms.
 OpenMP works best with loops that perform large amounts of

computation.
 MPI works best when parallelizing code on a more coarse grain.
 Threads are more “light weight” than processes and have a

smaller overhead.
 OpenMP and MPI can be combined to create a multi-level

approach.
– Use MPI to parallelize on a large scale and OpenMP within

MPI to break up the work.

SC2001: November 10-16, 2001

OpenMP overview

SC2001: November 10-16, 2001

OpenMP Parallel Model

 Aimed at data parallelism
 Loop level parallelism is usually limited in its scalability
 OpenMP directives are processed by the compiler to

generate code that can be executed in parallel
 OpenMP programs follow a fork-and-join model

– A single thread exists at beginning (master)
– Upon entering a parallel region, a team of threads is spawned

 Execution is replicated by all threads until a worksharing construct
is encountered

 Worksharing construct indicates work is to be distributed among
threads

– At the end of the parallel region, the execution returns to the
master thread

SC2001: November 10-16, 2001

Parallel/Worksharing constructs

 parallel
– Defines a region of the program to be executed by multiple

threads in parallel; fundamental construct

 Work-sharing constructs are used within a parallel
region in order to break up the work between threads

– do (Fortran) or for (C)
 Identifies an iterative work-sharing construct where the iterations

are distributed across threads
– sections

 Specifies that a set of constructs (section) are to be divided
among a team of threads

– single
 The associated code block is to executed by only one thread (not

necessarily the master)

SC2001: November 10-16, 2001

Worksharing construct notes

 A worksharing directive not lexically enclosed
in a parallel region is considered orphaned and
is distributed among team members of the
dynamically enclosing parallel region
– Can simplify task of implementing coarse-grained

parallelism
 Threads wait until all team members have

arrived at the end of a parallel region
– The team is disbanded and master thread continues
– The nowait option can be used to specify that

threads do not wait at the end of a worksharing
construct

SC2001: November 10-16, 2001

Scheduling Options

 Can specify the iteration scheduling for a
parallel do construct with
– the schedule clause
– OMP_SCHEDULE environment variable
– Options

 Static
 Dynamic
 Guided
 Runtime

– Specify chunksize with first three

SC2001: November 10-16, 2001

Synchronization Constructs

 critical
– Restricts execution to a single thread at a time

 barrier
– Synchronizes all threads in a team

 flush
– Specifies a “cross-thread” sequence point at which

all threads in a team must have a consistent view of
certain objects

 atomic
– Ensures that a memory location is updated

atomically, allows for better optimization than critical

SC2001: November 10-16, 2001

Synchronization Constructs (cont.)

 master
– Specifies that execution may only be performed by

the master thread of the team
 ordered

– Execution is performed in the order in which
iterations would be executed in a sequential loop

SC2001: November 10-16, 2001

Data Sharing

 Data sharing must be specified at the start of a parallel
region with the shared and private clauses

– Shared variables are shared among all threads of a team
– Private variables are private to a thread
– The firstprivate clause initializes private copies of variables

from the original object
– The lastprivate clause provides that the thread that executed

the sequentially last iteration to update the object it had before
the construct

 The threadprivate directive privatizes common blocks
– The copyin clause applies only to common blocks declared as

threadprivate
 Specifies that the data in the master thread be copied to the

thread private copies of the common block

SC2001: November 10-16, 2001

Reduction Clause

 Perform a reduction on a set of variables within
a list

 Similar to the MPI_Reduce function call
 Operators:

– +, *, -
– MAX, MIN, IAND, IOR, IXOR

SC2001: November 10-16, 2001

Compiling an OpenMP code

 OpenMP uses compiler directives to parallelize
your code. Not be used unless specified at
compile time.
– F77: c$OMP
– F90: !$OMP
– C: #pragma omp

 How do you compile to use the OpenMP
directives?
– SGI:

 cc program.c –mp
 f90 program.f –mp
 f77 program.f –mp –mpio

SC2001: November 10-16, 2001

Running an OpenMP code

 How do you specify the number of OpenMP
threads you want to use?
– Environment Variables:

 csh: setenv OMP_NUM_THREADS 4
 ksh: export OMP_NUM_THREADS=4

– Built in OpenMP functions allow you to specify at
runtime the number of threads.

 How do you run an OpenMP code?
– SGI: ./a.out (nothing special!)

SC2001: November 10-16, 2001

OpenMP Tips

 Focus on loops where the codes spends the most time,
remove cross-iteration dependencies if possible

 Merge adjacent parallel dos
 Scheduling

– Set scheduling type and/or chunk size for best performance
 Synchronization tuning

– Use environment variables to tell threads how to wait for
synchronization events

 Data placement
– First touch policy
– SGI has an alternative round robin data allocation

 Locking threads to CPUs
– SGI has mustrun env var

 Data dependencies and cache use very important!

SC2001: November 10-16, 2001

Pthreads Overview

SC2001: November 10-16, 2001

Pthreads Parallel Model

 POSIX standard to control the spawning,
execution, and termination of tasks within a
process

 Used primarily for task level parallelism
 More complex than OpenMP (and MPI)

– Programming model
 Lower level than OpenMP (explain)

– More control over scheduling and synchronization
– Can control the grain size of each thread

SC2001: November 10-16, 2001

Pthreads Model

 Threads
– Have local/private memory
– Share the memory space of the global process
– Each has is an instruction stream

 On SMPs, the system can run threads in
parallel

 Threads are called “lightweight” processes
– Only small portions of memory are needed when

switching context between threads

SC2001: November 10-16, 2001

Advantages of Pthreads

 In comparison to multiple processes
– Resource use

 Have access to all resources of the process

– Shared memory for communication
 Not swapped out for thread context switch
 Use shared variables for communication

– Cost of two memory accesses

– Low overhead
 Much faster to create, synchronize, or context switch

– Nested parallelism
 Any thread may create new threads
 All threads are peers

SC2001: November 10-16, 2001

Communication Models

Threads
 Data is shared in global

memory space
– Must be careful of

read/write, write/write
conflicts

 Explicit synchronization
needed to avoid race
conditions

– i.e., concurrent access of
same variable by multiple
threads

Message-passing
 Parallel tasks share data

through explicit
messages

 Messages become
synchronization points

SC2001: November 10-16, 2001

Concurrent Programming

 Must consider all possible execution paths
– May be running on same processor
– May be running on different processors
– Processors may have different speeds

 Different output from one run to next
 Must use some form of synchronization
 Programming requires some skill
 Traditional applications

– ATM network
– Database search

SC2001: November 10-16, 2001

Pthread Basic Function

 Pthread_create
– Create a thread

 Pthread_join
– Wait for thread to finish (barrier)

 Pthread_exit
– Halt execution of calling thread

SC2001: November 10-16, 2001

Synchronization with Pthreads

 Mutex – mutual exclusion
– Enforces single thread access to a critical section
– Enables correct programming execution
– Mechanism is a lock (mutex)

 Atomic operations
 Only single thread can “hold” mutex at any time

 Pthread_mutex_init
 Pthread_mutex_lock
 Ptherad_mutex_unlock
 Pthread_mutex_destroy

SC2001: November 10-16, 2001

Email Addresses

 Daniel Duffy:
– Daniel.Q.Duffy@erdc.usace.army.mil

 Mark Fahey:
– MarkRFahey@yahoo.com

SC2001: November 10-16, 2001

Pi Example

SC2001: November 10-16, 2001

Equation for Pi

41

1

0

2

!
=

+"
x

dx

There are many ways in which to compute the value of
pi. One easy way to program is by the following
integral:

SC2001: November 10-16, 2001

Source Code: Serial Version

#include <stdio.h>
#include <math.h>
#include "timer.h"
int main (int argc, char *argv[]) {
 const int N = 100000000;
 const double h = 1.0/N;
 const double PI = 3.141592653589793238462643;
 int i;
 double x,sum,pi,error,time;

 time = START_TEST();

 sum = 0.0;
 for (i=0; i<=N; i++) {
 x = h * (double) i;
 sum+=4.0/(1.0+x*x);
 }
 pi = h*sum;

 time = STOP_TEST();

 error = pi-PI;
 error = error<0 ? -error:error;
 printf("pi = %18.16f +- %18.16f \n",pi,error);
 return 0;
}

User Defined Timers!

Stop timer and
print answer!

Sum the Integrand!

}
}

SC2001: November 10-16, 2001

OpenMP Pi

#include <stdio.h>
#include <math.h>
#include "timer.h"
int main (int argc, char *argv[]) {
 const int N = 100000000;
 const double h = 1.0/N;
 const double PI = 3.141592653589793238462643;
 int i;
 double x,sum,pi,error,time;

 time = START_TEST();

 sum = 0.0;
#pragma omp parallel for
 shared(N,h) private(i,x) reduction(+:sum)
 for (i=0; i<=N; i++) {
 x = h * (double) i;
 sum+=4.0/(1.0+x*x);
 }
 pi = h*sum;

 time = STOP_TEST();

 error = pi-PI;
 error = error<0 ? -error:error;
 printf("pi = %18.16f +- %18.16f \n",pi,error);
 return 0;
}

}
OpenMP Directive!

Note: The shorthand method for
the omp parallel construct was used!

Alternative:
#pragma omp parallel
#pragma omp for

SC2001: November 10-16, 2001

Pthreads Pi
#include <pthread.h>
#include <stdio.h>
#include <math.h>
#include "timer.h"

pthread_mutex_t reduction_mutex;
pthread_t *tid;

const int N = 100000000;
const double PI = 3.141592653589793238462643;
int num_threads = 6;
double pi = 0.0;

void *Piworker(void *argc) {
 int i, myid;
 double sum, mypi, x;
 double h = 1.0/N;
 /* set id to start at 0 */
 myid = pthread_self()-tid[0];
 /* integrate function */
 for (i=myid+1; i<=N; i+=num_threads) {
 x = h*((double) i);
 sum = sum + (4.0 / (1.0 + x*x)); }
 mypi = h*sum;
 /* reduce value */
 pthread_mutex_lock(&reduction_mutex);
 pi += mypi;
 pthread_mutex_unlock(&reduction_mutex);
 return(0);
}

int main (int argc, char *argv[])
{
 int i;
 double error,time;

 time = START_TEST();

 pi = 0.0;
 tid = (pthread_t *) calloc(num_threads, sizeof(pthread_t));
 pthread_mutex_init(&reduction_mutex, NULL);

 for (i=0; i<num_threads; i++)
 pthread_create(&tid[i], NULL, Piworker, NULL);

 for (i=0; i<num_threads; i++)
 pthread_join(tid[i], NULL);

 time = STOP_TEST();

 error = pi-PI;
 error = error<0 ? -error:error;
 printf("pi = %18.16f +- %18.16f \n",pi,error);
 return 0;
}

SC2001: November 10-16, 2001

How do we use MPI?

 Simply break up the loop and allow the various
MPI processes to execute different pieces of
the loop.
– Need to know the rank.
– Need to know how to break up the loop.
– Gather the individual pieces of the sum to a single

process and verify the correct answer.
– Use timers to see the speed up for different

numbers of processes.
– Scale the size of the problem, N.

SC2001: November 10-16, 2001

Source Code: MPI Version

… Declare variables and include mpi.h …

 /* Initialize MPI.*/
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 MPI_Comm_size(MPI_COMM_WORLD, &nproc);

 time = START_TEST();
 sum = 0.0;
 for (i=myrank; i<=N; i=i+nproc) {
 x = h * (double) i;
 sum+=4.0/(1.0+x*x); }
 mypi = h*sum;
 pi = 0.0;

 MPI_Reduce(&mypi,&pi,1,MPI_DOUBLE,
 MPI_SUM,0,MPI_COMM_WORLD);
 time = STOP_TEST();

… Compute and print the error from process 0 …
… Finalize and return …

}
Sum Local Values

of Pi.}

0 1 2 3 4 5 11109876

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

PE 0

PE 1

PE 2

PE 3

Break up the values of i:

SC2001: November 10-16, 2001

Source Code: Mixed Mode Version

… Declare variables and include mpi.h …
… Initialize MPI …

 time = START_TEST();
 sum = 0.0;
#pragma omp parallel for
 shared(N,h,myrank,nproc)
 private(i,x) reduction(+:sum)
 for (i=myrank+1; i<=N; i=i+nproc) {
 x = h * (double) i;
 sum+=4.0/(1.0+x*x);
 }
 mypi = h*sum;
 pi = 0.0;

 MPI_Reduce(&mypi,&pi,1,MPI_DOUBLE,
 MPI_SUM,0,MPI_COMM_WORLD);
 time = STOP_TEST();

… Compute and print the error from process 0 …
… Finalize and return …

} Sum Local Values
of Pi.

}
Include the OpenMP
directives to sum the
local values of Pi
using threads.

SC2001: November 10-16, 2001

Resulting Timings:

 Timings taken on an Origin 2800, 200 MHz.
 N = 100,000,000
 Serial Code takes 25.13 secs
 All times in seconds
 Note: Did not run the multilevel code!

NPs MPI OpenMP Pthreads
1 25.14 25.17 25.14
2 12.65 12.60 12.58
3 8.40 8.46 8.38
4 6.28 6.34 6.29
5 5.04 5.06 5.03
6 4.20 4.23 4.19

SC2001: November 10-16, 2001

Task Scheduling: Static

Static assignment of tasks: Processors have a deterministic set of tasks to run.

Disadvantages: Unequal sized tasks can lead to a problem with load balancing.
Advantages: Equal sized tasks make it very easy to run with good load
balancing. No boss, so all processes do work!

Worker 1

Worker 2

Worker 3

Worker 4

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 9

Task 10

Task 11Task 7

Task 12Task 8

SC2001: November 10-16, 2001

Task Scheduling: Dynamic

Dynamic assignment of tasks: A processor gets a new task whenever it
finishes with its current task.

Boss-Worker is the classic example.

Advantage: Better load balancing with unequal tasks.
Disadvantage: The boss does no work, so one processor is lost. (Not
always!)

Boss:
Task 1
Task 2
Task 3
…
Task N

Worker 1

Worker 2

Worker 3

Worker 4

Task 1

Task 2

Task 3

Task 4 Task 5

Task 7

Task 6

Task 8

SC2001: November 10-16, 2001

Load Balancing

 Good load balancing minimizes the amount of
time each processor is waiting on another
processor, either for data or some other type of
synchronization!

 Extremely important, and not easy to do!

SC2001: November 10-16, 2001

Tools

SC2001: November 10-16, 2001

Totalview

 http://www.etnus.com
 Version: 5.0
 Platforms:

– Compaq Alpha, Sun Sparc and SunOS 5, IBM
RS/6000 and SP Power, SGI, HP, x86

 Support for:
– Threads/OpenMP
– MPI/PVM
– C/C++ (including nested templates), Fortran 77, and

Fortran 90/95 (including modules), HPF
 (Note there is a Cray Totalview also.)

SC2001: November 10-16, 2001

Totalview Features

 Graphical User Interface and a Command Line
Interface

 Handles multiprocess multithreaded programs
 TotalView runs on all major UNIX platforms so you can

use the same debugger regardless of where you are
debugging today

 Automatic process acquisition
– Can attach to parallel programs started as part of an MPI,

OpenMP, pthread, HPF, or PVM application
– Automatically attaches to the child process created by fork() or

execve
 Can debug processes that were not started under

TotalView's control
 Can temporarily add source code statements to the

program you are debugging

SC2001: November 10-16, 2001

Remote debugging

 TotalView's distributed
architecture lets you
debug remote programs
over the network

 TotalView can manage
multiple remote
programs and
multiprocess
multithreaded programs
simultaneously, as
shown in the following
figure

SC2001: November 10-16, 2001

Totalview (snapshots)

From the online Totalview User’s guide at www.etnus.com

SC2001: November 10-16, 2001

OpenMP threadprivate common block variables

SC2001: November 10-16, 2001

Debugging an OpenMP code

 Source level debugging of original OpenMP
code

 Access to shared and private variables
 Visibility of worker threads and stack
 Can’t step into a parallel region

– Can place breakpoints in parallel regions

SC2001: November 10-16, 2001

KAP Pro Tools Overview

 http://www.kai.com
 Version: 4.0

– Guide, Guideview, Assure, Assureview
 Platforms: Compaq Alpha, SGI, Sun Sparc,

Intel IA32 and Itanium, HP, IBM RS/6000
 Fully compliant implementation of OpenMP

standard
 Full Fortran 77/90 and C/C++ support

SC2001: November 10-16, 2001

KAP Pro Tools

 Assure
– tool that systematically and automatically locates parallel

programming errors
– detect race conditions, totalview does not do this

 Assureview
– Graphical interface to display errors found by assure

 Guide
– cross platform OpenMP compiler

 Guideview
– performance analysis tool that identifies parallel performance

bottlenecks and leads you to their resolution
– graphically illustrates what each processor is doing at various

levels of detail using a hierarchical summary

SC2001: November 10-16, 2001

Assureview snapshot

SC2001: November 10-16, 2001

Distributed Virtual Shared Memory

 DVSM Guide uses a single level of parallelism to
distribute an application across multiple SMPs

– DVSM Guide is designed to port existing OpenMP programs to
multiple SMPs

– The effort required to create a DVSM Guide program is an
order of magnitude smaller

– However, MPI+OpenMP programs, because of the large effort
expended to create them, tend to scale better than DVSM
OpenMP programs

– It is KAI's belief that if the same effort is expended toward both
models, the scalability should easily be the same. The
difference is that DVSM Guide will let you get reasonable
performance with small effort.

 KAI suggests not to use DVSM on the newer hardware
that performs the same techniques

SC2001: November 10-16, 2001

Vampir/Vampirtrace

 http://www.pallas.com
 Version: 2.5 (Vampir) 2.0 (Vampirtrace)
 Platforms:

– Compaq, Sun, IBM, SGI, HP, x86
 Support for:

– MPI
– C/C++ and Fortran

SC2001: November 10-16, 2001

Vampir/Vampirtrace

 WHAT CAN IT SHOW YOU
– Cache Misses
– TLB Misses
– Load Balance
– Debugging
– Where To Spend Your Time

SC2001: November 10-16, 2001

Vampir 2.5

 New features
– MPI collective operations
– Optional MPI-IO and Cray SHMEM support
– New displays

 Coming
– Interaction with KAP Pro Tool Set and PAPI
– And Totalview front-end

SC2001: November 10-16, 2001

 VampirTrace Compile
– CRAY T3E

 f90 -I/usr/local/applic/VAMPIRTRACE/v2.0/include -c file.F -DUSE_VT
 f90 -o <executable> file.o -L/usr/local/applic/VAMPIRTRACE/v2.0/lib –lVT -lpmpi

– IBM
 mpxlf90 -I/gpfs/cots/VAMPIRTRACE/include -c file.F -WF,-DUSE_VT
 mpxlf90 -o <executable> file.o -L/ gpfs/cots/VAMPIRTRACE/lib –lVT -lld

– SGI
 f90 -64 -I/usr/local/applic/vampirtrace2.0/include -c file.F -DUSE_VT
 f90 -64 -o <executable> file.o -L/ usr/local/applic/vampirtrace2.0/lib –lVT –lmpi –ldwarf –lelf -lm

VAMPIRTRACE

SC2001: November 10-16, 2001

VAMPIRTRACE INSTRUMENTATION

#include <stdio.h>
#include "mpi.h“
#ifdef USE_VT
#include "VT.h"
 void VT_setup(void); /*instrumentation */
#endif

int main(int argc, char* argv)
{
#ifdef USE_VT
 VT_traceoff(); /* Tracing off */
#endif
 MPI_Init(&argc, &argv);
#ifdef USE_VT
 VT_setup(); /* Instrumentation */
 VT_traceon(); /* Tracing on */
 VT_begin(99); /* Main program */
#endif
 ******code*************
#ifdef USE_VT
 VT_end(99); /* Leave main program */
#endif
 MPI_Finalize();
 return 0;
}

#include "mpi.h"
#ifdef USE_VT
#include "VT.h"
#endif
void
VT_setup(void)
 /* Instrumentation setup */
{
 /**
 * Define the instrumentation symbols
 **/
VT_symdef(99, “Main”, “Main");
VT_symdef(100, “Exp_Sub", "Setup");
VT_ symdef(101, “Next_sub", “Duty");
}

#include <stdio.h>
#include "mpi.h"
#ifdef USE_VT
#include "VT.h"
 #endif
 void
Exp_Sub(******)
 int ****;
{
#ifdef USE_VT
 VT_begin(100);
#endif
*********code*********
#ifdef USE_VT
 VT_end(100);
#endif
}

SC2001: November 10-16, 2001

 Vampir Viewing Trace File
– Viewing

 setenv DISPLAY machine:0.0
 vampir tracefile.bvp

VAMPIR

SC2001: November 10-16, 2001

VAMPIR – Global Timeline

SC2001: November 10-16, 2001

VAMPIR – Message Information

SC2001: November 10-16, 2001

VAMPIR – Activity, Summary

SC2001: November 10-16, 2001

Vendor specific profilers

 Cray T3E
– PAT (timing, cache misses, load balance)
– MPP Apprentice

 IBM SMP/SP
– PROF/GPROF (timing)
– Xprofiler

 SGI O3K/O2K
– PERFEX (L1/L2 cache, TLB, MFLOPS)
– SPEEDSHOP (timing, memory, I/O, hardware)

SC2001: November 10-16, 2001

Implementation of Dual-Level
Parallelism

SC2001: November 10-16, 2001

Mixed Mode Parallelism

 Some applications have two natural levels of
parallelism

 MPI performance degrades when
– Domains becomes small
– Message latency dominates computation
– Parallelism is exhausted

 OpenMP/Pthreads typically have
– Lower latency
– Can maintain performance at finer granularity

 OpenMP and MPI are complementary
– Many OpenMP threads can exist within each MPI process
– A single application can be built as a collection of inter-

communicating multi-threaded processes

SC2001: November 10-16, 2001

Building MPI/OpenMP programs

 Understand code/Profile
– Are there independent components/frequencies?

 Embarrassingly parallel
– Identify dominate routines
– Is a dual-level parallel model called for?

 Issues
– Memory usage (threads and stack)
– Function pointers in C
– Team of threads calling MPI routines (avoid to keep simple)
– Load balancing – automatically determine number of threads

to be used for an MPI process

 Debug
– Debug MPI and OpenMP separately first, then together

SC2001: November 10-16, 2001

Compiling MPI/OpenMP programs

 Build code with an OpenMP compiler and link
to the MPI libraries and headers
– IBM: use mpxlf_r, mpcc_r
– SGI: use f90 –mp –lmpi
– Compaq: use f90 –omp –lmpi
– KAI compiler

 Generally: guidef90 –lmpi or guidec –lmpi

 Make sure the compiler you use is “thread
safe!”

SC2001: November 10-16, 2001

Running MPI/OpenMP programs

 Run like ordinary MPI programs, except
– Need to tell batch queueing system that you want

more processors than MPI processes
– May have to specify how processes get mapped to

processors
– Example:

 export OMP_NUM_THREADS=4
 mpirun –np 8 a.out
 Ask for 32 processors on the parallel machine

– The batch system may have no way to deal with
threads

SC2001: November 10-16, 2001

Tip

 Make sure all MPI calls are thread safe
– Make MPI calls outside of OpenMP parallel regions

 Obviates need for thread compliant MPI library
 Performance benefit, only master does communication

– Less network congestion

– Within a parallel region, MPI communication should
be limited to a single threads
 Avoids multiple or redundant MPI calls
 Possibly position communicating thread on a processor

with best access to network

SC2001: November 10-16, 2001

Debugging/Tuning

 Debug with Totalview
 Tune with Vampir and/or Guide

 There are vendor supplied alternatives to
Totalview and Vampir

SC2001: November 10-16, 2001

Application Examples:
Lessons Learned

SC2001: November 10-16, 2001

STWAVE

 Routinely used on coastal projects by the Corps. of
Engineers to estimate wave heights, periods, and directions.

 Often uses input or supplies input to other codes like WAM,
COAMPS, or SURF.

 STWAVE: A Case-Study in Dual-Level Parallelism, Rebecca
Fahey and Jane Smith, ERDC MSRC PET Technical Report
No. 01-28, July 2001.

SC2001: November 10-16, 2001

STWAVE

SC2001: November 10-16, 2001

STWAVE Parallelization

 MPI:
– Distribute each independent wave run to the available processors.
– Each frequency does the same amount of work so a static distribution

of frequencies is used.
– All bathymetry and model parameter data are replicated for each

processor.

 OpenMP:
– Exploit loop-level parallelism.
– Saves MPI communication overhead.
– OpenMP directives amounted to about 50 lines of additional code.
– Portability was maintained.

SC2001: November 10-16, 2001

STWAVE Speedups

0

10

20

30

40

50

60

70

80

0 20 40 60 80

Total Processors

S
p

e
e

d
u

p Ideal

MPI

MPI+OpenMP

ERDC IBM Power3 SMP (8-way)
Run: 36 frequencies
Hence, MPI will not scale beyond 36 processors.
2 OpenMP threads used per MPI process.

SC2001: November 10-16, 2001

CGWAVE

 Used to predict wave climate in the near-shore area for
military and civil engineering activities.

 For example, CGWAVE is used to simulate the response of
a harbor’s surface due to incoming ocean waves.

 Being developed by the Office of Naval Research, U.S.
Army Corps of Engineers, and NOAA.

 Dual-Level Parallel Analysis of Harbor Wave Response
Using MPI and OpenMP, Steve Bova, et al., The
International Journal of High Performance Computing
Applications, Volume 14, No. 1, Spring 2000.

SC2001: November 10-16, 2001

CGWAVE: Ponce Inlet

Simulation of waves in
Ponce Inlet. Phase
diagram. Normal
incident wave angle, 15
second wave period.
Coastline length is
approximately 4.8 km.

SC2001: November 10-16, 2001

CGWAVE: Los Angeles Harbor

Wave penetration in Los
Angeles/Long Beach Harbors
Modeled Phase Diagram.
Boundary Reflectivity set to
zero; 30 s. long wave
resonance study. Waves
incident from bottom right.

SC2001: November 10-16, 2001

CGWAVE Parallelization

 MPI:
– Distribute each independent wave run to the available processors.
– Each frequency does a varying amount of work so a boss-worker model is

used.
– All bathymetry and model parameter data are replicated for each processor.

 OpenMP:
– Exploit loop-level parallelism.
– Saves MPI communication overhead.
– Portability was maintained.

 Test Case:
– Incident waves approaching a cylindrical island.
– 75 incident wave components
– 50k elements
– Timings taken on an Origin 2000 (195 MHz)

SC2001: November 10-16, 2001

CGWAVE Boss-Worker Code

MPI Boss:

…Initialize MPI …

do I = 1 to number_of_wave_components
 blocking receive ! wait for work request
 blocking send ! send wave component
end do
! All wave components solved
do worker = 1 to nprocs-1
 blocking receive ! wait for work request
 blocking send ! terminate worker
end do

…Finalize MPI …

MPI Worker:

…Initialize MPI …

do forever
 blocking receive ! ask boss for work
 blocking send ! get wave component
 if no_termination_signal then
 perform calculations
 else
 exit infinite loop
 endif
end do

…Finalize MPI …

SC2001: November 10-16, 2001

CGWAVE Speedups

0

10

20

30

40

50

60

0 20 40 60 80

OpenMP Threads/MPI Process

S
p

e
e

d
u

p

1 MPI Process

2 MPI Processes

4 MPI Processes

8 MPI Processes

SC2001: November 10-16, 2001

SARA-3D (Structural Acoustics)

 Used primarily by DoD labs for solving problems in:
– Structural vibrations and acoustics
– Radiation and Scattering
– Electroelasticity

 Uses infinite elements to model the far field fluid and various types
of finite elements to model the near field fluid and the structure.

 This approach is more efficient than the boundary element
method, which results in large dense matrix problems to solve.

 A typical use is the design of submarine hulls to reduce their sonar
profiles.

 More information:
– http://www.gte.com/aboutgte/gto/bbnt/apts/offerings/sara.html

SC2001: November 10-16, 2001

Finite Element Model for SARA-3D

SC2001: November 10-16, 2001

Typical SARA-3D Results

SC2001: November 10-16, 2001

Good Candidate for Multi-Level

 Loop over incident frequencies:
– Each frequency is independent and can be done in parallel.
– Each frequency resulted in a rather large linear system of

equations to be solved using a frontal solver (Gaussian
Elimination).

– Profiles using SpeedShop on the Origin and Xprofiler on the
IBM showed each set of equations resulted in a large amount
of calculations in just few areas of the code.

 Approach to Multi-level Parallelism:
– Parallelize the incident frequency loop using MPI.
– Employ a boss-worker algorithm to achieve dynamic load

balancing.
– Use OpenMP within each frequency to further parallelize

certain tasks, such as:
 element calculations
 frontal solver

SC2001: November 10-16, 2001

OpenMP Efficiency: Prefront Routine

 Summary of the speedup of the prefront subroutine only for
various sizes of the sample8 test. All times are in seconds!

Problem
Size (P2)

Speedup
Parallel

8 OpenMP
Threads

Serial

8 570 107 5.3
12 1233 269 4.6
20 3518 569 6.2

SC2001: November 10-16, 2001

OpenMP Efficiency: Frontal Solver

 Summary of the speedups of the frontal solver only for various test
cases. All times are in seconds.

run_b (1) 6115 1494 4.1
run_b (2) 5416 1371 4.0

Test Case Speedup
Parallel

8 OpenMP
Threads

Serial

pfish (1) 4000 650 6.2
pfish (2) 2063 673 3.1
pfish (3) 1910 584 3.3

SC2001: November 10-16, 2001

Threaded Efficiency: Large Problem

1 thread 2 threads 4 threads 8 threads

Front opt 67.95 37.61 21.97 16.68

Setup 262.48 183.22 143.60 143.57

Freq Sweep 4405.32 2423.11 1447.73 1010.25

Prefront 3306.53 1663.17 848.22 475.25

Solution 1055.59 735.41 583.53 522.77

Forward sol 750.46 456.00 311.58 238.64

Contours 16.40 8.24 4.42 5.00

Total time 4684.64 2615.01 1596.20 1159.31

SC2001: November 10-16, 2001

Overall Success with SARA-3D

 One model had 292,693 DOF with a frontal width of
642.

 Single Processor Origin 2000 processor took 76.5
hours.

 ERDC IBM Power3 SMP: 8-way
– Nodes: 7
– MPI processes per node: 2
– OpenMP threads per MPI process: 4
– Total number of frequencies: 48
– Max. # of frequencies per MPI process: 4
– Time in prefront: 0.61 hours
– Total time: 2.54 hours

 Efficiency is not that good, but the time to solution is
great!

SC2001: November 10-16, 2001

FEMWATER123

 Models ground water flow and transport.
 Parallelized using ParMetis.
 Piecewise iterative solver is computational

intensive.
 Code spends most of its time (up to 70%) in

one routine.
 Good candidate for breaking up the work in this

routine with threads!

SC2001: November 10-16, 2001

FEMWATER123: South Dade County

SC2001: November 10-16, 2001

FEMWATER123: Bad News

 The one routine was called many, many times.
 Hence, the amount of work within a single call

was relatively small.
 This work was not enough to amortize the time

it takes to create and destroy the threads.
 Tried several ways to speed up including fewer

numbers of MPI processes with threads.
 No success!

SC2001: November 10-16, 2001

Creating an Multilevel Code:

 Start at the coarse level:
– Decide how to use MPI to break up the largest blocks of work,

e.g., domain decomposition or by tasks.
– Decide on a strategy to obtain the best possible load balance,

e.g., boss-worker, static scheduling, or domain decomposition.

 Move to the fine level:
– Use a profiler to show what areas of the code are the most

computationally intense:
 Xprofiler on the IBM is excellent!
 SpeedShop on the SGI is great!

– Explore using threads to further parallelize these areas.
– Measure the efficiency in order to determine the optimal

number of threads to use.

SC2001: November 10-16, 2001

Lessons Learned (1):

 Program incrementally:
– Harder to do with MPI and Pthreads.
– Easier to do with OpenMP.

 Program portably:
– Adhere to using those functions supported by the MPI,

OpenMP, and Pthreads standards.
– Even computers without OpenMP can still run the MPI version

since OpenMP directives are actually comments.

 Use threads within MPI:
– Rule of thumb: you can use MPI within OpenMP if you are

careful!
– Easier
– Faster

SC2001: November 10-16, 2001

Lessons Learned (2):

 Treat the threads like graduate students:
– Make them do a lot of work!
– There is a minimum amount of work that needs to be done in

order to make the overhead worth it.

 Check for correctness:
– Always have a way to check for correctness and be able to

move back to a previous version of the code.

 Benefits outweigh the costs:
– The efficiency may not be the best, but the ease at which a

quicker solution can be is obtained undeniable.
– Be a scientist, not a computer scientist! Unless you want to!

SC2001: November 10-16, 2001

Future of Multilevel Parallelism

 Distributed OpenMP:
– Should be out later this year.
– Kuck and Associates will probably be the first vendor to supply

this.
 MLP: Fork processes each spawning threads

– James Taft (NASA Ames), et al., has parallelized several
codes.

– Mark Fahey (ERDC/ORNL) has explored MLP in a version of
the Overflow code.

– Positive results have been seen!
 MPI with Shmem:

– Guy Robinson (ARSC) and Fred Tracy (ERDC).
 MPI-II

– Dynamic process creation.
– Perhaps only one vendor has implemented this!

SC2001: November 10-16, 2001

Conclusions

 Shared memory is becoming almost a standard.
 This will always leave the possibility for a Multilevel

Parallel code to be used.
 Given an existing MPI code, it is fairly easy to include

OpenMP directives to provide a shorter time to
solution.

 It is possible to get a better speedup with a
combination of parallel methods!

 All depends on the problem!

SC2001: November 10-16, 2001

Laplace’s Equation Example

SC2001: November 10-16, 2001

Laplace’s Equation

0
2
=! u

0
2

2

2

2

2

2

=
!

!
+

!

!
+

!

!

z

u

y

u

x

u

Problem: Solve Laplace’s equation with a constant
boundary condition.

SC2001: November 10-16, 2001

Finite Difference Approximation

 Assume the following:
– One-dimension (to make things easier)
– Regular grid in the x direction

() 0
)(

)()(2)(

0

2
2

11
2

2

2

2

=ΔΟ+
Δ

+−
=

∂

∂

=
∂

∂

−+ x
x

xuxuxu
x
u

x
u

iii

SC2001: November 10-16, 2001

More Finite Difference Approximation

 Solve for u(xi):

 Use the solution at iteration n to generate the values at
the next iteration n+1:

[])()(
2

1
)(11 !+ +=

iii
xuxuxu

[])()(
2

1
)(11

1

!+

+ +=
i

n

i

n

i

n
xuxuxu

SC2001: November 10-16, 2001

1D Domain

dx

ii-1 i+1

ii-1 i+1

Iteration

n

n+1

SC2001: November 10-16, 2001

Initial Conditions

Set all the initial values to zero except for the
edge, which is set to some constant, C.

Cxu

xu

L

i

=

=

)(

0)(

SC2001: November 10-16, 2001

Serial Algorithm

Initialize Array
including BCs.

Loop over iterations:
it=1....itmax

Compute u(xn) and
maximum change.

Update u(x) and print
maximum change.

Finish!

SC2001: November 10-16, 2001

Serial Code

#include <stdio.h>
#include <math.h>

int main (int argc, char *argv[]) {
 const imax = 20; /* Number of points. */
 const itmax = 10; /* Number of iterations, n. */
 const umax = 10.0; /* Boundary Condition. */

 int i, j, it;
 double u[imax]; /* Array of elements. */
 double du[imax]; /* Array of shifts to u. */
 double d,dumax;

 /* Initialize the entire array to zero and include
 the boundary condition. */
 for (i=0; i<imax; i++){
 u[i] = 0.0;
 du[i] = 0.0;
 }

 u[imax-1] = umax;

Initialize the arrays!

Boundary Condition!

SC2001: November 10-16, 2001

Serial Code (Cont.)

 /* Loop through the iterations, compute the finite
 differences, and update the array u. */
 for (it=0; it<itmax; it++) {
 dumax = 0.0;
 for (i=1; i<imax-1; i++) {
 d = 0.5*(u[i+1]-2.0*u[i]+u[i-1]);
 du[i] = d;

 d = d<0 ? -d:d;
 if (dumax < d) dumax = d;
 } /* end of I loop */

 printf("it = %d dumax = %12.8f \n", it,dumax);

 for (i=1; i<imax-1; i++)
 u[i] += du[i];

 } /* end of it loop */

 for (i=0; i<=imax-1; i++)
 printf("i=%3d u[i]=%12.8f \n",i,u[i]);
 return 0;
}

Loop over iterations.

Compute change in u.

Find the maximum
 change and print.

Print the final u values!

Update u.

SC2001: November 10-16, 2001

How can MPI be used?

 What issues need to be considered when using MPI to
create a parallel Laplace equation solver?

– What tasks can be performed in parallel? Loop over the iterations
contains a data dependency which cannot be parallelized. However,
the inner loop used to compute the next iteration of u(x) can be
parallelized.

– How do we break up the array u(x) over the processes? Simply
divide up the array as equally as possible over the number of MPI
processes. This gives a good first cut at load balancing.

– After the nth iteration, does each process hold the correct information
needed to perform its task? No! Each process needs to know
information that is held by its neighbors. Hence, at either the
beginning or the end of each iteration, the most current values of the
array u(x) need to be sent between neighboring processes.

– How do you check for correctness and efficiency? Compare the final
answers to the serial answers and use some timers to compute the
codes efficiency.

SC2001: November 10-16, 2001

Ghost Elements (Nodes): 1D

1 2 3 4 5 6 121110987

1 2 3 4 5 6 1211109877 6

Process 0 Process 1

Ghost Elements

Elements that a process needs but does not own or compute!

SC2001: November 10-16, 2001

Ghost Elements (Nodes): 2D

Process 0 Process 1

Process 2 Process 3

SC2001: November 10-16, 2001

Parallel Algorithm

Initialize Local Array
including BCs.

Loop over iterations.

Compute local u(xn) and
maximum local change.

Update local u(x).

Finish!

Send and receive ghost
data from my neighbors.

Gather the maximum
change and print at root.

Decide on the range of
the array which will be
local to each process.

SC2001: November 10-16, 2001

Parallel Code: Specific to 2 MPI Processes

#include <stdio.h>
#include <math.h>
#include "mpi.h"

int main (int argc, char *argv[]) {
 const imax = 20;
 const itmax = 20;
 const umax = 10.0;

 int myrank, nproc, ROOT, LAST, i, j, it;
 int imax_local, istart, iend;
 int *num_elements, num_local, total_num;
 int *displacements;
 double *u, *du, d,dumax,dumax_local;
 double sendbuf,recvbuf;

 MPI_Request request;
 MPI_Status status;

 /*Initialize MPI.*/
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 MPI_Comm_size(MPI_COMM_WORLD, &nproc);

 ROOT = 0;
 LAST = 1;

 /* Compute the range over which to sum. */
 imax_local = imax/nproc + 1;
 istart = 1;
 iend = imax_local-2;

 /* Allocate the arrays.*/
 u = (double *) malloc(imax_local*
 sizeof(double));
 du = (double *) malloc(imax_local*
 sizeof(double));

 /* Initialize the arrays.*/
 for (i=0; i<imax_local; i++) {
 u[i] = 0.0;
 du[i] = 0.0;
 }

 /* Boundary Condition.*/
 if (myrank==1)
 u[imax_local-1] = umax;

SC2001: November 10-16, 2001

Local Arrays and Ghost Elements

1 2 3 4 5 6 987 121110 13 14 15 16 17 18 2019

1 2 3 4 5 6 1110987 121110 13 14 15 16 17 18 2019

210 3 4 5 6 7 8 109 210 3 4 5 6 7 8 109

imax_local imax_local
Renumber locally!

Divide up the array!

istart=1 iend=9 istart=1 iend=9Ghost Elements

SC2001: November 10-16, 2001

Parallel Code (Cont.)

for (it=0; it<itmax; it++) {
 /*Pass the ghost elements.*/
 if (myrank==0){
 sendbuf = u[imax_local-2];
 recvbuf = 0.0;
 MPI_Send(&sendbuf,1,MPI_DOUBLE,1,100,
 MPI_COMM_WORLD);
 MPI_Irecv(&recvbuf,1,MPI_DOUBLE,1,100,
 MPI_COMM_WORLD,&request);
 MPI_Wait(&request,&status);
 u[imax_local-1] = recvbuf;
 }
 else if (myrank==1){
 sendbuf = u[1];
 recvbuf = 0.0;
 MPI_Send(&sendbuf,1,MPI_DOUBLE,0,100,
 MPI_COMM_WORLD);
 MPI_Irecv(&recvbuf,1,MPI_DOUBLE,0,100,
 MPI_COMM_WORLD,&request);
 MPI_Wait(&request,&status);
 u[0] = recvbuf;
 }

}

}

PE 0: Send
Irecv
Wait

PE 1: Send
Irecv
Wait

Loop over maximum
number of iterations.

SC2001: November 10-16, 2001

Parallel Code (Cont.)

/*Perform the local update.*/
 dumax_local = 0.0;
 for (i=istart; i<=istop; i++) {
 d = 0.5*(u[i+1]-2.0*u[i]+u[i-1]);
 du[i] = d;

 d = d<0 ? -d:d;
 if (dumax_local < d)
 dumax_local = d;
 }
 for (i=istart; i<=istop; i++)
 u[i] += du[i];

 /*Find the maximum value of the change in u for all the processes.*/
 MPI_Reduce(&dumax_local,&dumax,1,MPI_DOUBLE,
 MPI_MAX,0,MPI_COMM_WORLD);
/*Print out the maximum change in u for all the processes.*/
 if (myrank==0) printf("it = %2d dumax = %12.8f \n", it,dumax);
 } /* end of it loop */
 MPI_Finalize();
 return 0;
}

Compute local u(xn) and
maximum local change.}

Update local u(x).}
Gather the maximum
change and print at
root. Continue it loop!

SC2001: November 10-16, 2001

How can threads be used?

 What issues need to be considered when using
OpenMP with MPI to create a multi-level parallel
Laplace equation solver?

– Are there any computationally intensive areas of the code? The loop
that computes the local value of the array u could contain a large
number of iterations!

– Are there any data dependencies within the computationally intense
areas? The loop over the convergence iterations cannot be
parallelized with threads. Each iteration has to be complete before
the next one begins. However, the loop over the local arrays can be
parallelized with threads.

– What would be the easiest way to create a dual-level parallel code?
In this case with a single loop, adding OpenMP parallel constructs is
very easy!

– How do you check for correctness and efficiency? Compare the final
answers to the serial answers and use some timers to compute the
codes efficiency.

SC2001: November 10-16, 2001

Adding OpenMP Directives: First Pass

for (it=0; it<itmax; it++)
{

thread_id = omp_get_thread_num();
dumax[thread_id] = 0;

#pragma omp parallel for shared(du,dumax) private(i,istart,istop,d)
for (i=istart; i<=istop; i++) {
 d = 0.5*(u[i+1]-2.0*u[i]+u[i-1]);
 du[i] = d;

 d = d<0 ? -d:d;
 if (dumax[thread_id] < d)
 dumax[thread_id] = d;
 }

#pragma omp parallel for shared(u,du) private(i,istart,istop)
for (i=istart; i<stop; i++) {
 u[i] += du[i];
 }

} /* end of the it loop */

}

}

First parallel
region!

Second parallel
region!

SC2001: November 10-16, 2001

Adding OpenMP Directives: Better

#pragma omp parallel shared(u,du,itmax,imax,dumax) private(it,i,istart,istop,thread_id,d)
 {
 for (it=0; it<itmax; it++) {

thread_id = omp_get_thread_num();
dumax[thread_id] = 0;

#pragma omp for
for (i=istart; i<=istop; i++) {
 d = 0.5*(u[i+1]-2.0*u[i]+u[i-1]);
 du[i] = d;

 d = d<0 ? -d:d;
 if (dumax[thread_id] < d)
 dumax[thread_id] = d;
 }

#pragma omp for
for (i=1; i<imax-1; i++) {
 u[i] += du[i];
 }

 } /* end of the it loop */
 } /* end of the parallel region */

Go ahead and put a parallel
directive around the it loop:
•All threads will execute the it
loops!
•Threads will not be created and
destroyed many times over!
•Same result, with less overhead!

SC2001: November 10-16, 2001

Adding OpenMP Directives: What Else?

/* Initialize the arrays.*/
#pragma omp parallel

shared(u,du,itmax,imax,dumax)
 private(i, imax_local)
 for (i=0; i<imax_local; i++) {
 u[i] = 0.0;
 du[i] = 0.0;
 }

Initialize the arrays within an
OpenMP directive.

On those machines where the
location of memory is an issue,
this could make a significant
difference!

Data Locality!

SC2001: November 10-16, 2001

What to look for when the speedup is not
what you expected?

 Are threads being created and destroyed over and
over?

– Move the creation of the threads farther out in the algorithm.
– Use environment variables to keep the threads in a spin state.

 Is the data actually located far away from the processor
on which a thread is running?

– Initialize the arrays within a threaded region.

 Is there enough work for threads to be useful?
– Typically on the order of 1000’s of floating point operations are

needed within a region to make the creation of threads
worthwhile.

– Can you use fewer numbers of MPI processes to make the
threads more efficient? You might actually get a better time!

