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1. Introduction
• Why did we want to do this

− Share our knowledge of porting and optimizing
− Prevent mistakes in code development and/or

maintenance
− Expose good programming techniques for any

language
• Where we are coming from

− Combined 20+ years of writing, porting, and
optimizing HPC applications on massively parallel
supercomputers

− Our definitions/viewpoints may be debatable
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Insightful remarks?
• “The art of programming is the art of organizing

complexity, of mastering multitude and avoiding its
bastard chaos as effectively as possible.” [Dijkstra]

• “Barring some real breakthroughs in compiler
technology, the computers of the 2000's will be even
more finicky than the computers of the 1990's.” [Dowd]

• “The true problem with software is hardware. … We
have been shielded by hardware advances from
confronting our own incompetence as software
professionals and our immaturity as an engineering
profession.” [Constantine]
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1.1 Portability
• Porting to new platforms should only require

setting compiler, libraries, etc.
− Port should take O(minutes)

• One source
− Don’t want two or more versions of any routine
− Platform-specific “code” should only be compiler,

library settings
− Avoid high maintenance cost of moving a tuned code

from one architecture to another
• Runs correctly on all computers
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1.1 Portability
• Potential by-products

− Minimal, localized machine-specific code
− Minimal #ifdefs
− Code readability
− Minimal use of non-standard libraries

• Unless performance gain is huge
− Port to any machine in minutes

• With some exceptions
− Lower performance
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1.1 Portability
• Stroustrup said:

− “If your program is a success, it is likely to be
ported, so someone will have to find and fix
the problems related to implementation-
dependent features.”

− “Constructing programs so that improvements
can be implemented through local
modifications only is an important design
aim.”

− Yes, he is the creator of C++
− Philosophy still applies
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1.2 Performance
• Tuning your code to make it run fast

− Spending as much real time as you want
• Taking advantage of fastest I/O,

communication, and numerical libraries
• Willing to make changes to the code

− Tuned for memory hierarchy and processors
− Might be slower on other computers
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1.2 Performance
• Potential by-products

− Much machine-specific code
• Spread across code base
• Multiple overlapping source trees

− Numerous #ifdefs
− Unreadable code segments
− Use of non-standard libraries
− Ports can take days/weeks
− Upgrades to primary machine may require whole new

round of optimizations (to possibly undo previous
opts)
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1.2 Performance
• Alpern and Carter said:

− Performance programming
• Design, writing, and tuning of programs to keep

processing elements as busy as possible doing
useful work

• Improve performance beyond what is achieved by
programming an algorithm in most expedient
manner

− Beyond selecting algorithms with good asymptotic
complexity (not discussed today), requires acute
sensitivity to details of processor architecture and
memory hierarchy



Portable Performance-Oriented Programming    12

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

1.3 Portable performance
• Keep most machine-specific content in make.inc and

possibly one source-code file (utilities)
• Leverage significant performance optimizations
• Employ poly-algorithms

− Choose between algorithms at runtime

• Sacrifice some performance
− Leave out small improvements disruptive to source

• Don’t mess up the source code “too much”
• Use optimized vendor libraries when it makes sense
• Must be willing to spend effort on optimizations to

see what works for multiple machines
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1.3 Portable performance
• Intended consequences

− Still port in minutes/hours rather than
days/weeks

− Code still readable
− Pretty fast on most machines

• At least the ones where it matters most
− Performance tuning takes more work

• Must test multiple machines
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1.3 Portable performance
“…we can only afford to optimize (whatever that

may be) provided that the program remains
sufficiently manageable.” [Dijkstra]
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1.4 Maintainability
• What is maintainability?  Easy to:

− Understand what the code does
− Change your mind about design decisions
− Add functionality
− Uncover and fix bugs

• Typically much more time is spent maintaining
code than writing new code
− OO isn’t a panacea
− See quotes on next slide
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1.4 Maintainability
• Hatton said, in one of few studies measuring effects of

OO design:
− “a valid silver bullet for software must lead to a massive

reduction in maintenance, which is by far the life cycle’s biggest
component”

− “no significant benefits accrued from the use of an OO
technique in terms of corrective-maintenance cost and the
company views the resulting C++ product as much more difficult
to correct and enhance”

• More light-heartedly, Kent Beck at OOPSLA ’05:
− "People who could not do a decent job with structured design

went to objects so no one would notice.”
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1.4 Maintainability
• Important issue

− Needs its own tutorial
• But today we focus on portable

performance-oriented programming
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1.5 Fortran
• The “F” word, or “undead language”
• Why use Fortran?

− 32% of all users of engineering and scientific workstations
worldwide write in Fortran [Willard]

− Native language of many DOE and DOD apps (new and old)
− Compiler technology is mature
− Minimizes dependencies, maximizes optimizability
− Built-in arrays and simple data structures make programs

simpler to parallelize
• Destined to be replaced by:

− Algol, PL1, Pascal, Ada, C, C++, Java, …
− Matlab, Maple, Mathematica, …
− Chapel, X10, Fortress
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Portable Performance-Oriented
Programming

• In what follows:
− Present basic principles of code writing and

portability up front
− Then present various optimizations with

portability in mind
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1. Introduction
2. Programming basics
3. General optimizations
4. Advanced optimizations
5. Case studies
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2. Programming basics
Consider the following when developing code
1. Generic principles

− Diagnostics
• Internal timers
• Debug checks

− Consistent programming style
2. Portability techniques

− Preprocessing
− Modules
− Modularization
− Checkpoint/restart (often a must)
− Interoperability

3. Programming for the Future
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2.1 Generic principles
• Use diagnostics

− Verbosity
− Timers
− Checks

• Verbosity (helps in debugging)
− Might want multiple levels of verbosity
− Input flag should control this

 if (verbose_flag == 1 .and. iam == 0) then
     print *,’ time step =',time_step
     print *,'**[subA done]'
  endif

− Limit so performance is not adversely affected
• Strive for near negligible (in terms of CPU time)

amount of if tests
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2.1 Generic principles
• Internal timers

− Time major phases
• Print out stats every m timesteps and summary at

completion
 if (modulo(step,time_skip) == 0) then
     call write_timing('timing.out',10,mode)
 end if

• Get your own profile (at this level of granularity)
− Know costly parts of code without having to use new tools



Portable Performance-Oriented Programming    24

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

2.1 Generic principles
• Internal checks

− Functionality/correctness
• Check return arguments, lengths of arrays, etc.
• Compile in with macro (_DEBUG?)

−Will slow code down
− So best to be a compile-time option

• Example:
#ifdef _DEBUG
      if (debug_flag .EQ. 1) write(*,*) ' x= ', x
#endif
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2.1 Generic principles
• Internal checks

− “I spent a lot of time talking about how not to need a debugger in the first
place. If you know something that has to be true in your code, assert it.”
Kate Hedstrom, ARSC HPC Newsletter 326

− The following example is not a C++ assertion, but similar in spirit

#ifdef _DEBUG���
    if((i .lt. lbound(arrayA,dim=1)) .or. &
      (i .gt.ubound(arrayA,dim=1))) then���
      write(*,*) ”i outside range of arrayA:  i=", i���
    stop
#endif���
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2.1 Generic principles
− Numeric checks

• Watch out for catastrophic cancellation
− When operands nearly cancel one another out

• Effects of catastrophic cancellation can easily be magnified
− sqrt(1-x): possible loss of half significant digits
− If x is nearly 1, then sqrt(1-x) should be 0

• Example (Gyro): make_omegas.f90
temp = sqrt(abs(energy*(1.0-lambda(i,k)*b0(i,k,m))))
if (abs(temp) < 1e-5) e_temp_p = 0.0

• Output norms, like MPI_reduce(sum(abs(x)))
− Helpful in debugging wrong answers
− Or check that a norm is within an expected range

• Check return values from math library calls
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2.1 Generic principles
• Consistent programming style

− Easy to read, easy to do search/replace
− Indenting (use spaces)
− Use descriptive variable names

(don’t get carried away though)
− Comment-based data structures

• Group variables and described them with
comments

− Similarly, a loop structure or other code
segment may be described by one comment
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2.2 Portability techniques
• Preprocessing

− Minimize and localize
• At odds with compile-time debugging checks

− Use meaningful names
• LINUX too general
• NEED_UNDERSCORE or ADD_ better

− “Almost every macro demonstrates a flaw in the programming
language, in the program, or in the programmer.” [Stroustrup]
• That may be, but still a necessary evil

− “If you must use macros, use ugly names with lots of capital
letters” [Stroustrup]
• Ugly  meaningful
• Possibly start and end with “_”

− What about system-defined architecture-specific macros?
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Conditional compilation
• Various controls can easily combine in

unforeseen ways
− Thus the advice to minimize and localize

• If you use #ifdef for machine dependencies
− Make sure that when no machine is specified, the

result is an error, not a default machine
− #error directive is useful for this purpose

• If you use #ifdef for optimizations
− Default should be unoptimized code rather than an

uncompilable or incorrect program
− Be sure to test the unoptimized code
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Modules
• Benefits

− Code reusability
− Type checking

• Kinds module
− Define kinds in one place, and use throughout code
− If changed, will require whole code to be compiled, which

is what you want
− It does not change input files or MPI data types though!
− Advice: use only if you expect to need different kinds

• Cross-dependent source files - legal but not nice to
some compilers that try to do inlining
− File X contains module A and C, and A “use”s B
− File Y contains module B which “use”s C
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Modularization
• Modularizing communication at roughly the block-synchronous level

− Your own communication library
− Some leeway for optimization since some “physics” is still included
− Aim for potential overlapping communication and computation

• Co-Array Fortran naturally gives you overlapping communication
and computation

• Similarly, modularize I/O at a block level
• Wrap low-level system utilities, keep in utilities file that is easily

modified when porting

• Note for MPI codes:
− Assume your code may be a piece of a larger code someday  don’t

use MPI_COMM_WORLD
− Make your own world communicator

Ex: Duplicate MPI_COMM_WORLD to my_world
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Utility example
• Put the following in a utilities file
• If porting issues arise, only fix one thing/file

 subroutine execute_command(cmd)

      character(*), intent(in)  :: cmd

# ifdef SGI || SP2 || CPQ
      call system(trim(cmd))
# endif
# ifdef T3E || X1
      call ishell(trim(cmd))
# endif

  end subroutine execute_command

 good macros?


Does ifdef code
follow earlier advice?
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Checkpoint/restart
• Usually a must
• Lets you use an unstable system from day one
• At allocated sites, can result in bonus hours if machine

crashes during run
• Consider ramifications of how you do this

− Unformatted or formatted
− 1 file or many files
− 1 checkpoint or checkpoints every m steps

1 checkpoint is never enough
Do at least 2, current and previous

− The answers to these may depend on the filesystems and/or machine

• Do you need files to be portable?
− Big endian/little endian (often a compile-time option for I/O)
− HDF5, NetCDF
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C/Fortran interoperability
• Minimize C/Fortran interoperability

− Porting can be troublesome
• If required (e.g. Fortran program calling C library)

− Localize interactions
− Keep interface in a easily recognizable file to be reviewed when

porting
• Or use modern interoperability features

− Standard C interoperability (Fortran 2003)
− Allows Fortran programs to call C functions and access C global

objects
− And vice versa
− ISO_C_BINDING module provides interoperable kind

parameters for C types and Fortran intrinsic types
− Requires modern compiler (Fortran standard compliant)
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Interoperability example
$ more libc_defs.f
      module libc_defs
      use,intrinsic iso_c_binding

      interface
         function kill(pid, sig),bind(c) result(return_val)
         import c_int, c_int32_t
         integer(c_int)           :: return_val
         integer(c_int32_t),value :: pid
         integer(c_int),    value :: sig
         end function kill

         function getpid(),bind(c) result(pid)
         import c_int32_t
         integer(c_int32_t)       :: pid
         end function getpid
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Interoperability example
         function system(syscall),bind(c) result(rval)
         import c_int,c_char
         CHARACTER(len=*, KIND=c_char) :: syscall
         integer(c_int)  :: rval
         end function system

         function sleep(seconds),bind(c) result(rval)
         import c_int
         integer(c_int)  :: rval
         integer(c_int),value  :: seconds
         end function sleep
      end interface

      end module libc_defs
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Interoperability example
$ more tst.f
      use libc_defs
      use,intrinsic iso_c_binding

      integer(c_int)     :: sig,res
      integer(c_int32_t) :: pid

      pid = getpid()
      sig = 9
      res = kill(pid,sig)

      end
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2.3 Programming for the future
• Gate counts keep increasing

− Floating-point units get cheaper
− More fine-grained parallelism

• Clock-speed increases are stalling (Heat!)
• Bandwidth may be catching up

− Wire signal rates continue to increase
− Optical communication will get cheaper

• Programming implications
− Clearly present fine-grained parallelism
− Allow latency hiding (local and remote)
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2.3 Programming for the future
• Operate on adjustable sub-aggregates

(blocks, tiles, etc.)
− Not scalars (to allow vectorization and

pipelining)
− Not the whole domain (to allow caching)

• Avoid false dependencies
− Pointers!
− I/O statements inside loops (for

debugging)
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2.3 Programming for the future
• Use modules instead of passing arguments

(if you always pass the same object)
− Easier promotion of scalar procedures
− Easier promotion of variables to co-arrays (Fortran 2008)
− Compilers can “see” the variables better
− Adding “arguments” is a local modification

(not throughout call stack)
• Use modules instead of user-defined types

− Easy promotion of variables to co-arrays
− Avoid artificial dependencies
− Encourage operations on aggregates
− Simpler for others to understand
− Simpler for compilers to understand
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Modules caveat: side effects
• Assume

− sub1 gets x and y passed in as arguments
− sub1 calls sub2
− Sub2 has some arguments (not x and y)
− Sub2 uses x and y imported via modules and

modifies y
• Then

− cannot easily tell when looking at sub1 what might
be changed in sub2 (side effects)

− Not consistent in how vars are passed, confusing
− Modules can hide information from the reader
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Side-effects example
• VMEC2000 (fusion)
   SUBROUTINE sweep3_blocks (xc, xcdot, gc, nmax_jog)
      USE vmec_main, ONLY: r01, z01
      REAL(8), DIMENSION(ns,0:ntor,0:mpol1,ntyptot) :: &
        xc, xcdot, gc, xstore

  CALL FUNCT3D(istat)
   xstore = xc
   N2D: DO n_2d = 0, ntor
      M2D: DO m_2d = 0, mpol1
         DO i = 1, nsize
            js = radial_pts(i)
            xc(js,n_2d,m_2d) = xstore(js,n_2d,m_2d) + hj
            xcdot(js,n_2d,m_2d) = hj
         ENDDO
         CALL FUNCT3D(istat)            ! xc is input, gc is output
         xc = xstore
         xcdot = 0
      ! gc is used to update other arrays not shown
      ENDDO
   ENDDO
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Side-effects example
• Code is legal, but hard to figure out
• The comments aren’t there in the real

code
− Should be!

Necessary for understanding
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3. General optimizations
• Focus on single-processor performance
• Use following strategies (in order of

increasing effort and difficulty)
− Minor source code modifications
− Best compiler optimization options
− High-performance library and algorithm
− Tuning code for a particular system

• Will not cover compiler options, libraries,
or algorithms here
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3. General optimizations
1. Removing clutter [Dowd]

− Subroutine overhead
− Branches
− Other

2. FP/loop optimizations
− Unrolling, etc.

3. Data locality
− Blocking/clumping

• BLAS 2 and 3 - careful about overhead
− Array re-indexing
− Ambiguity in memory references

4. Directives
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3.1 Removing clutter
• Subroutine overhead

− Very large on vector machines, prevents
vectorization  very important

− Also a factor on superscalar machines
• Two techniques

1. Some compilers can do automatic inlining
• Further gains can be had by doing it yourself
• Manual inlining is not necessarily recommended

2. Push loops down into subroutines
• Eliminates subroutine overhead and allows for more

efficient vectorization in the subroutines
• Will look at this more later
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3.1 Removing clutter
do j = 1,n

  if (test(j) .eq. 1) then

    do i =1,n

      a(i,j) = a(i,j) + b(i,j)

    enddo

  else

    call STOP_PROGRAM(); endif

enddo

• Call to STOP_PROGRAM
prevents parallelization

do j = 1,n

  if (test(j) .eq. 1) call
STOP_PROGRAM()

enddo

do j = 1,n

  do i =1,n

      a(i,j) = a(i,j) + b(i,j)

 enddo; enddo

• STOP_PROGRAM almost
never called, separate it

• “a” does not end up the same
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3.1 Removing clutter
• Manual inlining example: S3D

       DO 90 K = 2, KK
#ifdef VECTORVERSION
C  Manually inline for X1.
           DO J = 1, K-1
              DJK(J,K) = (((COFD(4,J,K) * ALOGT) +
     $                        COFD(3,J,K)) * ALOGT +
     $                        COFD(2,J,K)) * ALOGT +

COFD(1,J,K)
           ENDDO
#else
          CALL MCEVAL4 (ALOGT, K-1, COFD(1,1,K), DJK(1,K) )
#endif
 90     CONTINUE

• Compiler could inline MCEVAL4
− But doing it manually yielded even more speedup

 Is this a good macro name?
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3.1 Removing clutter
• Both techniques can result in

− More efficient code on most machines
− More-readable or less-readable code 

Be careful in their use
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3.1 Rearrange clutter?
do j = 1,n2

    do i = 1, n1

       a(i,j) = a(i+1,j+1) +
LARGE_FUNCTION(b,c,d,..)

enddo; enddo

• Inner loop will vectorize

• Nothing will stream

do j = 1,n2
    do i = 1, n1
       atemp(i,j) =

LARGE_FUNCTION(b,c,d,..)
enddo; enddo
do j = 1,n2
    do i = 1, n1
       a(i,j) = a(i+1,j+1)  + atemp(i,j)
enddo; enddo

• Inner loops will vectorize:  Most of

the work streams

• Potentially uses more memory
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3.1 Removing clutter
• Branches

− Be clear and concise with conditionals
• Put most likely to fail/pass test first for and/or tests,

respectively
• Don’t be too wordy, don’t be redundant

− Within loops
• Loops with if tests can vectorize, but still best to

move them out if at all possible
• There are ways to deal with some if-tests in loops

− See Dowd or Goedecker
− “you don’t want anything inside a loop that doesn’t have to be

there, especially an if-statement,” [Dowd]

• We’ll talk about “filters” later
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3.1 Removing clutter
• Data type conversions

− Cost several instructions
− Remove superfluous mixing of datatypes

• Sign conversions
− Remove superfluous conversions
− A sign conversion can take several cycles

• Fortran copy overheads
− Passing a slice (substructure) of an array

often copies the data into a work array
(memory bandwidth)
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3.1 Removing clutter
• Floating-point exceptions

− Handled differently by vendors
− Execution may stop, or continue with nonnumeric

values
• Execution can be much slower with NaNs

− Might be result of incorrect programming, or result of
compiler optimizations

• Recommendation is this must be watched out
for
− Either with internal checks in code (compile- or run-

time) or compiler switches
− If it happens, your code can run extremely slow
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3.2 FP/Loop optimization
• Loop unrolling

− Positives
• Exposes parallelism by fattening up the loop

− Potential negatives
• Unrolled by wrong factor (machine dependent)
• Register spilling
• Instruction-cache misses
• Other hardware delays

− Shared memory machines: false sharing
• Less readable (unless using directives)

• Don’t do this manually
− Use directives instead



Portable Performance-Oriented Programming    56

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Loop-unrolling example
     if(na.gt.40*nb) then
!DIR$ PREFERSTREAM
          do ia=1,na
!DIR$ SHORTLOOP
          do ib=1,nb,4
             sum00 = (0.0,0.0)
             sum01 = (0.0,0.0)
             sum02 = (0.0,0.0)
             sum03 = (0.0,0.0)
!DIR$ PREFERVECTOR
          do ic=1,na
             sum00 = sum00 + Xj(ib,ic)*AA(ic,ia)
             sum01 = sum01 + Xj(ib+1,ic)*AA(ic,ia)
             sum02 = sum02 + Xj(ib+2,ic)*AA(ic,ia)
             sum03 = sum03 + Xj(ib+3,ic)*AA(ic,ia)
          enddo
             XjAA(ib,ia) = sum00
             XjAA(ib+1,ia) = sum01
             XjAA(ib+2,ia) = sum02
             XjAA(ib+3,ia) = sum03
          enddo
          enddo

 …
! also have the remainder case
        do ib=nb-mod(nb,4)+1,nb
…
 else
          XjAA(1:nb,1:na) = matmul( Xj(1:nb,1:na),

AA(1:na,1:na) )
 endif

Don’t do this!
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3.2 FP/Loop optimization
• Associative transformations

− Numerically not equivalent (potential to alter
answers)

− Vector reduction
• Calculate several iterations at a time

independently, or
• Calculate partial sums then assemble

− Usually done by compiler at high optimization
levels or in optimized math libraries
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3.2 FP/Loop optimization
• Loop interchange

− Rearrange loop nest so the right stuff is at the
center

− Swap high trip counts for low
− Increase parallelism (via unrolling)
− Improve memory-access patterns

• Unit-stride access
• Reuse cache and registers
• See next section
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3.3 Data locality

• Memory access is a major bottleneck on
machines with a memory hierarchy

• Optimizing memory access has a large
potential for performance improvements
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3.3 Data locality
• Potential optimization issues

− Strides
− Loop reordering for optimal locality
− Loop fusion to reduce unnecessary memory

references
− Data structures
− Blocking
− Cache thrashing
− Ambiguity in memory references
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Strides
• Unit stride is still the best

− Conserves cache entries
• Can’t eliminate strided memory accesses

− Try restructuring loops to minimize cache and
TLB misses

− Try not to get too ugly
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Beware low trip counts
• Assume n1=n2>100, n3<20

do j = 1,n2

  do i = 1,n1

   do k = 1, n3

      atemp( k ) = f(i,j,k)+…

   enddo

   do k=1,n3

      c(i,j,k) = c(i,j,k) + atemp(k)+…

   enddo

enddo; enddo

• k loop parallel; i, and j are not

• Short trip count on k makes code
less efficient

• Promote atemp
do j = 1,n2
  !dir$ prefervector
  do i = 1,n1
   do k = 1, n3
      atemp( i,j,k ) = f(i,j,k)+…
   enddo
   do k=1,n3
      c(i,j,k) = c(i,j,k) + atemp(i,j,k)+…
   enddo
enddo; enddo
• Now i and j parallel; much more

efficient
• Increased memory usage
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Loop reordering
• Two aspects:

− Interchanging loops
• Simple (possibly just a directive)
• But usually not enough

− Swapping array indices
• If declared in a module, could be quite simple

to do (assuming Fortran array syntax)
• In general, tedious and error prone
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Loop interchange
• Some compilers can interchange loops

− May need to use directive
ir------<       do j = 1,200
ir MVs--<         do i = 1,200
ir MVs              a(i) = a(i) + b(i,j) * c(j)
ir MVs-->         end do
ir------>       end do

• X1E compiler can “hoist” a(i) after
interchange
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Loop interchange
• Before
  do nn=0,n_max
     do i=1,n_x
        do n1=-n_max+nn,n_max
           ! f dg/dr - g df/dr
           fgr(nn,i) = fgr(nn,i)+&
              fn(n1,i)*gn_r(nn-n1,i)-&
              gn(n1,i)*fn_r(nn-n1,i)
           ! g df/dp - f dg/dp
           afgp(nn,i) = fgp(nn,i)+&
              gn(n1,i)*fn_p(nn-n1,i)-&
              fn(n1,i)*gn_p(nn-n1,i)
           ! df/dp dg/dr - df/dr dg/dp
           fg2(nn,i) = fg2(nn,i)+&
              fn_p(n1,i)*gn_r(nn-n1,i)-&
              fn_r(n1,i)*gn_p(nn-n1,i)
        enddo ! n1
     enddo ! i
  enddo ! nn

• After
 do i=1,n_x
    do nn=0,n_max
        do n1=-n_max+nn,n_max
           ! f dg/dr - g df/dr
           fgr(nn,i) = fgr(nn,i)+&
              fn(n1,i)*gn_r(nn-n1,i)-&
              gn(n1,i)*fn_r(nn-n1,i)
           ! g df/dp - f dg/dp
           afgp(nn,i) = fgp(nn,i)+&
              gn(n1,i)*fn_p(nn-n1,i)-&
              fn(n1,i)*gn_p(nn-n1,i)
           ! df/dp dg/dr - df/dr dg/dp
           fg2(nn,i) = fg2(nn,i)+&
              fn_p(n1,i)*gn_r(nn-n1,i)-&
              fn_r(n1,i)*gn_p(nn-n1,i)
        enddo ! n1
     enddo ! nn
  enddo ! i

n_max=63 and n_x=400
1.2x faster on X1E
2x faster on XT3
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Index swap
• Gyro before

 complex, dimension(-n_max:n_max,n_x) :: fn, fn_r, gn, gn_r
   do i_diff=-m_dx,m_dx
      do i=1,n_x
         do nn=0,n_max
            fn_r(nn,i) = fn_r(nn,i)+w_d1(i_diff)*fn(nn,i+i_diff)
            gn_r(nn,i) = gn_r(nn,i)+w_d1(i_diff)*gn(nn,i+i_diff)
         enddo ! nn
      enddo ! i
   enddo ! i_diff
   do i=1,n_x
       do nn=1,n_max
          fn_r(-nn,i) = conjg(fn_r(nn,i))
          gn_r(-nn,i) = conjg(gn_r(nn,i))
       enddo ! nn
   enddo ! i
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Index swap
• Gyro after

 complex, dimension(n_x,-n_max:n_max) :: fn, fn_r, gn, gn_r
   do i_diff=-m_dx,m_dx
      do i=1,n_x
         do nn=0,n_max
            fn_r(i,nn) = fn_r(i,nn)+w_d1(i_diff)*fn(i+i_diff,nn)
            gn_r(i,nn) = gn_r(i,nn)+w_d1(i_diff)*gn(i+i_diff,nn)
         enddo ! nn
      enddo ! i
   enddo ! i_diff
   do i=1,n_x
       do nn=1,n_max
          fn_r(i,-nn) = conjg(fn_r(i,nn))
          gn_r(i,-nn) = conjg(gn_r(i,nn))
       enddo ! nn
   enddo ! i
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Loop fusion
• Fusing loops together can result in better

reuse of loaded data
• Idea is to issue as few loads of array

elements as possible before storing
results and flushing the cache

• Many compilers do this at highest
optimization levels
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Loop fusion, before
        do i=1,n_x
           do nn=0,n_max
              fn_p(nn,i) = -i_c*n_p(nn)*fn(nn,i)
              gn_p(nn,i) = -i_c*n_p(nn)*gn(nn,i)
           enddo
        enddo
        fn_r = (0.0,0.0)
        gn_r = (0.0,0.0)
        do i_diff=-m_dx,m_dx
           do i=1,n_x
              do nn=0,n_max
                 fn_r(nn,i) = fn_r(nn,i) + &
                           w_d1(i_diff)*fn(nn,i+i_diff)
                 gn_r(nn,i) = gn_r(nn,i) + &
                           w_d1(i_diff)*gn(nn,i+i_diff)
              enddo ! nn
           enddo ! i
        enddo ! i_diff

        x_fft(:,:) = (0.0,0.0)
        do i=1,n_x
           do nn=0,n_max
              x_fft(nn,i) = fn(nn,i)
              x_fft(nn,n_x+i) = gn(nn,i)
              x_fft(nn,2*n_x+i) = fn_p(nn,i)
              x_fft(nn,3*n_x+i) = gn_p(nn,i)
              x_fft(nn,4*n_x+i) = fn_r(nn,i)
              x_fft(nn,5*n_x+i) = gn_r(nn,i)
           enddo
        enddo
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Loop fusion, after
       x_fft(:,:) = (0.0,0.0)
       do nn=0,n_max
           do i=1,n_x
              fn_r = (0.0,0.0)
              gn_r = (0.0,0.0)
              do i_diff=-m_dx,m_dx
                 fn_r = fn_r+w_d1(i_diff)*fn(nn,i+i_diff)
                 gn_r = gn_r+w_d1(i_diff)*gn(nn,i+i_diff)
              enddo ! i_diff
              fn_p = -i_c*n_p(nn)*fn(nn,i)
              gn_p = -i_c*n_p(nn)*gn(nn,i)
              x_fft(nn,i) = fn(nn,i)
              x_fft(nn,n_x+i) = gn(nn,i)
              x_fft(nn,2*n_x+i) = fn_p
              x_fft(nn,3*n_x+i) = gn_p
              x_fft(nn,4*n_x+i) = fn_r
              x_fft(nn,5*n_x+i) = gn_r
           enddo
        enddo

Reduced memory-
bandwidth requirement

Moral: Might need to
combine techniques
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Blocking
• Retrieve as much data as possible with as few

cache misses as possible
• Rearrange loop nests to work on neighborhoods

of data - blocks or submatrices
• Block size (blocking parameter) depends on the

cache size or vector length - machine
dependent

• Design resulting code to be portable
− Make block size an input or compile-time parameter

• WARNING:  Don’t write hand-coded versions of
common computational kernels if more efficient
implementations exist.
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Matrix-multiplication example*
real*8 a(n,n), b(n,n), c(n,n)

do ii=1,n,nb

  do jj=1,n,nb

    do kk=1,n,nb

      do i=ii,min(n,ii+nb-1)

        do j=jj,min(n,jj+nb-1)

          do k=kk,min(n,kk+nb-1)

            c(i,j)=c(i,j)+a(j,k)*b(k,i)
          end do

        end do

      end do

    end do

  end do

end do
* Required in any performance tutorial.
(Use BLAS3 instead!)
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Blocking example: CLM
• Community Land Model
• Pass loops bounds to physics routines
• Introduce new outer loop with large stride

− Use loop index and stride to define array blocks
− Tunable for different systems
− Small blocks for cache-dependent superscalar

systems
− Full-size blocks for vector-only systems
− Large blocks for vector systems with additional

dimensions of parallelization (threads/streams)
− Implicitly controls the vector length
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Blocking example: CLM
nclumps = get_proc_clumps()
do nc = 1, nclumps
call get_clump_bounds(nc, …,
begc, endc, …)

…
call Hydrology1(begc, endc, …)

…
end do



Portable Performance-Oriented Programming    75

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Cache thrashing
• Effective size of cache is much smaller than

physical size because of mapping rules and
access pattern
− For example, direct mapping or set associative

• Memory references are mapped to same set of
cache slots while other slots remain unused

• FFTs, multipole methods, wavelet transforms
where leading dimensions are a high power of 2

• Padding arrays usually fixes the problem



Portable Performance-Oriented Programming    76

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Reference ambiguity
• Difficult for compiler to distinguish from

other, possibly conflicting references
• Compiler cannot determine if two index

expressions point to the same location
− Can’t tell  can’t optimize
− Prevents parallelism

• Use directives
• See filters, next section
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3.4 Directives
• Easy way to give compiler more

information so it can do its job
• Mostly portable

− Just comments
− Some vendors’ compilers recognize other

vendors’ directives
• Could be a gotcha?
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Agenda
1. Introduction
2. Programming basics
3. General optimizations
4. Advanced optimizations
5. Case studies
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4. Advanced optimizations
1. Pushing loops down
2. Data structures
3. Filters
4. False dependencies
5. Vector replication
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4.1 Pushing loops down
• Push loops down into subroutines

− Eliminates subroutine overhead and allows for
more efficient vectorization in the subroutines

− Examples: Gyro, S3D, CLM
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4.1 Pushing loops down
• Gyro before

   complex :: RHS_overshoot, RHS_drift, RHS_star
   [...]
  ! PERIODIC
  do i=1,n_x
     do m=1,n
        m0 = m_phys(ck,m)
        call manage_overshoot(fh0(m,i),RHS_overshoot)
        RHS_drift = o_d1(m0,i,p_nek_loc,is)*fh(m,i)
        RHS_star = o_star(in_1,ie,is,i)*density(is,i)*&
             gyro_u(m,i,p_nek_loc,is)
        RHS(m,i,p_nek_loc,is) = RHS(m,i,p_nek_loc,is)+&
             RHS_overshoot+i_c*(RHS_drift-RHS_star)
     enddo ! m
  enddo ! i
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4.1 Pushing loops down
• Gyro after

  complex, dimension(n,i1:i2) :: RHS_overshoot
  complex :: RHS_drift, RHS_star
  [...]
! PERIODIC
 call manage_overshoot(fh0,RHS_overshoot)
  do i=1,n_x
     do m=1,n
        m0 = m_phys(ck,m)
        RHS_drift = o_d1(m0,i,p_nek_loc,is)*fh(m,i)
        RHS_star = o_star(in_1,ie,is,i)*density(is,i)*&
             gyro_u(m,i,p_nek_loc,is)
        RHS(m,i,p_nek_loc,is) = RHS(m,i,p_nek_loc,is)+&
             RHS_overshoot(m,i)+i_c*(RHS_drift-RHS_star)
     enddo ! m
  enddo ! i
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4.1 Pushing loops down
• Portability comments

− Increased memory usage
• RHS_overshoot from scalar to 2D array

• Performance comments
− Huge win on vectors
− Same speed or faster on superscalars

• Otherwise
− No harder to read/understand code
− No harder to port
− No machine-specific code
− manage_overshoot now works on arrays instead of

scalars
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4.2 Data structures
• Data structures may prevent optimizations

− Arrays of pointers to derived types
− Variables implemented as scalars in each instance of a derived

type
− Science routines called for each grid or subgrid

• Pros?
− Object-oriented design
− Not too bad on cache-based scalar platforms

• Cons
− Leads to large, unpredictable strides
− Not conducive to vector processing or superscalar processing
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CLM data structure

[Hoffman, 2005]
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CLM 2.1
• Arrays of pointers to derived types
• Outer loops over each element
• Many if tests
• Strided memory accesses
• Unvectorizable
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CLM vector prototype
• Prototype only implemented for part of model

− See CUG 2003 paper

• Arrays grouped in modules
− No derived types
− Index arrays implement hierarchy

• Outer loops over “clumps” of elements (shown earlier)
• Scalar blocks become loops over elements of a clump
• Index filters replace many if tests (see next section)
• Vectorizes automatically
• Also faster on superscalar architectures
• Fewer lines of code
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CLM 3.0
• Derived types with array pointers

− Pointing into contiguous arrays
• Outer loops over “clumps” of elements
• Scalar blocks become loops over elements of a

clump
• Index filters replace many if tests
• Vectorizes

− Requires many concurrent directives, thanks to
pointers

• Also faster on superscalar architectures
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4.3 Filters
• if statements reduce parallelism

− Masks vector operations  redundant ops
• Implement index filter instead
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4.3 Filters
!dir$ permutation(filterp)

fn =0
do pi = plb, pub
  if (<test>) then
     fn = fn+1
     filterp(fn) = pi
  end if
end do
do fi =1, fn
  pi = filterp(fi)
  oi = pcolumn(pi)
  gi = pgridcell(pi)
    …
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4.3 Filters
• Portability comments:

− It’s personal whether filters are harder to read
than the original loop with if-test code

− Potentially increases memory usage, but not
much

− No machine-specific code
• Performance:

− Much better on vector
− Often better on superscalar
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4.4 False dependency
• Code can inhibit parallelism (serializes

execution) though iterations are
completely independent

• Example: temporary arrays

• Note: here we are not talking about
cache-related false dependency
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4.4 False dependency
common /something/ atemp(n)

do j = 1,m

   do i = 1, n

      atemp( i ) = sqrt( b(i,j) )

      c(i,j) = c(i,j) + atemp(i)

enddo; enddo

• Outer loop does not parallelize
due to false dependency on
atemp

real stemp

do j = 1,m

   do i = 1, n

      stemp = sqrt( b(i,j) )

      c(i,j) = c(i,j) + stemp

enddo; enddo

• Outer loop parallelizes;  More
efficient

• May manually fuse loops to
remove temporary arrays
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VMEC2000 example
   CALL FUNCT3D(istat)
   xstore = xc
   N2D: DO n_2d = 0, ntor
      M2D: DO m_2d = 0, mpol1
         DO i = 1, nsize
            js = radial_pts(i)
            xc(js,n_2d,m_2d) = xstore(js,n_2d,m_2d) + hj
            xcdot(js,n_2d,m_2d) = hj
         ENDDO
         CALL FUNCT3D(istat)            ! xc is input, gc is output
         xc = xstore
         xcdot = 0
      ! gc is used to update other arrays not shown
      ENDDO
   ENDDO



Portable Performance-Oriented Programming    95

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

VMEC2000 example
• Outer loops are independent
• Can any compiler parallelize this?
• Must be rewritten to parallelize



Portable Performance-Oriented Programming    96

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

4.5 Vector replication
• Replicate an array to vectorize multiple

updates to the same elements
• Similar trick at a smaller scale for

OpenMP by privatizing the array
• Notice #ifdef _UNICOSMP
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GTC vector replication
   15.                  #ifdef _UNICOSMP
   16.                    integer, parameter :: vlen = 256
   17.                    integer :: mv, v
   18.                    real(wp) vdensityi(mgrid,0:mzeta,vlen)
   19.                  #endif
   20.                    real(wp) dnitmp(0:mzeta,mgrid)
   21.
   32.  r V M----<><><>   densityi=0.0
   81.                  #ifdef _OPENMP
   91.                  !$omp parallel private(dnitmp)
   93.                    dnitmp=0.   ! Set array to zero
   94.                  #elif defined _UNICOSMP
   95.  r V M----<><><>   vdensityi=0.
   96.                  #endif
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GTC vector replication
  122.  m MVs 3      #ifdef _OPENMP
  123.  m MVs 3      ! Use thread-private temp array dnitmp to store the

results
  124.  m MVs 3          ij=jtion0(larmor,m)
  125.  m MVs 3          dnitmp(kk,ij) = dnitmp(kk,ij) + wz0*wt00
  126.  m MVs 3          dnitmp(kk+1,ij)= dnitmp(kk+1,ij) + wz1*wt00
  128.  m MVs 3          ij=ij+1
  129.  m MVs 3          dnitmp(kk,ij) = dnitmp(kk,ij) + wz0*wt10
  130.  m MVs 3          dnitmp(kk+1,ij)= dnitmp(kk+1,ij) + wz1*wt10
  132.  m MVs 3          ij=jtion1(larmor,m)
  133.  m MVs 3          dnitmp(kk,ij) = dnitmp(kk,ij) + wz0*wt01
  134.  m MVs 3          dnitmp(kk+1,ij)= dnitmp(kk+1,ij) + wz1*wt01
  136.  m MVs 3          ij=ij+1
  137.  m MVs 3          dnitmp(kk,ij) = dnitmp(kk,ij) + wz0*wt11
  138.  m MVs 3          dnitmp(kk+1,ij)= dnitmp(kk+1,ij) + wz1*wt11
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GTC vector replication
  139.  m MVs 3   #elif defined _UNICOSMP
  140.  m MVs 3        ij=jtion0(larmor,m)
  141.  m MVs 3        vdensityi(ij,kk,v) = vdensityi(ij,kk,v) + wz0*wt00
  142.  m MVs 3        vdensityi(ij,kk+1,v)= vdensityi(ij,kk+1,v) +

wz1*wt00
  144.  m MVs 3        ij=ij+1
  145.  m MVs 3        vdensityi(ij,kk,v) = vdensityi(ij,kk,v) + wz0*wt10
  146.  m MVs 3        vdensityi(ij,kk+1,v)= vdensityi(ij,kk+1,v) +

wz1*wt10
  148.  m MVs 3        ij=jtion1(larmor,m)
  149.  m MVs 3        vdensityi(ij,kk,v) = vdensityi(ij,kk,v) + wz0*wt01
  150.  m MVs 3        vdensityi(ij,kk+1,v)= vdensityi(ij,kk+1,v) +

wz1*wt01
  152.  m MVs 3        ij=ij+1
  153.  m MVs 3        vdensityi(ij,kk,v) = vdensityi(ij,kk,v) + wz0*wt11
  154.  m MVs 3        vdensityi(ij,kk+1,v)= vdensityi(ij,kk+1,v) +

wz1*wt11
  173.  m MVs 3   #endif
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GTC vector replication
  181.             #ifdef _OPENMP
  182.             ! accumulate results from each thread-private
  183.             ! array dnitmp()into the shared array densityi
  185.             !$omp critical
  186.               do ij=1,mgrid
  187.                  do kk=0,mzeta
  188.                     densityi(kk,ij)=densityi(kk,ij)+dnitmp(kk,ij)
  189.                  enddo
  190.               enddo
  191.             !$omp end critical
  193.             #elif defined _UNICOSMP
  194.  ir-------<   do v=1,vlen
  195.  ir 2-----<      do kk=0,mzeta
  196.  ir 2               !dir$ preferstream
  197.  ir 2 MV--<         do ij=1,mgrid
  198.  ir 2 MV               densityi(kk,ij) = densityi(kk,ij) +

vdensityi(ij,kk,v)
  199.  ir 2 MV-->         enddo
  200.  ir 2----->      enddo
  201.  ir------->   enddo
  202.             #endif
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GTC vector replication
• Portability comments:

− Increases memory usage
− No harder to read/understand than OpenMP section
− Overall code is getting ugly

• OpenMP, UNICOS/mp, and serial
• What could be done better?

− Could macro names be better?
• Performance gain:

− Huge on vector machines
− SMP gains for OpenMP
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Agenda
1. Introduction
2. Programming basics
3. General optimizations
4. Advanced optimizations
5. Case studies
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5.0 Case studies
• The following are “case studies” of some

DOE codes
• “Case study” does not necessarily mean a

short highly energized study of a code
− Some will be summaries of the evolution of

codes over a several year timeframe
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CLM 3.0
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Gyro
• Gyro is a [fusion] microturbulence code, [Candy]

− Continuum (Eulerian)
− 5-D
− Runs on a variety of machines:  IBM Power4, Cray

X1E and XT3, SGI Altix, Opteron clusters
• Summary covers revisions of code from early

2.x versions to 4.
− Some revisions were direct result of optimizations

discussed earlier
− Some portability techniques also evident in Gyro
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Positive code features of Gyro
• DEBUG and VERBOSE input flags
• Checkpointing

− Current and previous checkpoints
• Prints out norms of arrays
• No derived types or pointers

− Just arrays
• Uses modules to pass arguments

− Easy promotion/demotion of arrays
• Consistent programming style

− Consistent naming scheme of vars and files
• Comment-based data structures
• Simple but effective make system

− Some support Python scripts
− No preprocessing (multiple sources controlled by make)
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Gyro optimizations
• Directives
• Checkpoints were originally formatted, now

unformatted
• Pushed loops down
• Fused loops/reduced temporary memory

usage
− 25% gain in nonlinear-advance FFT routine

• Vectorized across tridiagonal solves
− With reworking data structures and reworking

setup loops, big win on X1E
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Gyro optimizations
• Swapped indices

− 10% gain on X1E, slower on Opterons
• Fix for sqrt(1-x) where x~1
• Pseudo-poly-algorithmic

− Different sources for a few (core)
computationally intense routines (nonlinear
advance +/- FFTs)

− Controlled by make system
• New parallel “distribution” algorithm

− Big win on all machines
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S3D
• Combustion code, PI: Jackie Chen
• Direct numerical simulation of 3D

turbulent non-premixed flames
• Runs on variety of machines including

IBM SP, Cray X1E, Cray XT3, Opteron
cluster, SGI Altix
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Positive code features of S3D
• Checkpoints at regular intervals

− Useful for postprocessing/movies
− Eats up disk space

• Consistent programming style
• Uses modules to pass arguments

− Easy promotion/demotion of arrays
• Simple and effective make system
• Sparingly uses (descriptive) #ifdef macros

− Some for machine specific opts: VECTORVERSION
− Some for alternate method: SAVEFILESINSEPDIR
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S3D optimizations
• After already ported and somewhat optimized

by user
• Push 2 loops of triple nest down

− ~2x speedup (for that version) on X1E
• Add directives
• Removal of MPI Derived Types

− ~2x speedup (for that version) on X1E, significant
gain on other machines

− Co-Array Fortran initially a workaround
• Overall ~3x speedup on X1E
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GTC
• Fusion microturbulence code
• Particle-in-cell (PIC)

• Optimizations/modifications
− Saw vector replication earlier
− Used filter to fix “less efficient” compiler

vectorization (following)
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GTC: Fixing “less efficient”
• A Cray X1[E]-ism

− Can easily be missed, shows up in messages
at the bottom of “.lst” file

 A vectorized loop contains potential conflicts
due to indirect addressing at line 266, causing
less efficient code to be generated.

• Moral: always check compiler messages
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GTC: fixing less efficient
• Before:

  264.  MV-------------<     do m=1,mi

  265.  MV                          ip=max(1,min(mflux,1+int((wpi(1,m)-a0)*d_inv)))

  266.  MV                          dtem(ip)=dtem(ip)+wpi(2,m)*zion(5,m)

  267.  MV                          dden(ip)=dden(ip)+1.0

  268.  MV------------->     enddo

...

ftn-6371 ftn: VECTOR File = pushi.F90, Line = 264

  A vectorized loop contains potential conflicts due to indirect addressing at

  line 266, causing less efficient code to be generated.

ftn-6371 ftn: VECTOR File = pushi.F90, Line = 264

  A vectorized loop contains potential conflicts due to indirect addressing at

  line 267, causing less efficient code to be generated.

ftn-6204 ftn: VECTOR File = pushi.F90, Line = 264

  A loop starting at line 264 was vectorized.

ftn-6601 ftn: STREAM File = pushi.F90, Line = 264

  A loop starting at line 264 was multi-streamed.
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GTC: fixing less efficient
• After:

  265.  Vw V M----<><><>      vdtem=0

  266.  f-------------<>      vdden=0

  267.  m--------------<      do mv=1,mi,vlen

  268.  m MVs----------<         do m=mv,min(mv+vlen-1,mi)

  269.  m MVs                       v=m-mv+1

  270.  m MVs                       ip=max(1,min(mflux,1+int((wpi(1,m)-a0)*d_inv)))

  271.  m MVs                       vdtem(v,ip)=vdtem(v,ip)+wpi(2,m)*zion(5,m)

  272.  m MVs                       vdden(v,ip)=vdden(v,ip)+1.0

  273.  m MVs---------->          enddo

  274.  m-------------->      enddo

  275.  M--------------<      do i=1,mflux

  276.  M Vw V 4--<><><>         dtem(i)=sum(vdtem(:,i))

  277.  M f-----------<>         dden(i)=sum(vdden(:,i))

  278.  M-------------->      enddo
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CAM
• Community Atmospheric Model (CAM)
• Developed at NCAR
• Used for weather and climate research
• Atmospheric component of CCSM

− Must run efficiently on a variety of computers
− Must port easily

• Results must be invariant wrt number of
processors used
− Must disallow some [compiler] optimizations
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CAM
• Compile-time or run-time parameters to optimize

performance for a given platform, problem or processor
count
− pcols is maximum number of columns assigned to a chunk
− Large pcols gives long inner loops, good for vectorization
− Small pcols effective for caching and pipelining, uses less memory

• Code fragments enabled for certain systems, controlled
by cpp tokens
− For example, implementations for vector and nonvector systems

• cpp tokens for math library routines with different calling
sequences on different systems (primarily FFTs)

• Many load-time and run-time options for parallel load-
balancing of physics
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Don’ts: nameless DOE code
• Important DOE code doing production work

− Many issues with this code (in our opinion)
− Shall remain nameless

• Problems include
− Poor choice of macro names
− Poor placement of #ifdefs
− Extensive mixing of C and Fortran
− Improper use of PETSc
− Programming style not consistent

• Probably result of many authors over many years
− Lots of dead code
− No internal timers, checks
− Lack of comments
− No runtime verbosity
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Nameless examples (just a few)
1. Used implicit none, but then did the wrong

thing
 subroutine xyz
      implicit none
      integer ierr,MPI_COMM_WORLD

2. CPP instead of Fortran include
 subroutine abc3d(arg, myrank)
#include "mpif.h"

3. Short, cryptic variable names
    DATATYPE2 zz,oz,tz,sz,
&     con,don,e,a1,a2,a3,
&     a4,a5,a6,b1,b2,b3,b4,b5,b6,
&     c1,c2,bill,bob
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Nameless examples
4. Computed gotos, spaghetti code

 if(iop(1)-5) 201,200,201
  201 c1=w(1)
        if(iop(2)-5) 203,202,203
  203 c2=w(k4)
        goto 205
  200 if (n-4)300,302,302
  302 a1=x(1)-x(2)
C  …. Work
        goto 201
  202 if (n-4)300,303,303
  303 b1=x(n)-x(n-3)
C  …. More work
        goto 203
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Nameless examples
5. Potential MPI deadlock

SUB1
all procs call MPI_SEND

SUB2
all procs call corresponding MPI_RECV

MAIN
call SUB1
call SUB2

6. Saved variable lmax typo?
      integer lmax
      save lmax

if(ncy.eq.0) lmax=lfu
write(*,*) lmax,u(lmax)
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