Major Shared Resource Cen t er

ERDCIVI a KUs

ERDC MSRC/PET TR/00-10

Large-Scale Collective Communication and Load-Balancing
on Parallel HPC Systems

by

Mark R. Fahey

05h00100

Large-Scale Collective Communication and
Load-Balancing on Parallel HPC Systems

Mark R. Fahey*
Engineer Research and Development Center

Major Shared Resource Center
Vicksburg, MS 39180

April 27, 2000

1 Introduction

This report compares the performance of large-scale MPI broadcasts and reductions for
the terrain masking problem on several parallel systems. Terrain masking is the process of
determining whether a location or altitude is visible from any of a set of vantage points,
called threats, or whether it is obscured, or “masked,” by intervening terrain [2, 3]. The
terrain masking problem involves a large-scale terrain grid and its associated masking grid.
Typically on a distributed-memory computer, the terrain map must be distributed across
the local memory of all the processors and each processor works on its local portion of the
data. Instead, in this report, the entire terrain and masking altitude maps are replicated
on each processor (assuming the processors have enough local memory.) Thus, intermediate
results are distributed among the processors and a collective communication call is required
to build the final mask. With this model, each processor computes the mask for its assigned
threats. We also compare the methodologies of statically and dynamically allocating threats
to processors.

The purpose of this work is not to present a terrain masking algorithm that is superior
to other implementations. Rather, this work illustrates the differences in large-scale commu-
nication costs across parallel high-performance computer systems. In addition, the benefits
and costs of implementing a boss-worker algorithm for load-balancing are discussed. The
terrain masking application is used for illustrative purposes only.

2 Terrain Masking Review

Terrain masking is the process of determining whether a location is masked from threats by
intervening terrain. Threats for this type of problem could be light sources, radio towers,

*Computational Migration Group, Computer Sciences Corporation, mfahey@nrcmail.wes.hpc.mil

antennae, radar receivers, etc. The threats are effective only in their sensor range. Terrain
masking computes the safe altitude, called the masking altitude, at each grid point. Aircraft
flying above this altitude can be observed by at least one enemy sensor.

Terrain masking is an important application in ground-based C3I systems and flight
planning computers. To support real-time mission planning, terrain masks must be computed
as quickly as possible. Terrain masking takes as input a relief map of a region. Output
consists of the masking altitudes.

At each grid point within range of a threat, the masking height associated with that
threat is computed. The final masking height at each grid point is the minimum of the
computed masking altitudes associated with each threat covering the grid point. For a given
threat, the masking altitude at each grid point is computed by a line-of-sight calculation.

For more information on parallelization of the terrain masking application, see [1, 2, 3].

3 Large-Scale Broadcasts and Reductions

The masking heights corresponding to each threat can be computed concurrently. In a
shared memory architecture, one only needs to ensure that specific memory locations be
“locked” when computing the masking heights. Locked refers to mutual exclusion where
only one process or thread has access to shared data at any given time in order to prevent
write-write and read-write conflicts when working with the mask. For distributed memory
computers, this approach may be used if each process has a local copy of the masking grid
and a global reduction is performed after all threats have been processed. Terrain masks
may be computed using the following steps on a distributed memory parallel computer:

Master MPI process reads terrain grid
Broadcast terrain grid
Partition the threats equally among the processes

Each process computes the local terrain mask for its assigned threats

DA

Perform global reduction of masking grid on master process

These steps comprise our basic MPI terrain masking algorithm where the entire grid is
replicated across all processors. Figure 1 shows a schematic of this algorithm.

Of course, this approach only works if the distributed memory computer has enough local
memory. For example, suppose each processor has 256 Megabytes of local memory, then this
“code” could only process grids up to approximately 5500 by 5500 assuming the terrain and
masking heights are stored as 4 byte integers. One can expect that terrain grids can and
will exceed this size.

In the remainder of this report, the performance of the large-scale broadcasts and re-
ductions used in the terrain masking algorithm are compared on three systems: an SGI
Origin2000, IBM SP, and Cray T3E. The SGI Origin2000 and IBM SP are located at ERDC
MSRC and the Cray T3E is at NAVO MSRC. The SGI Origin2000 has 128 CPUs sharing
56 Gigabytes of memory, the IBM SP has 53 nodes with 2 Gigabytes of memory, and the
Cray T3E has processing elements with 1 Gigabyte of memory.

Terrain

Map (TM)
Proc 0 Proc 1 Proc 2 Proc 3 Step 1: Input Terrain
™
\ B v v v
Proc 0 Proc 1 Proc 2 Proc 3 Step 2: Replicate Terrain

y v ! .
v Step 3: Partition Threats
Proc 0 Proc 1 Proc 2 Proc 3
@ F‘ h .. Step 4: Process Threats
Mask 3
v |
Proc0 « val Proc 1 Proc 2 Proc 3 Step 5: Mask Reduction
Mask 2 ‘
[

Figure 1: Schematic of algorithm.

A data set for the terrain masking problem was obtained from the AFRL/IF Limited
Access Benchmarking Pages! which consisted of a 6001 by 6001 grid of terrain heights and
a second file with 90 threats. The grid represents a 100 km by 100 km section of terrain
with integer-valued altitudes. The threat file holds longitude and latitude coordinates with
an effective range for each threat. For this work, the threat file was converted so that it
contains a grid location and effective range for each threat.

The original intent was to broadcast the entire grid at step 2 and do a global reduction
of the computed masking grid at step 5. It was found that, due to limitations of the vendor-
supplied MPI on some machines, it was necessary to broadcast/reduce one grid column at
a time to perform the full broadcast/reduction. In Tables 1 and 2, the performance?® of
broadcasts and reductions, respectively, are shown.

Performing the broadcasts in loops was found to cause little difference in the timings of
these operations on the SGI Origin2000 and Cray T3E. However, on the SGI Origin2000,
there is a measurable degradation in columnwise reductions for 8 or more processors. On
the IBM SP, there was an obvious degradation doing collective communication columnwise
in a loop for both broadcasts and reductions..

In Tables 1 and 2, some entries under the Cray T3E are entered as “NA”. For reasons
unknown to the author, the program runs out of memory on the T3E when using 2 processing
elements, yet does not for larger numbers of processing elements. The code requires the same

http://www.if .afrl.af.mil/tech/programs/hpcbench/home/AFRLMARX .html
2Compilation options were used that yielded best performance on each machine.

SGI Origin2000 IBM SP Cray T3E
procs | column grid | column grid | column grid
2 2.16 1.79 2.97 1.50 NA NA
4 4.00 3.32 534 296 | 105 0.85
8 5.59 5.61 749 443 | 182 1.58
12 5.88 6.56 8.60 4.43 | 252 225
16 7.16 6.96 9.92 5.89 2.51 2.26

Table 1: Time in seconds to broadcast grid.

SGI Origin2000 IBM SP Cray T3E
procs | column grid | column grid | column grid
2 3.40 3.38 5.83 4.74| NA NA
4 6.41 7.19 9.88 4.79 5.42 NA
8 11.48 1499 | 14.00 5.48 7.71 NA
12 11.84 1563 | 16.54 5.65 9.87 NA
16 16.13 23.44 | 20.13 5.88 9.88 NA

Table 2: Time in seconds to reduce mask.

of amount of memory per processor regardless of the number of processing elements. Note
that there is 1 Gigabyte of memory per processor and that should be sufficient for two 6001
by 6001 grids. Also, in Table 2, although an entire grid can be broadcast on the Cray T3E,
the reduction cannot be done because the MPI implementation runs out of buffers®. See
Appendix A for a table of timings on the largest grid size the T3E could handle without this
memory problem.

The times reported on the SGI Origin2000 varied quite a bit since experiments were run
during normal operation hours at ERDC MSRC. Memory and bandwidth are shared among
all other users. Since sharing these resources adversely affects the performance of large-scale
collective communication calls, timings varied from run to run.

4 Load-Balanced Algorithm

The effective range of each threat is different and some threats are located near the bound-
aries of the terrain map. Therefore, the time spent computing the terrain mask for each
threat can vary greatly. Statically allocating the threats to processes results in poor load-
balancing. Table 3 shows the maximum and minimum timings of an MPI process executing
step 4 in the algorithm presented in the previous section. This shows that there can be a
wide difference between the first process to finish and the last when computing the local
masking altitudes. Table 3 also shows the percent idle time for MPI process as defined by

N
Zi:1 b
N * tmas
3MPI aborted with the message: “[No error reported] Failed to allocated 2nd true buffer.”

%idle time = 100% —

4

procs SGI Origin2000 IBM SP Cray T3E
max min %idle | max min %idle | max min %idle
2 838.90 765.46 4 1047.15 1023.42 1 837.76 825.81 1
3 546.74 465.51 8 759.73 640.13 8 607.40 509.43 8
4 439.84 304.69 14 603.25 419.29 14 491.21 333.96 15
5 406.43 246.71 22 5H22.81 337.01 21 429.56 264.72 23
6 327.83 207.60 22 441.65 273.03 22 363.15 215.17 24
7 242.59 184.50 11 331.03 252.71 11 268.96 200.52 12
8 253.41 135.92 24 345.48 182.90 25 284.71 142.13 27
11 186.65 98.21 22 235.05 128.82 20 191.55 97.61 21
12 211.63 92.01 39 282.72 121.48 39 233.78 92.96 41

Table 3: Time in seconds to compute local terrain mask for statically allocated threats. The
maximum and minimum timings of MPI processes in step 4 are presented.

where N is the number of MPI processes and ¢; is the execution time for process 7. The
data shows that as the number of processors increases, the percent idle time also increases
as expected.

This shortfall can be remedied by dynamically assigning work to processors. More pre-
cisely, when a processor becomes available, it is sent a threat’s information and then that
processor computes the local terrain mask with respect to the new threat. We used this type
of model (called boss-worker dynamic load-balancing) where the boss (process 0) monitors
the workers and distributes work accordingly. A shortfall of this model is that the boss
process does no computational work, rather it is constantly monitoring the workers.

procs | SGI Origin2000 IBM SP Cray T3E
time speedup time speedup time speedup

1 1429.40 - 2070.84 - 1646.20 -
3 757.26 1.89 1047.58 1.98 839.04 1.96
4 517.54 2.76 700.45 2.96 563.18 2.92
5 392.45 3.64 533.99 3.88 423.62 3.89
7 259.70 5.50 351.20 5.90 283.54 5.81
8 228.71 6.25 307.16 6.74 248.27 6.63
9 203.29 7.03 276.17 7.50 219.99 7.48
12 157.52% 9.07 213.41* 9.70 171.02* 9.63
13 148.87* 9.60 201.07* 10.30 159.03* 10.35

Table 4: Time in seconds to compute local terrain mask in the boss-worker algorithm. *Time
spent by boss process, minimum worker time approximately 20 to 30 seconds less.

Table 4 shows the time to compute the terrain masking in the boss-worker model. Since
this algorithm is nearly load-balanced, only the time the boss process spends monitoring
the workers is shown. The load-balancing is good until the number of processors gets large
relative to the number of threats. For example, the load-balancing effect degrades as the

5

ratio of threats per process decreases to 7.5 with 12 worker processors, where a difference
of as much as 30 seconds between the fastest and slowest process is observed. Nonetheless,
even with a low threat to process ratio, a processor spends relatively little time idle.

Table 4 also shows the relative speedup gained using the load-balanced code. Relative
speedup is defined as

T
Srelative = fp
where T is the execution time on 1 processor and T, is the execution time on p processors.
The observed speedup is fairly uniform across the parallel machines.

Note that at least three MPI processes should be used in the boss-worker model. A
boss-worker model does not make sense with only one process and a boss-worker model with
2 processors means that the boss is always monitoring one worker process which is a waste
of compute resources. Timings for more than 12 worker processes were not collected because
there is not enough work available to ensure that each process gets an equal share.

For a small number of processors, statically allocating the threats to processes computes
the local terrain masks faster. For example, when the number of processors is three on the
IBM SP, the local terrain masks can be computed in under 752 seconds (Table 3.) However,
the corresponding time with dynamic allocation of threats is 1048 seconds (Table 4.)

On the other hand, for larger numbers of processors, the load-balancing algorithm per-
forms better. For eight processors on the IBM SP, the local terrain masks can be computed
in under 347 seconds (some processors may be idle for 160 seconds) with a static allocation
of threats to processors. With the load-balanced algorithm, the local terrain masks can be
computed in under 308 seconds with little idle time. Futhermore, the timing in Table 4
corresponding to nine processors shows how well eight (worker) processors do (277 seconds)
with load-balancing in comparison to the 347 seconds (Table 3.)

5 Concluding Remarks

The Cray T3E is known to have a very fast communications mesh. The data in Tables 1
and 2 support this statement except for one caveat. Surprisingly, the IBM SP performs the
entire grid reduction significantly faster for eight or more processors than the Cray T3E or
the SGI Origin2000. Also, as expected, performing column-wise broadcasts or reductions in
a loop is much slower on the IBM SP than the entire grid broadcast or reduction. However,
column-wise collective communication performed only marginally slower on the Cray T3E
and the SGI Origin2000 than the entire grid collective communication.

The MPBench Report [4] also reports on the efficiency of MPI broadcasts and reductions
for parallel computers at ERDC MSRC. Table 5 shows a comparison of transfer rates in
megabits per second of broadcasts and reductions as observed in the MPBench report and
this work. The data in Table 5 shows a general agreement between the results observed in the
MPBench report and this work. One exception is the performance of large-scale broadcasts
on the T3E. Although it may be unfair to compare the transfer rates for a 16MB message
and a 144MB message, there is an increase from 39MB/sec to 64MB/sec. This may be due
to the fact that the MPBench results were obtained on the T3E at ERDC MSRC while the
results for T3E in this work were obtained at NAVO MSRC.

Broadcast MPBench ™
System 16KB 32KB 16MB | 24KB 144MB
SGI Origin2000 24 25 18 20 21
IBM SP 14 16 33 15 24
Cray T3E 52 58 39 57 64
Reduction MPBench ™
System 16KB 32KB 16MB | 24KB 144MB
SGI Origin2000 14 12 7 9 6
IBM SP 10 14 23 7 25
Cray T3E 16 17 20 15 NA

Table 5: Comparison of broadcast and reduction performance in megabits per second.

Also, this report shows the benefits and costs of implementing a load-balancing algorithm.
The load-balanced implementation performed much better for larger numbers of processors
as expected, and slower for smaller numbers of processors because the boss process does
no computational work. Naturally, if there was much more work (i.e., more threats), the
load-balanced code could be run with more processors and scale perfectly well.

References

[1] C. P. Breshears, M. R. Fahey, H. A. Gabb. “Application of Fortran Pthreads to Linear
Algebra and Scientific Computing,” Proceedings of the Cray User Group, 41st Confer-
ence, May 1999.

[2] L. Pires, A. Elder. “Effective Parallelization of Terrain Masking Applications,” Pro-
ceeding of the Second IASTED International Conference on Parallel and Distributed
Computing and Networks, Brisbane, Australia, Dec., 1998.

[3] R. Schultz, R. Jha, L. Pires. Terrain Masking, Technical Information Report (A006),
Honeywell Technology Center, Minneapolis, MN, 1995.

[4] P.J. Mucci, K. London. “The MPBench Report,” PET Technical Report 98-26, CEWES
MSRC, Vicksburg, MS, 1998.

A Collective communication using columns versus en-
tire grid

This section contains a table of timings corresponding to the largest whole grid that the
T3E could reduce. The largest grid size, as determined experimentally, turns out to be 5680
by 5680. In Table 6, timings for reducing this grid are shown as well as the columnwise
reductions. Note that the IBM SP is still superior to the other machines when doing large-
scale reductions.

SGI Origin2000 IBM SP Cray T3E
procs | column grid | column grid | column grid
2 3.09 3.13 515 428 | 269 6.63
4 6.70 8.59 873 446 | 470 6.68
8 9.30 10.09 | 1242 491 | 6.70 6.10
12 11.25 15.25 15.19 5.19 8.75 5.34
16 14.29 2497 | 19.03 5.19 8.67 6.48

Table 6: Time in seconds to reduce mask for 5680 by 5680 grid.

